
Eurographics Symposium on Rendering 2009
Hendrik P. A. Lensch and Peter-Pike Sloan
(Guest Editors)

Volume 28 (2009), Number 4

GPU-Assisted High Quality Particle Rendering

Deukhyun Cha†, Sungjin Son‡, and Insung Ihm†
†Department of Computer Science and Engineering, Sogang University, Korea

‡System Architecture Lab., Samsung Electronics, Korea

Abstract
Visualizing dynamic participating media in particle form by fully solving equations from the light transport theory
is a computationally very expensive process. In this paper, we present a computational pipeline for particle volume
rendering that is easily accelerated by the current GPU. To fully harness its massively parallel computing power,
we transform input particles into a volumetric density field using a GPU-assisted, adaptive density estimation
technique that iteratively adapts the smoothing length for local grid cells. Then, the volume data is visualized
efficiently based on the volume photon mapping method where our GPU techniques further improve the rendering
quality offered by previous implementations while performing rendering computation in acceptable time. It is
demonstrated that high quality volume renderings can be easily produced from large particle datasets in time
frames of a few seconds to less than a minute.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing, I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors

1. Introduction

1.1. Background and our contribution

Particles are an excellent means of representing dynamic
and fuzzy effects of natural phenomena. They are frequently
used by animators to effectively model participating media
such as smoke and clouds. The generation of physically ac-
curate rendering images from large particle datasets by con-
sidering the complicated light transport phenomena often
leads to a substantial expense in computation. Among the
several direct particle rendering methods that have been em-
ployed in the computer graphics community, one effective
approach is transforming particle data into corresponding
volume data and then applying an advanced volume render-
ing algorithm that permits effective massively parallel sim-
ulation of the light transport theory on today’s many-core
processors, generating high quality renderings in practical
time.

In this paper, we propose several computing techniques
for particle volume rendering that can be easily accelerated
by the current graphics processing unit (GPU). Our method
is based on the volume photon mapping algorithm [Jen01]
that is routinely used to produce high quality volume render-
ing images. We first present a three-pass density estimation
method, exploiting the GPU’s fast rectangle drawing capa-
bility, to use adaptive smoothing lengths for transforming

given large particle datasets into volumetric density fields
that are then visualized in the following rendering pipeline.
Second, we demonstrate that the mathematically correct nu-
merical method for tracing photons in nonhomogeneous me-
dia can be implemented practically on the GPU, faithfully
simulating multiple scattering, which is one of the most
intractable phenomena to reproduce in volume rendering.
Then, we show that the speed of volume rendering can be in-
creased drastically by caching precomputed in-scattered ra-
diances in a simple 3D grid structure, and reusing them for
fast radiance resampling. Finally, we show that noise can be
naturally and efficiently included in the ray marching stage
of our GPU-assisted volume photon mapping framework,
which allows animators to easily model fuzzy appearances
of participating media at very small expense.

The fundamental goal of this work is to provide animators
in the special effects industry with a fast volume rendering
tool that can significantly increase the efficiency of their ani-
mation process. Unlike some of the recent works that pursue
real-time volume rendering by possibly performing substan-
tial preprocessing and/or employing simpler light transport
models, the presented rendering scheme takes the other di-
rection, attempting to further improve rendering quality pro-
vided by the frequently used volume photon mapping tech-
nique. We demonstrate that high quality volume renderings

submitted to Eurographics Symposium on Rendering (2009)

2 D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering

can be easily created from large particle datasets in time
frames of a few seconds to less than a minute.

2. Previous work

Since introduced to the computer graphics commu-
nity [Ree83], particles have been employed effectively to
represent dynamic and fuzzy phenomena of participat-
ing media (for instance, refer to an application of parti-
cles in the special effects industry for generating volumet-
ric effects [Kap03]). In the physically-based fluid simu-
lation, the Lagrangian particles have also been explored
as a means of complementing the Eulerian grid-based ap-
proaches [Mon88]. In many particle systems, the rendering
computation was usually performed by splatting particles
one by one onto screen. While often satisfactory, such di-
rect particle drawing methods were not very appropriate for
creating global illumination effects.

Following the pioneering works [Bli82,KH84], there have
been extensive studies on the realistic rendering of partic-
ipating media (please refer to the survey paper by Cerezo
for a comprehensive overview of this theme [CPP∗05]).
Among them, volume photon mapping has been frequently
used because of its simple and practical simulation of the
complex light transport process through volume photon
maps [JC98,Jen01]. In order to ease the computational over-
head of the volume photon mapping method, the idea of ra-
diance caching was recently extended to participating me-
dia [JDZJ08]. Photon tracing was also performed on the
face-centered cubic lattice to simulate the light transport
phenomena [QXF∗07].

In an aim to achieve interactive or real-time render-
ing of participating media, various approximation models
were implemented on modern graphics hardware [DYN02,
KPh∗03, REK∗04, SRNN05]. Fast rendering was also pos-
sible through precomputations of light transport informa-
tion [HL01,PARN04,HAP05,SKSU05,ZRL∗08,BNM∗08,
CNLE09].

3. GPU-assisted particle rendering

3.1. Rendering pipeline overview

The presented particle rendering scheme consists of four ma-
jor stages: density volume generation, volume photon trac-
ing, illumination cache construction, and finally ray march-
ing. It starts by transforming the input particles into a vol-
umetric density field for efficient rendering computation on
the GPU. Particles are an excellent means for modeling par-
ticipating media. From the perspective of physically-based
volume rendering that needs repeated resampling operations
over sampled density data, however, grids are better suited
for GPU computation than particles, as the GPU has been
optimized for grid structures. For dynamic particle datasets,
the conversion has to be carried out for each animation
frame, demanding a fast transformation process. In order to

accelerate it, we used a rectangle drawing-based method that
provides both fast and adaptive conversion on the GPU.

Then, a volume photon map was built by tracing photons
stochastically within participating media. While most par-
ticipating media we routinely handle are nonhomogeneous,
a simple propagation distance estimation model that only
works for homogeneous media has been usually applied for
practical volume rendering, often producing erroneous illu-
mination effects. In order to achieve high quality renderings,
we solved on the GPU the integral equation derived for non-
homogeneous media, which offers mathematically correct
simulation at small extra cost.

When the volume photon map was ready, radiance es-
timation computation was performed before ray marching
started, by building a 3D grid structure, called illumination
cache. This grid, which stored sampled radiance in-scattered
towards the viewing direction, was then exploited by the
GPU to quickly reconstruct incoming radiance at sampled
points through trilinear interpolation in the ray marching
stage. Finally, ray marching computation was performed to
generate the final rendering images, efficiently utilizing the
density volume and illumination cache. In this ray marching
stage, we demonstrated that clever use of precomputed Per-
lin noise could add fine detail to particle data at insignificant
expense, which enabled animators to easily model the fuzzy,
natural looking appearance of participating media.

3.2. Adaptive density volume generation

In smoothed particle hydrodynamics (SPH), the physical
properties of a given particle system are reconstructed us-
ing the kernel function [Mon88]. In particular, the density
of particle p is estimated at its location as a weighted sum
ρ(pp) = ∑q mq ·W (|pp − pq|,hp) over neighboring particles
q with mass mq, where pa is the location of particle a, and
W (x,h) is a smoothing kernel with smoothing length of h
and circular support domain with radius κh (note that the
value of κ may not be one).

By evaluating the weighted sum at grid points, particle
data can be easily transformed into corresponding volumet-
ric data. An important parameter in this process that has sig-
nificant influence on the final renderings is the smoothing
length hi jk , which is applied at each grid point pi jk . It is
known that local accuracy achieved by density estimation
depends on the number of neighboring particles involved.
When too few are used, it may result in low accuracy. On
the other hand, if too many are used, local properties may be
smoothed out despite the high computational effort. In order
to gain a consistent level of accuracy throughout the entire
simulation domain, the smoothing length should be chosen
by reflecting the local particle density, so that a sufficient and
necessary number of particles are used.

Our rendering system provides both uniform and adaptive
smoothing length methods that are implemented using sim-

submitted to Eurographics Symposium on Rendering (2009)

D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering 3

ple rectangle drawing that is easily accelerated on the GPU.
The single-pass uniform length method that has been fre-
quently employed in various computer graphics applications
is computationally cheap, whereas the multi-pass adaptive
method offers automatic adaptation for datasets of irregular
distribution with steep density contrasts.

Note that the kd-tree structure that provides effective near-
est neighbor searching may be employed for the adaptive
density volume generation. Recently, a kd-tree construc-
tion algorithm was presented for the GPU using the CUDA
API [ZHWG08]. In this work, an iterative k-nearest neighbor
search algorithm was implemented based on range search-
ing because the often-used priority queue method [Jen01]
was not well-suited for the CUDA’s computing architecture.
While proven to be effective for caustics rendering, their
construction algorithm is somewhat complicated to program
on the GPU. In stead of implementing the kd-tree method,
we decided to develop an approximate searching methods
that, whether adaptive or not, demands drawing of only
O(N) rectangles for N particles (under the assumption that
h(0) is small compared with the entire simulation domain)
and allows a much simpler implementation on the GPU than
the kd-tree approach.

3.2.1. Density estimation with uniform smoothing
length

Suppose that a volume with resolution of nx×ny×nz is to be
constructed with uniform smoothing length h. In the prepa-
ration step, input particles traverse the CPU to create nz bins,
one per z = zi slice (0 ≤ i < nz), each holding particles that
may affect grid points on the corresponding xy slice. Stored
as vertex arrays, the particle bins are sent to the GPU for fast
processing, where particles are orthogonally projected bin-
by-bin onto the image plane by drawing squares of size 2κh,
centered at their respective positions in the volume space.
For each rasterized pixel that corresponds to a grid point, the
pixel shader calculates the distance to the current particle,
and accumulates the appropriate kernel-weighted mass. Af-
ter the rectangle drawing process is repeated over all bins,
the resulting nz images are assembled into a volumetric den-
sity field in the form of a 3D texture.

3.2.2. Density estimation with adaptive smoothing
length

For adaptive selection of smoothing length, we have devised
a predictor-corrector scheme that proceeds in three steps.
In this method, the smoothing length is controlled by a
user-specified parameter N∗, which intends that a rough
number of particles be involved at each grid point pi jk in
the density estimation. In order to avoid a smoothing length
that is too large in low-density region, it is limited by the
maximum length h(0), which is also set by the user.

[Step 1: Prediction] In the beginning, one rectangle draw-

ing pass is carried out with an initial length h(0), count-

ing the number of particles, N(0)
i jk that exist around grid

point pi jk in the spherical volume with radius κh(0). Af-
ter the particle projection is finished, the average density

at pi jk is estimated as ρ̄i jk =
mN(0)

i jk
4
3 π(κh(0))3 under the assump-

tion that the mass m is constant. By letting ρ̄i jk = mN∗
4
3 π(κh(1)

i jk)3
,

a new smoothing length h(1)
i jk that, hopefully, contains N∗

particles in the supporting domain is estimated as h(1)
i jk ≡

min{h(0)
(

N∗

N(0)
i jk

) 1
3
, h(0) }.

[Step 2: Correction] The estimate h(1)
i jk is reliable only when

particle distribution is varying smoothly. In reality, parti-
cles are distributed in a complicated and irregular manner,
hence a correction computation must be performed to im-
prove accuracy. In this second step, another round of rectan-
gle drawing is performed, counting the number of particles,

N(1)
i jk found with h(1)

i jk . When the smoothing length has been

underestimated, that is, N(1)
i jk < N∗, h(1)

i jk must be increased
appropriately. The correction can be done from a simple re-

lation
N(0)

i jk −N(1)
i jk

4
3 π(κh(0))3− 4

3 π(κh(1)
i jk)3

=
N∗−N(1)

i jk
4
3 π(κh∗i jk)3− 4

3 π(κh(1)
i jk)3

, leading to

a new estimate

h∗i jk ≡
((N∗−N(1)

i jk)((h(0))3 − (h(1)
i jk)3)

N(0)
i jk −N(1)

i jk

+(h(1)
i jk)3

) 1
3
.

If the smoothing length has been overestimated, that is,

N(1)
i jk > N∗, it is adjusted as h∗i jk ≡ h(1)

i jk

(
N∗

N(1)
i jk

) 1
3
, reflecting

the local particle distribution. In this case of overestimation,
the estimate may be further refined by multiplying a relax-

ation coefficient α = (1− s(
N(1)

i jk

N(0)
i jk

)) as h∗i jk ≡ αh(1)
i jk

(
N∗

N(1)
i jk

) 1
3

to reflect gradient of particle distribution, in which s is a
user-defined scale factor in [0,1].

[Step 3: Density computation] In the final step, the vol-
ume density field is generated by performing one more pass
of rectangle drawing using the adaptively chosen smoothing
distance h∗i jk .

3.3. Test results

Table 1 shows timing statistics that compare the run times
of several methods. First, we coded a simple uniform grid
method (UG), similar to the GPU implementation designed
for photon mapping [PDC∗03], where particles are orga-
nized into grid cells of size κh and the cell containing given
volume grid point pi jk and its 26 neighbors are queried.
Then, this uniform smoothing length method was tested over
our rectangle drawing techniques, where USL and ASL3

submitted to Eurographics Symposium on Rendering (2009)

4 D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering

respectively denote the uniform and adaptive methods de-
scribed in this section. We also programmed a two-pass
adaptive method (ASL2) that skips the correction step, and
hence is faster, but possibly less accurate.

(unit: sec.)
Resolution h(0) UG USL ASL2 ASL3

129×103×107 0.96 1.38 0.53 0.92 1.20
257×206×213 0.96 5.48 1.84 3.55 4.66
257×206×213 1.44 10.02 4.53 7.47 9.98

Table 1: Timing statistics measured on an NVIDIA GeForce GTX
280 GPU. A physically-based simulated scene in Figure 1 that con-
tains 326,752 particles was tested to compare run times of vari-
ous density estimation methods. The uniform grid (UG) and uniform
smoothing length (USL) methods used fixed smoothing length. De-
spite being faster than the other adaptive methods, they were unable
to adapt themselves to the density of the particle data. With addi-
tional expenses, the presented three-pass method (ALS3) was capa-
ble of adaptively controlling smoothing lengths, entailing enhanced
renderings, as shown in Figure 1. All the timings contain the CPU
time spent for building the uniform grid and slice bins, respectively.

As the test results indicate, our uniform length
method (USL) compares very favorably with the uniform
grid method (UG) that usually took longer than the sophisti-
cated, three-pass adaptive method (ASL3). The run time of
our multi-pass method greatly depends on the initial choice
of h(0) that determines the rectangle size. Recall that our
scheme controls the overall accuracy of density estimation
using the target particle number, N∗. Initially, h(0) is set large
enough, so that each grid point holds at least N∗ particles in
its supporting domain. A careless, fixed choice of h(0), how-
ever, may result in a waste of time as it can be too large for
most of the grid points. It is possible to select h(0) heuris-
tically by applying a simple and fast histogram technique
on the CPU. The figures in the ASL3 column indicate run
times obtained when h(0) was adaptively set to 0.75h(0) in
the high-density region, in which the statistics in Table 2 are
the same as when fixed h(0) was applied.

In addition to the timing performance, we have also in-
vestigated the actual number of particles used by our multi-
pass methods. In Table 2, Nused

avg and Nused
stdev respectively in-

dicate the average and standard deviation of the number of
particles found at grid points for density estimation. As ex-
pected for the uniform smoothing length method (USL), the
average numbers increased quickly as h(0) became larger,
demanding more computing time. When the search radius
was small, the standard deviation was large, entailing an un-
controlled accuracy in density estimation. The variation was
reduced when a larger smoothing distance was used, but too
many particles tended to be found in the high-density region,
which caused highly detailed features to be blurred. This
phenomenon was quite expectable because the tested parti-
cle data have a very irregular distribution with steep density
contrasts, as displayed in Figure 1.

h(0) N∗ Nused
avg Nused

stdev
Nused

stdev
Nused

avg

USL

0.24 - 11.08 15.42 1.39
0.48 - 74.37 55.50 0.74
0.96 - 447.49 250.21 0.55
1.44 - 1282.80 667.91 0.52

ASL2
0.96

32 61.32 30.65 0.49
64 98.14 41.47 0.42

1.44
32 80.21 41.25 0.51
64 136.66 59.76 0.43

ASL3
0.96

32 33.05 10.14 0.30
64 62.21 12.22 0.19

1.44
32 34.65 8.51 0.24
64 67.00 13.03 0.19

Table 2: Statistics on the number of particles used at each grid
point for density estimation. The Nused

stdev column revealed that the
range of particle numbers was too wide when the uniform smooth-
ing length method (USL) was applied, resulting in irregular accu-
racy in density estimation. On the other hand, the variation reduces
markedly thorough automatic smoothing length control by the pre-
sented adaptive method (ASL3). In these statistics, we only consid-
ered grid points that contained at least one particle in their cells.

By applying the three-pass adaptive method (ASL3), how-
ever, we gained much more control over the number of par-
ticles, as shown in the Nused

avg and Nused
stdev columns. In particu-

lar, the figures in the ASL2 and ASL3 rows indicate that the
additional correction step deserved extra computing time. It
may seem that the standard deviation is still high. Consid-
ering that the tested particle dataset was very irregular in its
distribution, however, we believe that a good enough con-
trol for effective rendering was achieved. This fact is well
observed in the rendering images in Figure 1. When a fixed
length method is used, animators usually have to go through
a trial and error process of finding the proper fixed smooth-
ing length. On the other hand, our multi-pass methods auto-
matically control the smoothing length, given an initial value
of N∗, by appropriately reflecting the particle density (see
the caption of Figure 1).

3.4. Volume photon tracing for nonhomogeneous media

3.4.1. Solving integral equation for distance generation

When a volume photon is scattered at location p0 ∈ R3

in a given participating medium, a pair of random direc-
tion �ωnext and distance dnext to the next interaction point
must be stochastically generated. �ωnext is usually computed
by importance-sampling phase function set to the medium.
On the other hand, dnext has often been generated in vol-
ume rendering using uniform random variable ξ ∈ (0,1) as

dnext =− logξ
σt

(Eq. (1)), where σt is the extinction coefficient
at p0 [Jen01].

This expression assumes an exponential distribution with
the fixed rate parameter σt along the half-closed line p(x) =

submitted to Eurographics Symposium on Rendering (2009)

D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering 5

Figure 1: Comparisons of rendering images produced by uniform
and adaptive smoothing lengths. The uniform method (USL) was
applied to create images in (a), (b), (d) and (e) using the smooth-
ing length h(0) = 0.48, 0.48, 0.96 and 0.96 and particle mass m =
0.004, 0.008, 0.001 and 0.004, respectively. On the other hand, the
presented three-pass technique (ASL3) was applied with h(0) = 0.96
and m = 0.006 to get the images in (c). As depicted in (c), adap-
tive selection of the smoothing length smoothes out well the low-
density region, while preserving fine details in the high-density re-
gion. When the uniform smoothing length method was applied, set-
ting the length too small produced bumpy and noisy renderings ((a)
& (b)), whereas setting it too large often entailed excessive blurring,
losing details in particle data ((d) & (e)).

p0 + x ·�ωnext (x ≥ 0), implying that σt , the extinction coeffi-
cient in volume rendering, must be constant. In general, this
assumption does not hold because the extinction coefficient
varies very irregularly in nonhomogeneous media, leading
to erroneous simulation of light transport phenomena. Based
on the principle of the inversion method, the propagation dis-
tance dnext for nonhomogeneous media with varying extinc-
tion coefficient σt(p(x)) can be generated by solving an in-
tegral equation as follows: For a uniform random number ξ
between 0 and 1, find dnext such that ξ = 1− e−

R dnext
0 σt(s)ds,

i.e.,
R dnext
0 σt(s)ds = − ln(1− ξ) (Eq. (2)).

This integral equation can be solved numerically by in-
crementally evaluating the integral along the line p(x) until
the sum exceeds − ln(1− ξ) (this corresponds to marching
along the parameterized line). If the accumulated value has
not reached − ln(1− ξ) when the parameter variable x ar-
rives at the boundary of volume, it means that the traveling
photon leaves the media without an interaction.

Photon propagation by Eq. (2) has already been reported
in previous works, for instance, [JC98, PKK00]. To the best
of our knowledge, however, the simple exponential distribu-

tion is still in popular use for practical volume rendering,
probably due to its computational simplicity (for example,
path distance was sampled according to the exponential dis-
tribution in a recent Monte Carlo simulation of multiple scat-
tering in nonhomogeneous participating media [JDZJ08]).
However, the massively parallel computing power of the re-
cent GPU enabled us to employ the sophisticated numerical
model that permits more precise light simulation in volume
rendering, as will be analyzed shortly.

3.4.2. Test results

As demonstrated in Figure 2, the stochastically correct
scheme compares very favorably with the previous simple
one. In this example, a cloud ball of low density, contain-
ing three smaller chunks of higher densities, was lit by a
light source from above. When photons were traced with
Eq. (1) in the cloud whose extinction coefficient was set to
its density (OLD1), most propagation distances were over-
estimated because of the small value of σt in the low-density
region, forcing the photons to leave the cloud without inter-
acting with the thicker regions. This phenomenon was well
reflected in the experimental statistics, where more than four
million photons had to be emitted to store only 117,757 vol-
ume photons (see the OLD1 column in the table in Fig-
ure 2(g)). On the other hand, the mathematically correct
method (NEW) nicely reflects the density variation of the
cloud ball, as demonstrated in the images in (c) and (d). Intu-
itively correct, photons were stored, stochastically well dis-
tributed according to the density distribution, catching the
illumination effect properly.

We have also varied σt by scaling the extinction coeffi-
cient by a factor of 50, and applied Eq. (1) in the photon
tracing stage (OLD50). In this setting, too many photons
were stored in the upper region of the cloud where light en-
ters, since the small distance values due to the exaggerated
extinction coefficients cause most photons to be absorbed
without reaching the lower region. Even with the large num-
ber of photons stored (416,219 in the OLD50 column of the
table in (g)), the two thick balls at the bottom were not il-
luminated properly, whereas only 191,636 photons as given
in the NEW column of the table, were able to correctly cre-
ate the light scattering effect by solving the integral equa-
tion (compare the images in (f) and (d)).

It may seem that the numerical method that needs an
inversion of the integral function is much slower than the
method based on Eq. (1), as an integral equation must be nu-
merically solved every time a photon interacts with the par-
ticipating medium. However, as indicated by the run times
given in the table in (g), our test on the GPU revealed that
the mathematically correct technique is very competitive,
especially for intractable situations, because fewer photons
were sufficient to faithfully simulate the light transport phe-
nomena. For precise evaluation of the integral, we applied
the fourth-order composite Simpson’s rule

R x2i+2
x2i

σt(s)ds ≈

submitted to Eurographics Symposium on Rendering (2009)

6 D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering

(a) OLD1 (b) OLD1

(c) NEW (d) NEW

(e) OLD50 (f) OLD50

OLD1 OLD50 NEW

σt (p(x)) d(p(x)) · 1 d(p(x)) ·50 d(p(x)) · 1
Emitted 4,403,200 409,600 614,400

Stored 117,757 416,219 191,636

Time (sec.) 3.934 1.359 1.038
(g) Photon tracing statistics

Figure 2: Comparison of stochastic distance generation methods.
The complicated technique (NEW), based on Eq. (2), effectively de-
picted the illumination effect in a tricky situation as set up in this
example, whereas the simpler technique using Eq. (1) had trouble
in photon tracing. The timings, measured on an NVIDIA GeForce
GTX 280 GPU show that the numerically more expensive method
actually turned out to be faster, as it was able to effectively simulate
the light transport phenomena with a smaller number of photons.
In our implementation, photons were traced on the GPU by draw-
ing rectangles repeatedly and the fourth-order composite Simpson’s
rule was applied with step size of one eightieth of the diagonal dis-
tance of a density grid cell.

Δx
3 {σt (x2i)+4σt (x2i+1)+σt(x2i+2)}, which runs as fast as

less precise, low-order numerical methods on the GPU.

3.5. Single and multiple scattering on the GPU

3.5.1. Illumination cache

In volume photon mapping, most of the rendering time is
spent in the final, ray marching stage, in which in-scattered
radiance must be repeatedly estimated at each ray sample
point. Usually, the single scattering part of incoming ra-
diance is separately evaluated by performing another ray

marching toward light sources. On the other hand, the radi-
ance due to multiple scattering is approximated by summing
weighted fluxes of neighboring photons.

In an attempt to enhance computational efficiency, a ra-
diance caching algorithm [JDZJ08], was recently presented
for volume rendering, where global illumination within par-
ticipating media was simulated by sparsely sampling the
single and multiple scattering radiances and caching them
for subsequent extrapolation. While novel and effective, the
algorithm is not best suited for GPU implementation be-
cause managing the caching structure, for instance, is still
too complex for the computational model offered by the cur-
rent GPU.

For simple and efficient computation on the GPU, we
used a 3D grid, called illumination cache, to store view-
dependent, sampled incoming radiance. Once built into a
texture image, in-scattered radiance at ray sample points can
be efficiently reconstructed through trilinear interpolation,
easily accelerated by texture units of the GPU. In building
the illumination cache, we separately accumulate the two
radiances from single and multiple scattering. In particular,
when the radiance due to multiple scattering was estimated,
we applied the rectangle drawing technique, proposed for
the density estimation computation, for adaptive volume ra-
diance estimation, rather than implementing an extra search
structure like the kd-tree for finding neighboring photons.

3.5.2. Test results

Table 3 lists statistics regarding illumination cache, gathered
on a PC with a 3.16 GHz Intel Core 2 Duo CPU and an
NVIDIA GeForce GTX 280 GPU. To demonstrate speedups
achieved by the presented GPU technique, we have imple-
mented a CPU version of the same rendering algorithm that
also employs the illumination cache, built using the kd-tree
method. During ray marching for both single scattering ac-
cumulation and final ray marching, we used a sampling dis-
tance that is one third of the diagonal distance of a grid cell.

As the table in (a) indicates, the single scattering compu-
tation, based on the fourth-order composite Simpson’s rule,
is remarkably efficient on the GPU, achieving computation
times that were up to hundreds times faster than on the CPU,
because the simple ray marching operation from each grid
point of illumination cache was well suited to the GPU’s
massively parallel streaming computation architecture. The
GPU computation also showed substantial speedups over
the CPU when multiple scattered radiance was accumulated
onto the illumination cache, as shown in table (b). Here,
the performance gap between two processors became larger
for a bigger search radius, because the rectangle drawing
method on the GPU outperformed the software-based kd-
tree operation. Finally, the table in (c) shows how effectively
the presented illumination cache worked on the GPU, where
the figures in parentheses denote the total rendering time.
We have also coded another CPU version that did not utilize

submitted to Eurographics Symposium on Rendering (2009)

D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering 7

(a) Accumulation of single-scattered radiance

Resolution CPU GPU

Cloud1
189×23×200 4.5 0.012
283×35×300 16.4 0.032

Cloud2
200×107×200 38.6 0.119
299×160×300 165.5 0.502

Smoke
200×161×167 55.3 0.136
300×242×250 257.3 0.630

(b) Accumulation of multiple-scattered radiance

Resolution CPU GPU

Cloud1
189×23×200 (2.8)

19.2 0.98
(165,087) (195,060)

283×35×300 (2.8) 62.2 1.84
283×35×300 (5.6) 422.6 9.90

Cloud2
200×107×200 (2.6)

121.3 3.01
(190.067) (231,505)

299×160×300 (2.6) 394.1 9.25
283×35×300 (5.2) 2988.5 53.09

Smoke
200×161×167 (0.8)

17.5 0.94
(130.560) (141,828)

300×242×250 (0.8) 56.1 2.08
300×242×250 (1.6) 417.0 6.85

(c) Ray marching

Resolution CPU GPU

Cloud1
1,024×576 (1) 296.1 (380.1) 0.14 (4.66)

2,048×1,152 (1) 498.3 (586.9) 0.83 (5.89)
2,048×1,152 (4) 1,962.6 (2,043.7) 2.72 (8.01)

Cloud2
1,024×576 (1) 356.6 (863.3) 0.21 (12.01)

2,048×1,152 (1) 1,409.2 (1,985.4) 1.36 (14.06)
2,048×1,152 (4) 7,605.6 (8,001.8) 4.47 (16.84)

Smoke
1,024×768 (1) 290.0 (506.9) 0.19 (5.59)

2,048×1,536 (1) 1,118.0 (1,455.9) 1.77 (7.56)
2,048×1,536 (4) 6,410.5 (6,663.6) 4.38 (10.19)

Table 3: Statistics for the illumination cache. CPU and GPU codes
implementing basically the same illumination cache-based render-
ing algorithm were compared. In (b), the figures in parentheses in
the Resolution column denote the maximum search radius used dur-
ing volume photon gathering, while the other parenthesized num-
bers represent the respective numbers of photons stored in the vol-
ume photon map. In (c), the figures in parentheses in the Resolution
column indicate numbers of jittered supersamples per pixel, and the
other parenthesized numbers represent total rendering times includ-
ing the density volume generation. All timings were measured in
seconds.

an illumination cache, but its timings were not included as it
ran too slow.

3.6. Ray marching with Perlin noise

Procedural noise has been a very useful tool in volume
rendering for increasing the appearance of realism. For in-
stance, volumetric density fields for very natural-looking
clouds were generated by adding details through noises to
roughly shaped cloud models represented by a set of implicit
functions [EMPP03]. The same idea could be easily applied
to our GPU-assisted volume rendering scheme in the den-
sity estimation stage of our GPU-assisted particle render-
ing scheme, where pregenerated noise was stored as a tex-
ture image for fast access. Another computation point where
noise can effectively add extra small-scale detail to already
perturbed density fields is in the final ray marching stage.

It has been noted that aliasing artifacts can be reduced
by jittering sample points [Jen01]. In fact, we observe that
slightly dispersing sample points with noise is a very good
way of producing fuzzy effects, particularly for simple mod-
eling data that animators routinely generate, because such
particle datasets usually do not contain much detail of partic-
ipating media, unlike those that are generated by physically-
based simulations (see Figure 3). For efficient jittering of
sample points on the GPU, we generated offset noises at
grid points using Perlin noise in the preprocessing stage,
and stored the offset vectors with density value in a four-
component 3D texture. Since offset noise to a given sample
point is quickly fetched from the texture through trilinear in-
terpolation, the cost of exploiting this position noise in the
ray marching step is very cheap.

(a) Particle data (b) Rendering without noise

(c) Density noise added (d) Position noise added

Figure 3: Perlin noise in ray marching (Cloud2). By slightly jit-
tering sample points during ray marching ((d)), finer detail can be
easily added to density in a field that has already been perturbed
with noise ((c)). Since the respective scalar and vector noises ap-
plied to the density estimation and ray marching stages are stored
in 3D textures, the extra computational cost of exploiting noise on
our GPU-assisted particle renderer is very cheap.

4. Experimental results and concluding remarks

We have implemented our GPU-assisted particle render-
ing method on a PC with a 3.16 GHz Intel Core 2 Duo

submitted to Eurographics Symposium on Rendering (2009)

8 D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering

CPU and an NVIDIA GeForce GTX 280 GPU, in which
the OpenGL and Cg APIs were used for shader program-
ming. In order to show its effectiveness, we have also im-
plemented an equivalent, single threaded CPU version that
programmed the same rendering pipeline. Table 4 summa-
rizes the statistics collected for three test scenes (Cloud1:
Figure 4, Cloud2: Figure 3, Smoke: Figure 5). The per-
formance results imply that the presented GPU rendering
scheme is promising in that it produced high quality ren-
derings in quite affordable time while handling all of such
advanced rendering features as adaptively varying smooth-
ing length, stochastically correct photon tracing for nonho-
mogeneous media, and noise control. The performance gaps
between the CPU and GPU implementations became larger
as the volume and image resolutions increased.

In both implementa-

Figure 4: Rendering of Cloud1.

tions, employing the il-
lumination cache is crit-
ical because the running
times were prohibitive
without it. When the
same grid resolution was
used for storing the sam-
pled density and radi-
ance, the caching tech-

nique produced basically no difference in renderings. It
should be mentioned, however, that there was a slight dif-
ference between the images produced by the two processors
mainly due to the different ways of generating random num-
bers needed for the stochastic photon tracing and noise ap-
plication (see Figure 5). However, it was hard to tell if one
is better than the other except that one was much faster than
the other as shown in Table 4.

Figure 5: Rendering comparison (Smoke). Two rendering results
by the GPU (left) and the CPU (right) are compared.

The table in Figure 6 also gives a general idea on how
the timing performance of our method is affected by the em-
ployed grid resolution. As observed in the table, the volume
photon tracing (VPT) and ray marching (RM) stages were
rather insensitive to the grid resolution since the step sizes
used in the respective numerical integration were the dom-
inant factors in both computations. This is in contrast with
the other two stages (DVG and ICC) in which the density
and radiance had to be computed respectively for each grid
point. While becoming faster, our renderer entailed unde-
sired smoothing of details at lower grid resolutions. Further-

Cloud1 Cloud2 Smoke

Image
size

1024× 576 1024× 576 1024× 768
2048× 1152 2048× 1152 2048× 1536

Particles 500,000 50,000 326,752

Grid size 339× 42× 361 299× 160× 301 280× 255× 233

DVG VPT ICC RM

Cloud1 CPU 15.37 1.40 65.81 43.26 164.58
(h(0) = 1.07) GPU 1.90 0.79 2.22 0.55 2.16

Cloud2 CPU 13.97 2.05 307.69 168.21 585.52
(h(0) = 1.6) GPU 0.55 0.74 8.29 0.66 2.54

Smoke CPU 64.17 16.59 175.76 191.77 517.39
(h(0) = 1.44) GPU 10.56 1.39 3.90 0.74 2.94

Table 4: Overall timing performance. The step-by-step dissection
of computation times taken by the presented rendering pipeline is
shown. In this experiment, the same volume resolution (Grid size)
was applied to the creation of density volume (DVG) and illumina-
tion cache (ICC). The integral equation in Eq. (2) was numerically
solved for photon tracing (VPT). Two image resolutions (Image size)
were tested where the ray marching time was almost proportional
to the number of image pixels as indicated in the RM column. Ex-
cept Cloud2, the adaptive, three-pass method was used for the den-
sity volume generation (DVG) on the GPU. For an adaptive density
generation and photon gathering on the CPU, we implemented the
kd-tree structure for nearest neighbor searching.

DVG VPT ICC RM

100× 54× 101 (a) 0.11 0.54 0.69 0.54

150× 80× 151 0.15 0.51 1.21 0.54

200× 107× 201 (b) 0.23 0.49 2.60 0.58

249× 133× 251 0.35 0.53 4.67 0.62

299× 160× 301 (c) 0.55 0.74 8.29 0.66

Figure 6: Timing performance at multiple volume resolutions (in
seconds). The run time for producing a 1024× 576 image from the
Cloud2 data was measured for different grid resolutions, holding
all other rendering parameters fixed. A part of rendering results are
compared for the three resolutions (a), (b), and (c), where the details
became blurred as the grid resolution got lowered.

more, when it was too low with respect to the scene domain,
jaggies became visible due to insufficient number of grid
cells. Our test shows that noise in the ray marching stage
is quite useful for reducing such aliasing problem. For the
Cloud2 scene, such jaggies were invisible when the resolu-
tion was 200×107×201 or higher (note that this resolution
is not that high considering the entire simulation domain).

The presented GPU-assisted particle rendering pipeline

submitted to Eurographics Symposium on Rendering (2009)

D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering 9

permits an easy extension to various interesting rendering
effects. Currently, we are including the light emission phe-
nomena of hot gaseous fluids so that such important render-
ing effects as fire, flame, and explosion can be realistically
and efficiently synthesized.

Acknowledgements: This work was supported by the Korea
Research Foundation Grant funded by the Korean Govern-
ment (KRF-2008-313-D00920).

References

[Bli82] BLINN J.: Light reflection functions for simulation of
clouds and dusty surfaces. In Proc. of ACM SIGGRAPH 1982
(1982), pp. 21–29.

[BNM∗08] BOUTHORS A., NEYRET F., MAX N., BRUNETON
E., CRASSIN C.: Interactive multiple anisotropic scattering in
clouds. In Proc. of ACM SIGGRAPH 2008 Symposium on Inter-
active 3D Graphics and Games (2008), pp. 173–182.

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: GigaVoxels: ray-guided streaming for efficient and detailed
voxel rendering. In Proc. of ACM SIGGRAPH 2009 Symposium
on Interactive 3D Graphics and Games (2009), pp. 15–22.

[CPP∗05] CEREZO E., PÉREZ F., PUEYO X., SERÓN F., SIL-
LION X.: A survey on participating media rendering techniques.
The Visual Computer 21, 5 (2005), 303–328.

[DYN02] DOBASHI Y., YAMAMOTO T., NISHITA T.: Interactive
rendering of atmospheric scattering effects using graphics hard-
ware. In Proc. of Graphics Hardware 2002 (2002), pp. 99–107.

[EMPP03] EBERT D., MUSGRAVE F., PEACHEY D., PERLIN
K.: Texturing & Modeling: A Procedural Approach. Morgan
Kaufmann, 2003.

[HAP05] HEGEMAN K., ASHIKHMIN M., PREMOŽE S.: A light-
ing model for general participating media. In Proc. of ACM
SIGGRAPH 2005 Symposium on Interactive 3D Graphics and
Games (2005), pp. 117–124.

[HL01] HARRIS M., LASTRA A.: Real-time cloud rendering. In
Proc. of Eurographics 2001 (2001), pp. 76–84.

[JC98] JENSEN H. W., CHRISTENSEN P. H.: Efficient simulation
of light transport in scenes with participating media using photon
maps. In Proc. of ACM SIGGRAPH 1998 (1998), pp. 311–320.

[JDZJ08] JAROSZ W., DONNER C., ZWICKER M., JENSEN
H. W.: Radiance caching for participating media. ACM Trans-
actions on Graphics 27, 1 (2008), Article No. 7.

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon
Mapping. A K Peters, 2001.

[Kap03] KAPLER A.: Avalanche! snowy FX for XXX. In Proc. of
ACM SIGGRAPH 2003 Sketches & Applications (2003), pp. 1–1.

[KH84] KAJIYA J., HERZEN B. V.: Ray tracing volume densities.
In Proc. of ACM SIGGRAPH 1984 (1984), pp. 165–174.

[KPh∗03] KNISS J., PREMOŽE S., HANSEN C., SHIRLEY P.,
MCPHERSON A.: A model for volume lighting and modeling.
IEEE Transactions on Visualization and Computer Graphics 9, 2
(2003), 150–162.

[Mon88] MONAGHAN J.: An introduction to SPH. Computer
Physics Communications 48, 1 (1988), 89–96.

[PARN04] PREMOŽE S., ASHIKHMIN M., RAMAMOORTHI R.,
NAYAR S.: Practical rendering of multiple scattering effects in
participating media. In Proc. of Eurographics Symposium on
Rendering 2004 (2004), pp. 363–374.

[PDC∗03] PURCELL T., DONNER C., CAMMARANO M.,
JENSEN H., HANRAHAN P.: Photon mapping on pro-
grammable graphics hardware. In Proc. of the ACM
SIGGRAPH/Eurographics Conference on Graphics Hardware
(2003), pp. 41–50.

[PKK00] PAULY M., KOLLIG T., KELLER A.: Metropolis light
transport for participating media. In Proc. of 11th Eurographics
Workshop on Rendering 2000 (2000), pp. 11–22.

[QXF∗07] QIU F., XU F., FAN Z., NEOPHYTOS N., KAUFMAN
A., MUELLER K.: Lattice-based volumetric global illumination.
IEEE Transactions on Visualization and Computer Graphics, 6
(2007), 1576–1583.

[Ree83] REEVES W.: Particle systems - a technique for modeling
a class of fuzzy objects. ACM Transactions on Graphics 2, 2
(1983), 91–108.

[REK∗04] RILEY K., EBERT D., KRAUS M., TESSENDORF J.,
HANSEN C.: Efficient rendering of atmospheric phenomena. In
Proc. of Eurographics Symposium on Rendering 2004 (2004),
pp. 375–386.

[SKSU05] SZIRMAY-KALOS L., SBERT M., UMMENHOFFER
T.: Real-time multiple scattering in participating media with il-
lumination networks. In Proc. of Eurographics Symposium on
Rendering 2005 (2005), pp. 277–282.

[SRNN05] SUN B., RAMAMOORTHI R., NARASIMHAN S., NA-
YAR S.: A practical analytic single scattering model for real time
rendering. ACM Transactions on Graphics (ACM SIGGRAPH
2005), 3 (2005), 1040–1049.

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. ACM Transactions
on Graphics 27, 5 (2008), 1–11.

[ZRL∗08] ZHOU K., REN Z., LIN S., BAO H., GUO B., SHUM
H.: Real-time smoke rendering using compensated ray marching.
ACM Transactions on Graphics (ACM SIGGRAPH 2008) 27, 3
(2008), Article No. 36.

Appendix A. Major rendering parameters for our
particle volume renderer

Density Volume Generation

• nx × ny × nz: 3D volume resolution (in the paper)
• h(0): initial value of smoothing length (in the paper)
• N∗: target particle number (in the paper)
• s: scale factor in relaxation coefficient α (in the paper)
• mp: mass of particle p (in the paper)
• sdenno: density noise scale factor (sdenno = 0 if no noise is

applied)

Volume Photon Tracing

• dMAX : maximum distance to the next interaction (op-
tional)

• Δx: step size used in numerical integration (in the paper)
• Λ: albedo of participating medium
• g: Henyey-Greenstein phase function parameter
• sextcoe f : scale factor for extinction coefficient (σt(p(x)) =

sextcoe f ·d(p(x)), in the paper)
• Nemph: maximum number of photons emitted
• NMAXsto: maximum number of photons stored
• NMAXint : maximum number of photon interactions

submitted to Eurographics Symposium on Rendering (2009)

10 D. Cha & S. Son & I. Ihm / GPU-Assisted High Quality Particle Rendering

Illumination Cache Construction

• nx × ny × nz: 3D volume resolution (in the paper)
• h: photon gathering radius factor (in the paper)
• sphpow: scale factor for photon power
• Λ: albedo of participating medium
• sextcoe f : scale factor for extinction coefficient (σt(p(x)) =

sextcoe f ·d(p(x)), in the paper)
• g: Henyey-Greenstein phase function parameter
• (Δx)′: step size used for radiance sampling during single

scattering computation

Ray Marching

• nw × nh: image resolution
• (Δx)′′: step size used for radiance sampling during final

ray marching
• Λ: albedo of participating medium
• sextcoe f : scale factor for extinction coefficient (σt(p(x)) =

sextcoe f ·d(p(x)), in the paper)
• so f f no: offset noise scale factor (so f f no = 0 if no noise is

applied)

submitted to Eurographics Symposium on Rendering (2009)

