
Selective and Adaptive Supersampling for Real-Time Ray Tracing∗

Bongjun Jin Insung Ihm Byungjoon Chang
Department of Computer Science and Engineering

Sogang University, Korea

Chanmin Park Wonjong Lee Seokyoon Jung
System Architecture Laboratory

Samsung Electronics, Korea

(a) Bathroom (b) Conference (c) Room (d) Kitchen (e) Fairy Forest

(f) Problematic subpixels (g) τα = 0.1, τβ = 0.06

(1.28 fps)
(h) τα = 0.6, τβ = 0.06

(3.75 fps)
(i) τα = τβ = 1.0 (4.51 fps) (j) Fairy focused (5.02 fps)

Figure 1: Selective and adaptive supersampling. Images in (a) to (e) show five tested scenes rendered at 1024×1024. In images in (f) to (j),
the number of subpixels in the pixel that were sampled with 4 samples are color-coded: black (0), red (1), green (2), blue (3), and white (4).
To achieve a high PSNR value for Fairy Forest that contains highly detailed textures, strict thresholds had to be used ((g)). Using our selective
scheme, however, we could adjust them so that more ray samples were directed to perceptually more visible artifacts where the thresholds in
(h) offered a similar visual quality as a nonadaptive sampling done with 9 samples per pixel. In situations when the viewer’s attention was
focused on the fairy, we could further lower the criteria without causing much trouble ((i) & (j)). Image in (e) was created with the thresholds
in (i). Note that τα (= τcol, τpte, τste) and τβ (= τpsc, τssc) are useful for controlling aliases from textures and shadows, respectively.

Abstract

While supersampling is an essential element for high quality ren-
dering, high sampling rates, routinely employed in offline render-
ing, are still considered quite burdensome for real-time ray tracing.
In this paper, we propose a selective and adaptive supersampling
technique aimed at the development of a real-time ray tracer on
today’s many-core processors. For efficient utilization of very pre-
cious computing time, this technique explores both image–space
and object–space attributes, which can be easily gathered during the
ray tracing computation, minimizing rendering artifacts by cleverly
distributing ray samples to rendering elements according to prior-
ities that are selectively set by a user. Our implementation on the
current GPU demonstrates that the presented algorithm makes high
sampling rates as effective as 9 to 16 samples per pixel more afford-
able than before for real-time ray tracing.

CR Categories: I.3.1 [Computer Graphics]: Hardware
architecture—Graphics processors; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing

Keywords: Real-time ray tracing, adaptive supersampling, selec-
tive sampling, many-core processor, GPU computing.

∗Submitted to High Performance Graphics 2009

1 Introduction

1.1 Background and our contribution

Annoying alias artifacts often occur in ray tracing for a variety of
reasons because its computation inherently involves several render-
ing elements such as ray–object intersection, reflection/refraction,
shadows, textures, etc. One naı̈ve method for removing or, more
exactly, reducing aliases, is to take more samples over each pixel
and combine the resulting colors using a proper filter. In offline
rendering, it is not uncommon to take, for example, 16 samples per
pixel to generate high quality renderings. However, such a high
sampling rate is still too heavy for real-time ray tracing when the
sampling process is implemented recklessly. A clever approach is
to optimize rendering computation by adaptively firing rays only
where necessary. Although some hybrid methods have been pro-
posed before, image-space techniques have usually been used for
adaptive supersampling, in which a color-related measure alone is
applied in an adaptive manner to detect problematic regions.

While simple and widely used, such image-space techniques have
an inevitable problem in that, whichever criterion is used, it is diffi-
cult to effectively locate all artifacts that arise in a complex manner
from various sources and are hidden once rays are finally shaded.
Generally speaking, the image–space methods are not selective in



the point that identical criteria are applied to entire image pixels re-
gardless of their content in object space. Because time is still very
limited in real-time rendering, it is desirable that users be capable of
focusing computing effort on selectively chosen rendering features,
improving the most needed ones as much as time allows.

Another notable aspect of previous adaptive sampling techniques is
that their computation entails data-dependent, unpredictable con-
trol flows as sampling proceeds progressively to detect problematic
regions based on on-the-fly color comparison. Although this is,
in fact, the very property that leads to efficient sampling, it could
deteriorate rendering performance when adaptive sampling is im-
plemented on today’s many-core processors such as GPU, which
favors a simple control structure for extreme performance. To fully
harness the massively parallel computing power offered by the cur-
rent GPU, it is necessary to design a simple adaptive sampling
mechanism well suited for its computing architecture.

In this paper, we present a selective and adaptive supersampling
technique that is aimed at real-time ray tracing on many-core pro-
cessors. In addition to image–space color measure, our sampling
algorithm explores geometry attributes such as object identifica-
tion number, object normal, shadow and texture existence that can
be easily collected during ray tracing. By adjusting a multivalued
threshold vector, the user can selectively set priorities for various
rendering features, so that more ray samples can be used to reduce
artifacts related to the features with higher priorities.

The proposed algorithm is simple in structure and easily mapped
to the current GPU architecture, offering an efficient parallel su-
persampling computation. Despite being originally designed for
the GPU, the presented technique is also equally extendable to the
current multicore CPU with SIMD capability. More importantly, it
enables users to maximize the antialiasing effect by selectively allo-
cating more of the very limited computation time to possibly more
troublesome rendering features. We demonstrate that by applying
our selective and adaptive supersampling technique, high sampling
rates that are as effective as 9 to 16 samples per pixel can become
more affordable for real-time ray tracing.

2 Related work

Since first discussed by Crow [Crow 1977] in the middle of 1970s,
aliasing has been a major problem in developing a ray tracer. In or-
der to produce high quality antialiased images at reasonable sample
rates, Whitted suggested adaptive supersampling in which pixels
were recursively subdivided for further sampling only when colors
sampled at their four corners varied significantly [Whitted 1980].
In the development of the distributed ray tracing algorithm, Cook et
al. proposed to use stochastic sampling that replaced highly objec-
tionable artifacts by noise that is less conspicuous to viewers [Cook
et al. 1984]. Mitchell presented effective nonuniform sampling pat-
terns and applied a contrast measure in an aim to reduce ‘visible’ ar-
tifacts where red, green, and blue contrasts were approximated and
compared against separate thresholds [Mitchell 1987]. Painter and
Sloan presented hierarchical adaptive stochastic sampling for ray
tracing that worked in progressive manner. While these previous
works were proven to be effective, they often failed to detect small
details because they used no information other than sampled inten-
sities. In order to overcome the aliasing problems resulting from
the point sampling approach of ray tracing, beam and cone trac-
ing techniques were proposed respectively by Heckbert and Hanra-
han [Heckbert and Hanrahan 1984], and Amanatides [Amanatides
1984], which considered fractional coverage information inside im-
age pixels. Object space information has also been exploited by
Thomas et al. [Thomas et al. 1989] and Ohta and Maekawa [Ohta
and Maekawa 1990]. Whitted’s adaptive sampling scheme [Whit-

ted 1980] was also extended by Genetti et al. in a way that deci-
sions regarding extra sampling were made based on object-space
information obtained during the ray-object intersection computa-
tion [Genetti et al. 1998]. Perceptually based approach has also
been proposed for adaptive sampling [Bolin and Meyer 1998]. Re-
cently, Longhurst et al. utilized the GPU to apply Laplacian filter
to find jaggies in rendering images obtained by an OpenGL based
renderer, and passed the detected edge information to ray tracer for
adaptive supersampling [Longhurst et al. 2005].

In the last few years, real-time ray tracing has become a reality
thanks to the increasing power of modern processors. Recently,
several researchers have presented various efficient implementa-
tion techniques, optimized for respective multicore and many-core
processors, for instance, [Wald 2004; Foley and Sugerman 2005;
Wald et al. 2007a; Horn et al. 2007; Popov et al. 2007; Shevtsov
et al. 2007; Wald et al. 2007b; Zhou et al. 2008; Wald et al. 2008;
Overbeck et al. 2008]. A real-time ray tracer was also developed
successfully on Intel’s upcoming Larrabee processor [Seiler et al.
2008]. So far, fast construction and efficient traversal of spatial
data structures for static and dynamic scenes have been the most
actively researched topics in the field of real-time ray tracing. On
the other hand, the aliasing problem that is caused by the inevitable
point sampling of ray tracing has attracted little concern in spite
of its importance. As cited in the above paragraph, most antialias-
ing techniques suitable for ray tracing were developed in the 1980s
and 1990s. While effective, they, in their current forms, are not
best suited for effective implementation on the computing architec-
ture of today’s many-core processors, an example of which will be
briefed in the next section.

3 GPU architecture model

In this work, we assume the following parallel programming model
specified by the CUDA (Compute Unified Device Architecture)
API suitable for developing applications on highly parallel, mul-
tithreaded, many-core processors [NVIDIA 2008]. In this model,
a processing system consists of a scalable array of multiprocessors
on which blocks of threads are run in parallel. Each multiprocessor
containing a set of streaming processors have per-thread registers
and per-block on-chip shared memory that allow very high speed
read/write access in a highly parallel manner. The shared mem-
ory is visible to all threads in the same block and provides an effi-
cient means of cooperation between them. One of the fundamental
keys for achieving high performance in this computing model is to
launch a kernel with a massive number of concurrent threads so that
latencies due to off-chip memory access and synchronization are
hidden via thread swapping. However, as the registers and shared
memory should be partitioned among threads of all resident thread
blocks, the number of executable threads in parallel on a multipro-
cessor is limited by the amount of shared resources that each thread
demands.

All threads, whether in the same block or not, can have read/write
access to the same global memory space that is located in DRAM.
While large but uncached, this off-chip memory usually requires
hundreds of cycles of memory latency per access. Kernel variables
that do not fit into registers must be allocated to slow, uncached
local memory that also resides in DRAM. To avoid memory stalls,
it is important to fully leverage the fast registers and shared mem-
ory and minimize use of these expensive off-chip memories. There
also exist two read-only off-chip memories that are readable by all
threads. The first is constant memory, which often offers faster
and more parallel data access than the global memory. The second
is texture memory, to which threads can have access in different
addressing modes. The hardware texture unit also allows fetching
data in various scalar or vector data formats, which can have several



performance benefits when some specific data structures are used in
a kernel program. Because both memories are cached, substantial
performance improvement can be achieved by ensuring spatial and
temporal locality in data access.

Shared and global memories provide an effective means of com-
munications between concurrent threads. In addition, they can
synchronize through a lightweight synchronization barrier. When
a kernel is launched, a multiprocessor executes assigned thread
blocks in groups of 32 concurrent threads, called warps, in
SIMT (Single-Instruction Multiple-Thread) fashion. Individual
threads in a warp execute one common instruction at a time, but are
free to branch independently. When control flow diverges in a warp
due to a conditional branch, the warp serializes each branch path
taken that could possibly lead to performance loss. From the per-
spective of kernel programming, designing an algorithm with a sim-
ple control structure that minimizes unpredictable, data-dependent
branches can enhance the performance markedly.

4 Algorithm for selective and adaptive super-
sampling

In this section, we first explain the basic idea of our method using
a simple example that considers only aliases due to undersampling
in the intersection computation between the primary ray and ob-
jects. Then, a detailed description of our algorithm and its GPU
implementation follows.

4.1 Basic idea

4.1.1 Subdivision of a pixel into four subpixels

Figure 2(a) illustrates a situation where a part of an image plane
is being sampled by tracing one ray per pixel through its center,
creating jagged edges along the silhouette curve formed by Object
1. In our work, it is assumed that such silhouette curves, that is, the
objects’ projected boundaries, are sufficiently smooth in the screen
space in that they do not fluctuate excessively within a pixel area.

(a) Jaggies along boundaries (b) Two close objects

Figure 2: Locating problematic pixels. (a) For the dark-colored
pixel, its eight neighbors are examined to see if any silhouette curve
passes it. (b) With an image-space method, such a thin gap between
two objects with similarly shaded colors is hard to detect, resulting
in ugly spatial/temporal aliases.

An important key to effective antialiasing is how to efficiently and
robustly find those troublesome pixels that such silhouette curves
may cross. In previous adaptive supersampling methods, sampled
pixel colors were often adaptively compared between pixels to de-
cide where to take extra samples. When, for instance, three color
disparities were found for the dark-colored pixel in the north, north-
west, and west directions, as in Figure 2(a), more samples were
usually taken systematically around the pixel’s upper left corner.

One problem with such an adaptive computation is that it entails an
unpredictable, data-dependent control structure that could degrade
the computation performance on today’s many-core processors in
which warps of threads are processed in SIMD fashion.

For a simpler deci-

(a) An optimistic
case

(b) A pessimistic
case

Figure 3: Two extreme situations. Usual
cases fall between these extremes.

sion algorithm that is
better suited for GPU
computing, we sub-
divided each image
pixel into four subpix-
els and independently
performed a test with
simple control flow
against each subpixel,
deciding if its sub-
pixel region needs ex-
tra sampling. Figure 3
depicts two possible
extreme situations that occur when a decision test is applied. The
figure in (a) represents an optimistic situation in which all four sub-
pixels of the pixel are covered entirely by one object, requiring no
further effort for supersampling in the point of silhouette curve. On
the other hand, the figure in (b) illustrates a pessimistic situation
where three of them, except for the one in the fourth quadrant, are
crossed by a boundary curve.

To achieve a simple control flow in

Figure 4: Three neigh-
bors for attribute compar-
ison.

this examination process, we take the
pessimistic approach that always as-
sumes the pessimistic case. Then,
the decision for a given subpixel can
be made simply by comparing color
attributes of three neighboring pix-
els respectively with the pixel it be-
longs to, where the locations of the
neighbors are easily determined de-
pending on the subpixel’s location,
as shown in Figure 4. When there is
at least one disparity under a given
threshold criterion, the subpixel is
regarded as one that needs special treatment.

4.1.2 Presampling for building three two-dimensional arrays

While it usually works fine, the test based on color measure alone
often fails to detect subtle aliases that occur in a sophisticated man-
ner (for instance, see Figure 2(b)). Another problem is that it is
hard to effectively handle a variety of sources of rendering artifacts
resulting from ray tracing with a single threshold τcol. In order
to complement such an image-space method, we additionally ex-
plore the per-pixel information on objects that each primary ray
hits. Combined with the color measure, such an object space ge-
ometry attribute can generate a synergistic effect in robustly and
selectively reducing rendering aliases.

For efficient computation in the later stages, we first build three
two-dimensional arrays with the same resolution by presampling
image pixels at their centers through ray tracing. The first one to be
constructed is the shaded color image that stores ray-traced, shaded
colors. The second one is the color reference map that contains
pixel values that are referred to when a test for color disparity be-
tween pixels is performed. While several measures such as lumi-
nance or the length of the gradient vector obtained by the Sobel op-
erator are possible as color references, our current implementation
simply stores the shaded colors in this map, and applies a contrast
criterion in the following stage, as will be explained shortly. The
last image produced is the geometry attribute map, in which each



pixel stores the identification number of an object (Object ID) that
was hit by the primary ray fired thorough its center. The first array
is used as an accumulation buffer into which extra sampled colors
are accumulated in the final stage of computation. On the other
hand, stored in texture form, the other two maps provide both color
reference and geometry attribute information through which an ef-
fectively controlled decision can be made for selective antialiasing.

4.1.3 Two-step subpixel test

Once the three arrays are ready, a two-step test is performed for
each subpixel to see if more sampling rays are necessary for its re-
gion. The purpose of the first step is to choose a threshold that
will be used in the next color reference comparison step. We first
perform a comparison operation with three neighbors using the ge-
ometry attribute, that is, the Object ID in this simple example. As
the pessimistic approach is taken in our method, a current subpixel
is regarded as possibly problematic with respect to the geometry at-
tribute if there is at least one mismatch between their Object IDs.
When that happens for a given subpixel, there is a chance that a
silhouette curve may cross its region, possibly causing annoying
artifacts. In order to treat such possibly problematic subpixels sep-
arately, we assign a different threshold τoid ∈ [0, 1] that is selec-
tively controlled by the user. On the other hand, we set a threshold
τcol ∈ [0, 1] to all other subpixels for which no possible problems
are found with respect to the object space information. Then, an-
other neighbor comparison operation is carried out using the color
reference based on the assigned threshold. Whichever threshold is
applied, the current subpixel is considered as problematic and is
marked as active if there is at least one color disparity with respect
to the threshold.

Note that the key idea of our method is to place a separate thresh-
old τoid on the regions of subpixels that are possibly problematic
with respect to the geometry attribute instead of applying an iden-
tical threshold τcol to entire subpixel regions. By using a stricter
value of τoid, it is possible to selectively focus computational ef-
fort more on reducing aliases due to the geometry attribute (when
it is set to zero, those pixels are always supersampled). Because
the pessimistic sampling strategy is taken, some subpixels that ac-
tually need no extra sampling may be supersampled. However, the
presented simple, parallely executable adaptive scheme allows an
efficient implementation on the current GPU architecture, as will
be explained.

4.1.4 Subpixel sampling and color summing

For each subpixel found to be problematic, four extra samples are
taken by shooting respective rays in a stratified jittered fashion. The
leftmost figure in Figure 5 illustrates an example where three of
the four subpixels are found to be active. When extra sampling is
done for all problematic subpixels, their subsampled colors are then
summed with those of the inactive subpixels. In our scheme, the
shaded pixel color that has been computed at its center in the pre-
sampling computation is transferred to its inactive subpixels, each
weighted by 1

4
. This can be implemented by multiplying a proper

weight, decided by the number of inactive subpixels, to the corre-
sponding pixel color in the shaded color image. Then, the color
summing operation is carried out simply by accumulating each su-
persampled color with a weight 1

16
to its pixel location. Once all

accumulation is over, the shaded color image turns into one con-
taining an antialiased rendering image.

Figure 5: Four examples of adaptive sampling. The color of a
pixel, sampled at its center in the presampling stage, is used for its
inactive subpixels, if any.

4.2 Extension of the basic idea

4.2.1 Color reference and geometry attributes

The presented idea is naturally extended to include additional ge-
ometry attributes that are relevant to ray tracing. Table 1 lists per-
pixel attributes that are explored in our method. Basically, the Color
Reference, which is used to investigate color differences between
adjacent pixels, is the main attribute that eventually determines if
a given subpixel needs extra sampling. In our current implementa-
tion, the shaded pixel color is used as a color reference.

Collection point Attribute Threshold

At pixel center Color Reference τcol

At primary ray
hit point

Object ID τpoid
Surface Normal τpsn
Shadow Count τpsc

Texture Existence τpte

At secondary ray
hit point

Object ID τsoid
Surface Normal τssn
Shadow Count τssc

Texture Existence τste

Table 1: Three classes of pixel attributes explored in our method.
In our current implementation, four object-space measures were
considered for robust antialiasing to compensate for shaded color,
a typical image-space attribute used in previous works. Users can
selectively choose attributes and control their threshold values in
order to emphasize specific features in antialiasing.

The other items are geometry attributes, which are deeply related to
various types of rendering artifacts produced by recursive ray trac-
ing. First, four types of geometry attributes are collected at the in-
tersection point hit by the primary ray. The Object ID, explained in
the previous subsection, is often the most serious source of annoy-
ing aliases. The Surface Normal remembers the normal direction of
a surface at the primary ray hit point, and is particularly useful for
detecting such an edge formed by polygons of an object that meet
at an acute angle. The Shadow Count records the number of light
sources that are invisible from the intersection point, and is used to
reduce artifacts that occur along shadow boundaries. Finally, the
Texture Existence is a Boolean variable that indicates whether any
texture is applied at the intersection point. By keeping this infor-
mation, it is possible to apply a different criterion for controlling
texture antialiasing.

Another set of the four geometry attributes are gathered at the re-
spective surface points hit by the secondary, reflection/refraction
rays that produce such nice rendering effects as reflection and re-
fraction. The rendering quality for these secondary effects can be
enhanced effectively by selectively handling the secondary geome-
try attributes rather than attempting to reduce aliases after they are
blended into final shaded colors. In order to take care of all sec-



(a) Test scene (b) Possibly problematic subpixels with respect to respective geometry attributes (from left to right: Object
ID, Surface Normal, Shadow Count, Texture Existence; from top to bottom: at primary and secondary
intersection points)

(c) One sample per pixel (d) Object ID (Pr.) (e) Surface Normal (Pr.) (f) Shadow Count (Pr.) (g) All except Texture Ex-
istence (Sec.)

Figure 6: Examples of selective supersampling. In the test scene shown in (a), textures are applied to all diffusive objects except the
floor, which is the only specular object; (b) shows detected subpixels that are possibly problematic. In (c), annoying rendering artifacts are
easily seen in magnified portions of a ray-traced image obtained by taking one sample per pixel. Images in (d) to (g) that were generated by
respectively setting threshold values of selected geometry attribute(s) to very small values demonstrate that the idea of selective supersampling
works well. In these comparisons, the blue box indicates regions detected by selected attribute(s) only, whereas the green box indicates regions
that were also found by other attributes.

ondary rays spawned, a geometry attribute quadruple would have
to be produced per spawned ray. In our implementation, however,
only one-bounced secondary rays are considered, as they are of-
ten sufficient in real-time ray tracing, whereas the given idea per-
mits a natural extension to multiple bounces. Once all necessary
attributes are gathered for each pixel, they are stored in the geom-
etry attribute map. Notice that depth information, which is yet an-
other type of possible geometry information, has often been used
for an antialiasing purpose. While it is also effective, we find that
the presented geometry attributes effectively replace it.

4.2.2 Detection of problematic subpixels

Unlike when using Object ID only, the geometry attribute compar-
ison becomes a little bit complicated, as each pixel is now asso-
ciated with a vector of geometry attributes. When the first step
comparison operation is performed for a given subpixel, item-to-
item comparisons with three neighbors are carried out to collect a
list of disagreeing geometry attributes. The integer-valued Object
ID and Shadow Count attributes are said to differ from each other
when pixels have different values. The Surface Normal attributes of
two pixels are regarded as different if their dot product is less than
a preset value. Finally, the Texture Existence field is always set on

regardless of neighbors when the current subpixel’s attribute is true.

When discordance is found for at least one geometry attribute,
the subpixel is considered as possibly problematic and the small-
est value of the thresholds set to the disagreeing attributes is used
in the next color reference comparison. Otherwise, the threshold
τcol set to the Color Reference attribute is used instead. In the
next color reference comparison that actually decides if the sub-
pixel is problematic, we apply the contrast measure proposed by
Mitchell [Mitchell 1987]. In the original method, (0.4, 0.3, 0.6) was
used as the default threshold vector whose respective values are ap-

plied to the corresponding contrast values Iλ =
Imaxλ −Iminλ

Imax
λ

+Imin
λ

(λ =

R,G,B). In order to provide a user with controllability in adaptive
sampling, we apply (τ ·1.36, τ ·1.02, τ ·2.04) as a threshold vector,
where τ ∈ [0, 1] is the threshold that was set according to the re-
sult of geometry attribute comparison (note that it becomes roughly
(0.4, 0.3, 0.6) when τ = 0.3).

Before rendering, the user can selectively set the nine threshold val-
ues of Table 1 in the interval of [0, 1], adjusting the importance of
respective rendering features applied to the antialiasing computa-
tion. For example, if shadows were a critical element in the current
rendering, a higher fraction of computing time could be directed to



(a) Color measure only (b) τcol = 0.1: Sample Ratio
= 22.62%, PSNR = 46.20

(c) τcol = 0.2: Sample Ratio
= 16.09%, PSNR = 44.17

(d) τcol = 0.3: Sample Ratio
= 13.76%, PSNR = 42.96

(e) τcol = 0.4: Sample Ratio
= 11.86%, PSNR = 41.21

(f) Multiple measures (g) τcol = 0.1: Sample Ratio
= 15.75%, PSNR = 46.17

(h) τcol = 0.2: Sample Ratio
= 13.06%, PSNR = 45.75

(i) τcol = 0.3: Sample Ratio
= 12.20%, PSNR = 45.46

(j) τcol = 0.4: Sample Ratio
= 11.83%, PSNR = 45.20

Figure 7: Single- versus multiple-valued thresholds for adaptive supersampling. Images in the first row were produced by varying τcol, the
threshold for Color Reference, with all geometry attributes turned off. As τcol increased, the rendering went faster as fewer extra ray samples
were taken. However, with this color measure alone, rendering artifacts became more visible regardless of image content. On the other hand,
the second row images, created with geometry attributes turned on, demonstrate that by properly setting thresholds for geometry attributes,
we were able to distribute more ray samples adaptively and selectively to subpixel regions that caused visually annoying artifacts. As clearly
observed, the decrease in the PSNR (Peak Signal-to-Noise Ratio) value was minimized, although fewer samples were taken. In the captions,
‘Sample Ratio’ indicates the ratio of the number of ray samples taken to that used when 16 samples were taken per pixel. The images in (a)
and (b) respectively display color-coded images of problematic subpixels in which the colors black, red, green, blue, and white, respectively,
indicate the number of subpixels in the pixel that were found to be problematic (0 to 4 in increasing order).

shadow antialiasing by setting rigorous threshold values for the two
shadow attributes and turning off some other low-priority attributes
by setting their thresholds to one. It should be noted that it is not
easy to realize this selective antialiasing capability by image-space,
color measure alone. (See Figure 6 and 7 for examples).

4.3 Implementation on the GPU architecture

The presented supersampling method is well suited to implementa-
tion on the CUDA computing architecture. Conceptually, numerous
pixels or subpixels processed during rendering correspond to com-
putational threads to each one of whom a sequence of kernels are
run independently with minimized communication. In our GPU im-
plementation, the presampling and subpixel test stages were carried
out by two kernels: Presampler and ActSubPixDetector.
Then, the following subpixel sampling and color summing stages
were performed by the ExtraSampler kernel.

4.3.1 Presampler kernel

Suppose that we are to render an image of m × n pixels. Be-
fore starting the presampling computation, memory spaces for
three arrays ShadedColorImage, ColoreReferenceMap,
and GeometryAttributeMap are allocated in global memory.
In our implementation, 32 bytes are used per pixel to store ge-
ometry attributes (2, 12, 1, and 1 byte(s) for each of Object ID,
Surface Normal, Shadow Count, and Texture Existence, respec-
tively). The rendering session starts by running the Presampler
kernel with thread blocks of size mp × np, where the blocks cor-
respond to image tiles of mp × np pixels (our test shows that the

presampling computation runs fastest on the 4 × 64 block size).
For each thread, it performs the regular ray tracing against the as-
signed pixel, storing geometry attributes into the pixel’s location at
GeometryAttributeMap. When the tracing is over, the ker-
nel also writes the same final shaded color twice, respectively into
ShadedColorImage and ColoreReferenceMap.

Unlike the ShadeColorImage array that functions as an accu-
mulation buffer in global memory, ColorReferenceMap and
GeometryAttributeMap are treated as texture images in tex-
ture memory that provides efficient cached access to the next kernel.

4.3.2 ActSubPixDetector kernel

The next running ActSubPixDetector kernel explores the col-
lected color reference and geometry attributes to locate problem-
atic subpixels, storing them in an array in global memory, called
ActSubPixBuffer. In this stage, the image plane is partitioned
into a set of image tiles with ma × na pixels, and thread blocks
of 2ma × 2na threads are launched to run this kernel, where the
threads of a block represent subpixels of the corresponding tile. For
efficient computation, a 2ma×2na array, called the ActiveOnes
is allocated per block in shared memory to temporarily record
which one in the block is marked as active (see Figure 8).

From the thread ID, the kernel knows which subpixel (and the pixel
that it belongs to) it is currently processing, and computes indices
of to-be-compared neighboring pixels by accessing a simple off-
set table that holds respective offsets (this table is small, hence it
can be located in the constant or texture memory that provides fast
cached access). Then, it compares the current subpixel’s geometry



attributes with those of the three relevant neighbors by accessing
the GeometryAttributeMap texture.

Figure 8: Data structures for our GPU implementation.

The kernel additionally fetches four color references (shaded col-
ors) from the same locations of the ColorReferenceMap, and
checks their contrasts using the threshold that was set properly ac-
cording to the geometry attribute comparison. When the current
subpixel is found as problematic, the kernel marks the subpixel’s
location in ActiveOnes. When the marking operation is com-
pleted for all threads in the same block, two additional computa-
tions follow.

One is to prepare the ShadedColorImage array for the extra
sampling computation performed by the ExtraSampler kernel.
As mentioned before, the supersampled colors will simply be added
to the accumulation buffer at the later stage; hence, the weight
of inactive subpixels should have been reflected appropriately be-
fore then. To solve this problem, the first thread of each four-
thread group, corresponding to a pixel, is elected as representa-
tive, and counts the number of active subpixels, nasp in its par-
ent pixel and multiplies 4−nasp

4
into the pixel’s shaded color in

ShadedColorImage (recall Figure 5).

The second task to be performed is to build the
ActSubPixBuffer in global memory, so that the next
ExtraSampler kernel knows through the texture fetch where
to shoot extra sample rays. One possible solution would be to
copy the contents of the ActiveOnes array in shared memory
to ActSubPixBuffer and have the ExtraSampler kernel
process blocks of the buffer. Such a simple approach, however,
leads to computational inefficiency, because the buffer is usually
marked sparsely, frequently producing warps during the CUDA
processing that contain many null threads that need no extra sam-
pling (see Figure 8 for an example of sparsely marked subpixels in
the ActiveOnes array).

In an aim to have processing cores of the GPU work in parallel

as much as possible, we pack active subpixels when they are stored
into the ActSubPixBuffer array. To implement the packing op-
eration, the first thread of the entire 2ma×2na block is now chosen
as representative, and counts the total number of active subpixels in
the block while packing their indices. Then, the kernel appends the
packed index information to the end of ActSubPixBuffer. The
index-copying operation from the shared to global memory must be
handled carefully, because several representative threads from dif-
ferent parallel blocks may attempt to access the same buffer space,
possibly causing data loss. Fortunately, the CUDA API (Compute
Capability 1.1) provides a read-modify-write atomic add operation
that reads a 32-bit integer variable in global memory, adds an inte-
ger to it, and writes the result back to the same variable [NVIDIA
2008]. By keeping a pointer variable in global memory that points
to the next available memory space in ActSubPixBuffer, the
concurrent representatives can allocate necessary memory space
harmoniously without interference between blocks.

It should be noted that it may seem inefficient for one representative
thread to scan all 2ma × 2na elements of the ActiveOnes array
while the remaining threads in the block are waiting. It is possi-
ble to have each thread corresponding to an active subpixel write
its own subpixel index to ActSubPixBuffer via the atomic add
operation. However, such a method would create a large number
of atomic add operations, which would deteriorate performance
significantly. Furthermore, as many concurrent threads that con-
tend for the same atomic pointer variable access it in unpredictable
order, the active subpixels are stored in the buffer somewhat ran-
domly, losing their coherency. Because keeping spatial locality
between sample rays within a warp is important, the low coher-
ence in the ActSubPixBuffer could cause a severe efficiency
problem in the next extra sampling stage. For a block size of
8 × 16 (2ma × 2na) used in our implementation where 128 ele-
ments are scanned by the representative thread, the timing compar-
ison shows that the presented packing method runs markedly faster
than the other possible implementations. One last thing to men-
tion is that when the indices of active subpixels are stored, the first
active subpixel in each pixel is specially marked as a master (the
darker colored subpixels in Figure 8), so that threads of masters
respectively collect extra sampled color in the next stage.

4.3.3 ExtraSampler kernel

In the previous computation, active subpixels have been serialized
into ActSubPixBuffer, so there exists only linear locality be-
tween subpixels. As such, we view this buffer as a one-dimensional
array, and partition it into 1 × ne chunks (ne = 64 in our cur-
rent implementation). The final subpixel sampling stage proceeds
by running the ExtraSampler kernel with thread blocks of size
2 × 2ne, where one quadruple of threads handles extra sampling
over one active subpixel. As before, for an efficient color sum-
ming operation, an array of 2 × 2ne colors are allocated in shared
memory to temporarily hold subsampled colors. Given the thread
ID, the kernel decides the ray direction using subpixel index in-
formation from ActSubPixBuffer and a modular-four opera-
tion, performs ray tracing, and stores shaded colors in the shared
memory location. When all ray tracing operations are done, the
color summing operation proceeds hierarchically as follows (see
Figure 8 again): the first thread of each thread quadruple for ac-
tive subpixels sums all four subsampled colors and stores the re-
sult at its location. Then, the first thread of the quadruple that has
been marked as a master subpixel, designated in the active subpixel
marking computation, collects all the needed colors and accumu-
lates the summed color, multiplied by 1

16
, into the pixel location of

ShadedColorImage.

While this color summing on shared memory is quite efficient,



one thing must be taken into account. In the CUDA computing
structure, only threads in the same block can share data in shared
memory. This means that, for a successful color sum operation,
all subpixels from the same pixel must exist in the same thread
block. As such, our implementation has aligned active subpixels
properly along the 1 × ne boundaries when they were put into the
ActSubPixBuffer array.

5 Experimental results

To show its effectiveness, we implemented our method and tested
it using several examples on the NVIDIA’s GeForce GTX 280 pro-
cessor. In developing our GPU ray tracer, we employed the short
stack method for kd-tree traversal [Horn et al. 2007]. The kernels of
our ray tracer consumed up to 58 registers. For the tested GPU that
has 16,384 registers and 16 Kbytes of shared memory per multipro-
cessor, we could allocate up to 7 stack elements of 8 bytes each
per thread in shared memory after a small amount of space was
saved for bookkeeping (note that the required memory spaces for
the short stack and the temporary storage described in the previous
section have nonoverlapping live ranges).

Table 2 compares our sampling method to fixed density (i.e., non-
adaptive) supersampling where densities of 1, 4, 9, and 16 samples
per pixel are considered. To build the ray tracer performing the
fixed-density supersampling, we modified the adaptive sampling
part of our ray tracer. For all scenes except Fairy Forest, we ad-
justed the thresholds for color reference and geometry attributes so
as to achieve PSNR values that fell between those of densities of
9 and 16 samples per pixel. At 1 or 4 samples per pixel, annoying
aliasing artifacts were clearly visible. On the other hand, at 9 or 16
samples per pixel, aliases were barely visible as was the same for
our adaptive sampling.

As the timing results indicate, our sampling method is quite fa-
vorable in that it is usually 2 to 3 times faster than the nonadap-
tive sampling of 9 samples per pixel while producing renderings of
slightly better image quality except for the Fairy Forest example.
This efficiency is due in part to high efficiency in the decision pro-
cess that determines where and how many ray samples are made
for antialiasing, where only around 20% of samples were taken
for the first four scenes compared to the density of 9 samples per
pixel (the subpixel test stage usually took less than 25 ms for all
tested scenes). For the Fairy Forest scene that contains highly de-
tailed textures, stricter thresholds had to be used to achieve a high
PSNR value (1.28 fps). Using our selective scheme, however, we
could adjust them so that more ray samples were directed to percep-
tually more visible artifacts where the thresholds τα = 0.6 offered
an image quality similar to (or slightly better than in some selected
regions) the Fixed 9 sampling (1.86 fps) while achieving about two
times of speedup (3.75 fps). Although the PSNR value was lower,
the noise from textures was barely visible in our result.

Our method easily allows further extensions to various situations.
For instance, suppose that a camera rotates around the fairy while
focusing on her. In this case, the viewer’s attention is usually fo-
cused on the fairy, and it is quite desirable to allocate more of the
very limited computing to sampling the area to which the objects
for the fairy, grass, and dragonfly are projected and less to the re-
maining region. To prove its effectiveness, we slightly modified
the attribute comparison operation in such a way that the geometry
attributes between pixels differ only when the designated Object
IDs are involved. As a result, we could gain about 2.7 times of
speedup (5.02 fps) while maintaining a high quality for the selected
objects. See Figure 1(g) to (j).

6 Concluding remarks

We have presented a selective and adaptive supersampling tech-
nique that was designed for real-time ray tracing on many-core pro-
cessors, and demonstrated its effectiveness through several exam-
ples. The implementation on the GPU has shown that the proposed
supersampling technique can be run effectively on the current, mas-
sively parallel streaming SIMD processor. In the presented method,
nearest filtering was applied for each inactive subpixel as the color
of its parent pixel, taken at the center, is used (see Figure 5 again).
As an option for texture filtering, bilinear filtering can be included
by slightly modifying the current implementation, in which the in-
active subpixel’s color is computed from its four neighboring pix-
els’ colors, easily accessible from the color reference map. Our test
shows that this extension requires only little extra cost, and reduces
texture aliasing slightly. The issue of combining an appropriate tex-
ture filtering technique with our sampling method is left as a future
research topic.

In addition to the GPU, we are currently implementing our method
on the current multicore CPUs, where a preliminary experimen-
tal result implies that it is as effective as on the GPU. We believe
that the supersampling algorithm presented here will also be eas-
ily mapped on the upcoming many-core CPUs, such as the Intel
Larrabee processor, offering an effective supersampling scheme for
the developers of real-time ray tracers.

References

AMANATIDES, J. 1984. Ray tracing with cones. Proceedings of
SIGGRAPH 1984 18, 3, 129–135.

BOLIN, M., AND MEYER, G. 1998. A perceptually based adaptive
sampling algorithm. In Proceedings of SIGGRAPH 1998, 299–
309.

COOK, R., PORTER, T., AND CARPENTER, L. 1984. Distributed
ray tracing. In Proceedings of SIGGRAPH 1984, 131–145.

CROW, F. 1977. The aliasing problem in computer-generated
shaded images. Communications of the ACM 20, 11, 799–805.

FOLEY, T., AND SUGERMAN, J. 2005. KD-tree acceleration struc-
tures for a GPU raytracer. In Proceedings of HWWS 2005, 15–
22.

GENETTI, J., GORDON, D., AND WILLIAMS, G. 1998. Adaptive
supersampling in object space using pyramidal rays. Computer
Graphcis Forum 17, 1, 29–54.

HECKBERT, P., AND HANRAHAN, P. 1984. Beam tracing polygo-
nal objects. In Proceedings of SIGGRAPH 1984, 119–127.

HORN, D., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P.
2007. Interactive k-D tree GPU raytracing. In Proceedings of
I3D 2007, 167–174.

LONGHURST, P., DEBATTISTA, K., GILLIBRAND, R., AND
CHALMERS, A. 2005. Analytic antialiasing for selective high
fidelity rendering. In Proceedings of SIBGRAPI 2005, 359–366.

MITCHELL, D. 1987. Generating antialiased images at low sam-
pling densities. In Proceedings of SIGGRAPH 1987, 65–72.

NVIDIA. 2008. NVIDIA CUDA Compute Unified Device Archi-
tecture: Programming Guide (Version 2.0).

OHTA, M., AND MAEKAWA, M. 1990. Ray-bound tracing for
perfect and efficient anti-aliasing. The Visual Computer 6, 3,
125–133.



OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. 2008.
Large ray packets for real-time Whitted ray tracing. In IEEE/EG
Symposium on Interactive Ray Tracing, 41–48.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2007. Stackless KD-tree traversal for high performance GPU ray
tracing. Computer Graphics Forum (Proceedings of Eurograph-
ics) 26, 3, 415–424.

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE, A., SUGER-
MAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E., JUAN,
T., AND HANRAHAN, P. 2008. Larrabee: a many-core x86 ar-
chitecture for visual computing. ACM Transactions on Graphics
27, 3, 1–15.

SHEVTSOV, M., SOUPIKOV, A., AND KAPUSTIN, A. 2007.
Highly parallel fast KD-tree construction for interactive ray trac-
ing of dynamic scenes. Computer Graphics Forum (Proceedings
of Eurographics) 26, 3, 395–404.

THOMAS, D., NETRAVALI, A., AND FOX, D. 1989. Antialiased
ray tracing with covers. Computer Graphcis Forum 8, 4, 325–
336.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing
deformable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1, 6.

WALD, I., MARK, W., GÜNTHER, J., BOULOS, S., IZE, T.,
HUNT, W., PARKER, S., AND SHIRLEY, P. 2007. State of
the Art in Ray Tracing Animated Scenes. In Eurographics 2007
State of the Art Reports.

WALD, I., BENTHIN, C., AND BOULOS, S. 2008. Getting rid
of packets – efficient SIMD single-ray traversal using multi-
branching BVHs. In IEEE/EG Symposium on Interactive Ray
Tracing, 49–57.

WALD, I. 2004. Realtime Ray Tracing and Interactive Global
Illumination. PhD thesis, Computer Graphics Group, Saarland
University.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6, 343–349.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time
KD-tree construction on graphics hardware. ACM Transactions
on Graphics 27, 5, 1–11.

Scene Sampling PSNR in dB Framerate in fps

Bathroom
(268K)

Fixed 16 46.35 0.79 (8.68)
Ours (τα = 0.6)† 44.03 (24.6%) 2.14 (3.22)

Fixed 9 43.47 1.23 (5.62)
Fixed 4 39.36 2.36 (2.92)
Fixed 1 35.06 6.89 (1.00)

Conference
(190K)

Fixed 16 47.43 1.39 (9.54)
Ours (τα = 0.6) 46.67 (19.8%) 4.58 (2.88)

Fixed 9 44.48 2.28 (5.81)
Fixed 4 40.54 4.52 (2.92)
Fixed 1 36.43 13.23 (1.00)

Room
(117K)

Fixed 16 47.61 1.19 (9.96)
Ours (τα = 0.6) 44.56 (17.4%) 5.72 (2.07)

Fixed 9 44.31 1.92 (6.15)
Fixed 4 39.76 3.92 (3.02)
Fixed 1 35.98 11.83 (1.00)

Kitchen
(101K)

Fixed 16 46.78 1.24 (10.12)
Ours (τα = 0.6) 44.16 (22.4%) 4.46 (2.81)

Fixed 9 43.85 2.01 (6.22)
Fixed 4 39.72 4.09 (3.07)
Fixed 1 35.58 12.53 (1.00)

Fairy Forest
(174K)

Fixed 16 47.22 1.16 (9.20)
Ours (τα = 0.1) 44.11 (106.5%) 1.28 (8.34)

Fixed 9 43.88 1.86 (5.74)
Ours (τα = 0.3) 39.92 (28.6%) 2.82 (3.78)

Fixed 4 39.19 3.68 (2.90)
Ours (τα = 0.6) 38.61 (19.5%) 3.75 (2.84)
Ours (τα = 1.0)‡ 37.80 (16.5%) 4.51 (2.36)

Ours? 36.05 (13.5%) 5.02 (2.12)
Fixed 1 35.00 10.68 (1.00)

†τα = τcol, τpte, τste, ‡ Plus τpsc = τssc = 1.0, ? Fairy focused.

Table 2: Performance comparison with fixed-density supersam-
pling. All scenes were rendered with shading, textures, reflec-
tion/refraction, and shadows at resolution 1024×1024. The PSNR
values were measured by comparing the respective results with
ground-truth images produced by taking 256 nonadaptive samples
per pixel. The figures in parentheses in the PSNR column mean the
ratios of the number of ray samples actually taken by our method
to that of the Fixed 9 sampling. On the other hand, the figures in
parentheses in the Frame rate column indicate the overheads rel-
ative to the case of one sample per pixel. For a fair comparison,
we applied a similar shared memory technique for an efficient im-
plementation of fixed-density supersampling, where the overheads
were measured in the range of 8.68 to 10.12 for the Fixed 16 sam-
pling. The default thresholds applied are τpoid = τsoid = 0.05 (0.0
for Conference), τpsn = τssn = 0.06, τpsc = τssc = 0.06.


