
Construction of Efficient Kd-Trees for Static Scenes
Using Voxel-visibility Heuristic

Byeongjun Choi, Byungjoon Chang, Insung Ihm∗

Department of Computer Science and Engineering, Sogang University
35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Korea

Abstract

In the ray-tracing community, the surface-area heuristic (SAH) is used as a de facto standard strategy for
building high-quality kd-trees. Although widely accepted as the best kd-tree construction method, it is
based only on the surface-area measure, which often fails to reflect effectively the rendering characteristics
of a given scene. This paper presents new cost metrics that help produce improved kd-trees for static scenes
by considering the visibility of geometric objects, which can affect significantly the actual distribution of
rays during ray tracing. Instead of the SAH, we apply a different heuristic based on the new concept of
voxel visibility, which allows more sophisticated estimation of the chance of a voxel being hit by rays. The
first cost metric we present aims at constructing a single kd-tree that is used to trace both primary and
secondary rays, whereas the second one is more relevant to secondary rays, involving reflection/refraction
or shadowing, whose distribution properties differ from those for primary rays. Our experiments, using
both CPU-based and GPU-based computation with several test scenes, demonstrate that the presented cost
metrics can reduce markedly the cost of ray-traversal computation and increase significantly the overall
frame rate for ray tracing.
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1. Introduction1

1.1. Background2

Among the various spatial data structures, the3

kd-tree is the most popular for static-scene ray trac-4

ing, thanks to its reliably higher acceleration perfor-5

mance. Although several attempts have been made6

to build a good kd-tree, the best technique cur-7

rently known is the surface-area heuristic (SAH),8

which was introduced by MacDonald and Booth [1].9

This is a typical greedy algorithm that constructs10

the kd-tree in a top-down manner by recursively11

subdividing a given bounding volume into two sub-12

volumes. The key to the SAH is in its use of a cost-13

prediction function that, via minimization, directs14
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where to position the splitting planes for effective15

space subdivision.16

The traditional SAH is based on the theory of
geometric probability [2], in which, simply assum-
ing that rays are uniformly distributed in space,
the probability that a random ray intersects with a
given voxel V , i.e., an axis-aligned bounding box,
is proportional to the voxel’s surface area SA(V ).
Given two parameters CT and CI that estimate the
cost of a node-traversal step and a ray–triangle in-
tersection step, respectively, the cost of partitioning
V into two subvoxels VL and VR, using a splitting
plane P , is modeled as

Csa(V, P ) = CT

+ CI

(
SA(VL)

SA(V )
|TL|+

SA(VR)

SA(V )
|TR|

)
,

(1)

where TL and TR each represents the set of triangles17

that overlap VL and VR. The plane that minimizes18

this cost function is then regarded as the best split19

candidate (also refer to [3] for more details).20
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Although used as a de facto standard method for21

constructing high-quality kd-trees, the SAH makes22

some assumptions that may not always hold for the23

ray-tracing computation. For example, the SAH as-24

sumes that rays are uniformly distributed in space,25

coming only from outside the given voxel, and are26

not blocked by objects during traversal. In practice,27

however, the ray distribution is often quite nonuni-28

form in space, being influenced by the geometry and29

rendering parameters of a given scene.30

One of the most influential factors that deter-31

mine the actual ray distribution is the scene geom-32

etry. Figure 1(a) illustrates a situation where much33

of a voxel’s boundary exists inside an opaque ob-34

ject. Here, the hidden surface area, marked by the35

thicker line, may not receive rays, leading to a prob-36

ability much less than that implied by its surface37

area. Figure 1(b) shows an example of the incident38

ray being dependent on the neighboring geometry.39

Here, the surface area of the voxel, marked by the40

thicker line, is relatively less likely to be intersected41

by incoming rays than is the remaining open area.42

This is because rays will enter the voxel through the43

thicker-lined region mainly via reflection from the44

wall and floor, which are mostly occluded by the45

nearby object. If the reflector is diffusive, the prob-46

ability would be much less in classic ray tracing in47

which diffusive reflection is often ignored.48

V

p0
(a) Hidden surface area

V

p2
p1

(b) Occluded surface
area

Figure 1: Two examples violating the assumptions made in
the traditional SAH. (a) Unlike open boundary points, a
hidden point p0 may not attract an incoming ray. (b) Under
the assumption that rays are uniformly distributed outside
the voxel V , the probability of rays entering through p2 will
be higher than for p1, because p2 is more visible from outside.

In addition to geometric factors, the distribution49

of rays is affected by the properties of other ren-50

dering elements like lighting, material, and cam-51

era. For example, the surface reflection property52

determines how secondary rays are generated at a53

surface point when hit by a ray. However, such a54

ray distribution in a complex scene is often difficult55

to predict precisely; rather, it is necessary to rely56

on the simple assumptions made in the traditional57

SAH.58

1.2. Our contribution59

Aiming at accelerating ray-tracing computations60

via an improved kd-tree, we present two cost met-61

rics that can help choose a better split plane dur-62

ing kd-tree construction. In building a kd-tree, our63

method attempts to exploit a measure of geomet-64

ric visibility inherent in a given scene, which affects65

significantly the actual distribution of rays gener-66

ated during ray tracing. For this, we introduce67

the new concept of voxel visibility, which enables68

better estimation of the chance of a voxel being69

hit by rays. The first cost metric aims at build-70

ing a single kd-tree that is used to effectively trace71

both primary and secondary rays. The second cost72

metric is more relevant to secondary rays, involving73

reflection/refraction or shadowing, whose distribu-74

tion properties differ from those for primary rays.75

By introducing an additional kd-tree dedicated to76

tracing the secondary rays, we find that ray-tracing77

performance can be improved further.78

Because our method requires a nontrivial pre-79

computation of visibility information in 3D space, it80

is currently limited to static scenes. However, while81

dynamic scenes are widely used nowadays, build-82

ing efficient kd-trees for static scenes is still impor-83

tant especially when large ones are visualized. It84

may also be useful for dynamic scenes where only a85

small portion of triangles need to be updated. For86

instance, in a scene of a couple of persons moving87

around in a big hall, using two trees as suggested88

in previous work [4], say, an optimized kd-tree for89

the large static geometry, allowing an overall fast90

ray tracing and another hierarchy for the small dy-91

namic geometry, permitting a fast update, could92

possibly be a more promising choice than rebuild-93

ing the entire large scene per every frame in spite94

of the recent successful GPU-based techniques for95

the complete hierarchy construction [5, 6, 7] (see96

Figure 2).97

From experiments with several example scenes98

and by rendering via both CPU-based and GPU-99

based computation, we demonstrate that the pre-100

sented kd-tree construction techniques produce a101

noticeable reduction in the cost of kd-tree traversal102

and ray–object intersection computations, leading103

to a significant increase in the overall frame rate for104

ray tracing.105
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Figure 2: Hybrid acceleration hierarchies. In this example
scene, a man is chasing another man (78,028 triangles per
man) in a cafe (1,735,079 triangles). When the entire geom-
etry was built into a standard SAH-based kd-tree, it took
110.6 ms to ray-trace this frame at resolution 1024×1024 on
an NVIDIA GeForce GTX 480 GPU. When we maintained
two hierarchies, that is, a precomputed voxel-visibility based
kd-tree for the static cafe and a dynamically updated bound-
ing volume hierarchy (BVH) for the two men, and traced
them respectively for rendering, it took 98.3 ms including
the BVH update time. When 9 different camera views were
tested while they were running, the two-tree scheme was
faster by 7.1% on average. Considering that the above tim-
ing of the one-tree scheme does not contain its hierarchy
rebuilding time for the entire geometry, the two-tree scheme
may be a promising choice in such a situation.

2. Related work106

As widely agreed, the kd-tree is known to be a re-107

liably optimal acceleration structure for ray-tracing108

a static geometry, particularly when combined with109

such techniques as frustum traversal [8] and coher-110

ent packet tracing [9]. Although several strategies111

are possible, the SAH method is generally acknowl-112

edged to produce the best kd-trees [3, 10]. As intro-113

duced by MacDonald and Booth [1], this strategy114

chooses the splitting plane by minimizing a cost115

function based on the surface area. To improve116

its ray-tracing performance further, Havran investi-117

gated various factors that influence the performance118

of a hierarchical spatial-subdivision structure and119

suggested an enhanced cost metric [3]. Wald and120

Havran introduced an O(n log n) algorithm that121

builds robust kd-trees using the SAH [11]. Hunt122

et al. [12] and Popov et al. [13] presented a faster,123

scanning-based algorithm that approximates the124

SAH cost function but causes only a little perfor-125

mance degrade in terms of ray tracing time.126

Alternatively, there have been other attempts to127

improve the performance of kd-trees. Adjusting128

the cost metric in favor of split planes that cre-129

ate some empty cells has been shown to be effec-130

tive by many practitioners [3, 14]. Hunt showed131

that correcting the surface-area metric in terms132

of mailboxing improved the rendering performance133

by reducing the rate of intersection test [15]. As134

mentioned in the Introduction, the traditional SAH135

often suffers from (somewhat unrealistic) assump-136

tions, which may lead to incorrect probabilities for137

a voxel being hit by rays. To ease this problem,138

Reinhard et al. [16] and Havran [3] introduced a139

blocking-factor concept that aims at measuring the140

degree to which rays are occluded by objects in-141

side a given voxel. Fabianowski et al. modified the142

SAH cost metric to take into account rays origi-143

nating inside voxels [17]. Interestingly, there was144

also an attempt to find a better cost metric that145

allows a more efficient kd-tree for organizing point146

datasets for photon mapping [18]. Recently, Ize and147

Hansen derived a cost metric that determines which148

child node a ray should traverse first for efficient149

occlusion-ray traversal [19].150

Our approach is unique in that we exploit the151

notion of visibility for improving the quality of152

kd-trees. Computation of visibility is one of the153

most fundamental issues in 3D graphics and has154

often been an essential part in developing effi-155

cient graphics algorithms. In particular, there156

have been several attempts to mathematically de-157

fine the visibility measure suitable for solving spe-158

cific problems including, for instance, mesh simpli-159

fication [20], path optimization [21], illumination160

computation [22], real-time walkthrough/shadow-161

ray acceleration [23], and so on. (Also see [24] for162

a general introduction.)163

3. New cost metric for kd-tree construction164

3.1. Outgoing and incident ray densities165

To derive a new cost metric for kd-tree construc-166

tion, we first define a density function δ(x, ω) =167

d2R
dωdV , called the outgoing ray density, which spec-168

ifies the amount of rays per unit solid angle per169

unit volume that originate from a point x in the170

direction ω. This function aims at describing the171

nonuniform distribution of rays, whether primary172

or secondary, generated in the scene domain during173

ray tracing.174
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Symbol Quantity

δ(x, ω) outgoing ray density

ρ(x, nx) incident ray density

Υext(V ) the amount of rays entering V from outside

Υint(V ) the amount of rays originating from inside V

Υ(V ) voxel visibility

ρsec(x, nx) surface visibility

Υsec
ext(V )

Υsec
int(V ) surface-visibility based quantities

Υsec(V )

Csa(V, P ) surface-area based cost function

Cvv(V, P ) voxel-visibility based cost function

Table 1: Symbols and their meaning.

Next, we define an incident ray density,175

ρ(x, nx) = dR
dA , which expresses the differential176

number of rays that arrive at a differential area177

around a surface point x with normal nx. It in-178

cludes all incoming rays that originate from an ar-179

bitrary point in the visible region of the half space180

specified by x and nx and arrive at x (see Figure 3).181

scene domain

visible region

x

nx

! À(x;!)

Figure 3: Space of possible ray origins with respect to a
surface point x with normal nx. Here, υ(x, ω) denotes the
distance to the first hit by the ray shot from x in the direction
ω. This quantity, combined with the outgoing ray density,
indicates the degree to which x is visible from possible ray
origins along the sample direction. If there is no intersection,
it is set to the distance to the boundary of the axis-aligned
bounding volume of scene, which defines the space where
rays may start.

By the definition of the incident ray density, it182

becomes that183

ρ(x, nx) =

∫
Ω

R(x, ω) cos θ dω,

where R(x,w) = d2R
dωdA denotes the amount of rays184

per unit solid angle per unit area arriving from the185

direction ω, and cos θ is the angle between nx and186

ω. Although easy to understand intuitively, precise187

computation of this measure is not easy to achieve,188

in general. In practice, we require a numerical ap-189

proximation method for the density function.190

Consider the hemisphere Ω specified by x and191

nx. If m directions are sampled uniformly over the192

hemisphere (stratified sampling is used in our im-193

plementation), we obtain an approximation, which194

is expressed in terms of the ith sample direction ωi:195

ρ(x, nx) ≈
m−1∑
i=0

R(x, ωi) cos θi
2π

m
. (2)

Note that R(x, ωi) =
∫ υ(x,ωi)

0
δ(x+ t ·ωi,−ωi) dt,196

where υ(x, ωi) is the visibility term described in the197

caption of Figure 3. If we make another approxi-198

mation by subdividing the line segment [0, υ(x, ωi)]199

into intervals of length ∆h, we get to the following200

formula201

R(x, ωi) ≈
mi∑
j=1

δ(xij ,−ωi)∆h, (3)

where mi = dυ(x, ωi)/∆he and xij = x+ (j∆h)ωi.
Then, by combining Eq. (2) and (3), we obtain the
following approximation to the incident ray density:

ρ(x, nx)

≈ 2π∆h

m

m−1∑
i=0

( mi∑
j=1

δ(xij ,−ωi)
)

cos θi.
(4)

Interestingly, this general notion of incident ray
density includes the notion of obscurance [25] as a
special case. (Recall that the popularly used ambi-
ent occlusion is itself a special case of the obscu-
rance.) That is, in the particular case in which the
outgoing ray density is constant, say δ(x, ω) = 1,
throughout the entire open space, Eq. (4) is simpli-
fied further as follows:

ρ(x, nx) ≈ 2π

m

m−1∑
i=0

υ(x, ωi) cos θi. (5)

This formula, as a special case of the obscurance, is202

intuitively straightforward in that, only when the203

rays are uniformly generated in empty space, the204

number of rays hitting a differential area depends205

mainly on the openness of the space above the area.206

3.2. External rays entering voxel V from outside207

Having an approximation to the incident ray den-208

sity at a point, the total number of rays arriving at209

a given (planar) surface area A with surface nor-210

mal nx can be estimated by calculating the integral211
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∫
A
ρ(x, nx) dA. Consider a voxel V in the scene do-212

main. The number of external rays that enter V213

from outside is naturally expressed as214

Υext(V ) =

6∑
i=1

∫
∂Vi

ρ(x, nx) dA, (6)

where ∂Vi, i = 1, 2, · · · , 6, denote the respective215

rectangular faces of V .216

Although this is a clear definition, it is imprac-217

tical to evaluate it precisely, on the fly, for each218

voxel tested during kd-tree construction. To esti-219

mate the six component integrals more rapidly, we220

partition the scene domain into a rectangular grid,221

where the incident ray density is estimated at the222

center pijk of each grid cell cijk using the numer-223

ical formula of Eq. (4) or Eq. (5). In particular,224

each cell stores the six density values of ρ(pijk, n)225

for n ∈ {x+, x−, y+, y−, z+, z−}, where x+ and226

x− represent the principal x-axis directions (1, 0, 0)227

and (−1, 0, 0), respectively, and the other vectors228

are defined similarly for the remaining two axes.229

After the density map is prepared, Υext(V ) is ap-
proximated by summing the area-weighted incident
ray density for all overlapped cells as follows:

Υext(V ) ≈
∑

cijk∩ ∂V 6=∅

ρ(pijk, nijk) ·∆pijk.

Here, ∆pijk denotes the area of the rectangle230

formed by the intersection of the voxel’s boundary231

∂V with cell cijk, and the direction nijk is inherited232

from the corresponding boundary face.233

3.3. Internal rays originating within voxel V234

In addition to the external rays, the rays that235

originate from inside the voxel V also cause to visit236

the kd-tree node corresponding to V . The amount237

of these internal rays can be expressed naturally in238

terms of a volume integral239

Υint(V ) =

∫
V ∩¬O

∫
4π

δ(x, ω) dωdV, (7)

where O indicates the hidden space occupied by240

closed objects in the scene. If we assume a uniform241

density δ(x, ω) = 1 over the empty space, it simpli-242

fies to Υint(V ) = 4πE(V ), where E(V ) represents243

the volume of the empty region of V .244

For efficient on-the-fly approximation to the in-245

tegral during kd-tree construction, we perform ad-246

ditional preprocessing, whereby the scene’s bound-247

ing volume is subdivided into a rectangular grid of248

small cells. To find cells in the open space, we apply249

a region growing technique that marks them by it-250

eratively visiting neighboring cells in the empty re-251

gion starting from a seed cell. Then, for each of the252

marked cells, the (estimated) total number of rays253

originating inside the cell is recorded. (For example,254

if we assume a uniform density, the stored value is255

the cell’s volume.) Then, for voxel V , Υint(V ) can256

be estimated rapidly by simple addition of these257

values for the cells inside V .258

3.4. Cost metric based on voxel visibility259

We can now obtain the total amount of rays that260

cause to traverse the corresponding node in the kd-261

tree by adding the two integrals262

Υ(V ) = Υext(V ) + Υint(V ). (8)

Informally, Υ(V ) implies the visibility of voxel V ,263

in that it indicates how visible the voxel is to rays264

possibly flowing in the scene. Therefore, in this265

work, we call the quantity Υ(V ) the voxel visibility.266

Based on this measure, we have a new cost-
estimation function, which is similar to the surface-
area metric in Eq. (1), but which considers the
nonuniform ray distribution when building a more
effective kd-tree:

Cvv(V, P ) = CT

+ CI

(
Υ(VL)

Υ(V )
|TL|+

Υ(VR)

Υ(V )
|TR|

)
.

(9)

As will be demonstrated shortly, the new metric267

tends to provide a more sophisticated estimate for268

the chance of node traversal than that of the SAH269

by considering the actual geometry of the scene.270

Note also that our visibility measure ameliorates271

the problem arising from the unrealistic assump-272

tion in the original SAH that no ray is hindered273

by geometric objects during its traversal. Unlike274

previous work, e.g., [3, 16], in which an explicit275

blocking-factor term is used in the cost function,276

our method implicitly incorporates the occlusion of277

rays by objects in the cost metric.278

3.5. Adapting the visibility heuristic for secondary279

rays280

Although the cost function Υ(V ) described above281

is designed to handle all types of rays, whether pri-282

mary or secondary (i.e., reflection/refraction and283

shadow rays), the idea of voxel visibility can be284

extended further for secondary rays. In contrast285
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to primary rays, secondary rays always originate286

from the surfaces of objects. Based on the heuristic287

that more secondary rays tend to be generated from288

more visible surface regions, we adjust the incident289

ray density function to take account of surface vis-290

ibility.291

Let yi and nyi denote the position and normal
direction, respectively, at the closest surface point
visible along a ray originating from a given point
x and pointing in the direction ωi (see Figure 4).
We take the incident ray density ρ(yi, nyi) at yi as
a measure of how densely the secondary rays origi-
nate from yi. Considering the angle φi between nyi
and −ωi, the number of differential rays from the
direction ωi through the cone of solid angle 2π

m may
be approximated as 2π

m ρ(yi, nyi) cosφi cos θi. The
total number of secondary rays can then be com-
puted by summing these quantities over all direc-
tions as follows (compare with the approximation
in Eq. (5)):

ρsec(x, nx) =
2π

m

m−1∑
i=0

ρ(yi, nyi) cosφi cos θi. (10)

Using this modified density value, the external vis-292

ibility of voxel V can be expressed as before:293

Υsec
ext(V ) =

6∑
i=1

∫
∂Vi

ρsec(x, nx) dA. (11)

For a practical estimation of ρsec(x, nx), we sub-294

divide triangles in the scene into smaller subtrian-295

gles and compute the incident ray densities at their296

centers in the preprocessing stage. Then, when the297

hemisphere around x is sampled, a nearest-neighbor298

filter is applied to obtain ρ(yi, nyi), for which the299

density value of the subtriangle containing yi is300

taken into account.301

!i

x

nx

1

yi
nyi

Ái

µi

2¼
m

Figure 4: Incident ray density based on surface visibility.

Similarly, the internal visibility, which indicates
the number of secondary rays originating inside V ,

can be obtained by a discrete sum of the incident
ray density over surfaces contained in V :

Υsec
int(V ) =

∫
∂O∩V

ρ(x, nx) dA

≈
∑

∀ subtri. i in V

ρ(xi, nxi
) ·∆xi,

(12)

where ∂O is the surface of geometric objects, xi302

is the center of the ith subtriangle, and ∆xi is its303

area. Then, using the surface-visibility-based cost304

metric305

Υsec(V ) = Υsec
ext(V ) + Υsec

int(V ), (13)

we can build another kd-tree, dedicated to tracing306

secondary rays.307

3.6. Some implementation details308

Building a hybrid kd-tree As explained be-309

fore, our method estimates the incident ray density310

values at given grid cells, and then use them for the311

kd-tree construction. When the grid’s resolution312

is high enough compared to the size of the given313

voxel, this approach usually provides a good314

estimate for the visibility metric. However, with a315

fixed grid resolution, it becomes less accurate as the316

relative size of a node’s bounding box decreases.317

In our scheme, rather than relying on the possibly318

error-prone voxel-visibility metric computed during319

kd-tree construction, we apply the original SAH320

if the ratio of the grid-cell size to the voxel size is321

above a preset threshold value as denoted as CL322

in Section 4. As a result, we actually obtain a323

hybrid kd-tree for which both voxel-visibility and324

surface-area heuristics are employed, the former325

for the upper levels and the latter for the lower326

levels of the kd-tree. This hybrid approach is a327

compromise between the computational cost and328

the accuracy of the estimation.329

330

Placing an empty box at the top of the tree331

Another simple modification we have made for ef-332

ficient kd-tree construction is to place an empty333

space at the top of the kd-tree, if it is appropriate.334

In [3], Havran noted that cutting off empty spaces335

is highly effective for the upper levels of the tree. In336

addition to the frequently used technique that tries337

to maximize empty spaces during the evaluation of338

cost metric, we attempt to find a large empty axis-339

aligned box inside a given scene in the preprocessing340

step and utilize it for building a better kd-tree.341
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Since finding the ‘best’ box is an intractable prob-342

lem, we take a simple heuristic approach, based on343

the region growing algorithm described in Subsec-344

tion 3.3. Starting from each empty cell found, an345

axis-aligned empty box is built by extending it into346

the positive x, y, and z directions as much as pos-347

sible. Then the one with the largest volume is se-348

lected as the candidate. During the kd-tree con-349

struction, the six planes containing the faces of the350

empty box are first selected as splitting planes to set351

up the initial tree. Then our voxel-visibility heuris-352

tic is applied to each nonempty node to complete353

the tree-building computation.354

As will be discussed later, this heuristic gives355

a meaningful performance increase in frame rate356

above that achieved without placing the empty box357

only if there exists a ‘good’ empty box. In addi-358

tion, it must be noted that locating an empty box359

in the first stage of tree building may enable time360

and space savings in building the discretized inci-361

dent ray density map because there is no need to362

calculate the density values for those cells residing363

wholly inside the empty box.364

4. Experimental results365

To show the effectiveness of our method, we have366

built kd-trees using the presented cost metrics, and367

compared their timing performances with those368

of corresponding SAH-based kd-trees. Table 2369

shows statistics from the tested example scenes for370

various numbers of triangles, reflection/refraction371

bounces, and lights. As it is well understood, the372

ray-tracing performance depends noticeably on373

the parameter values for the applied rendering.374

To analyze the new cost metrics accurately, we375

started with a wide range of parameter values and376

then selected four or five representative parameter377

sets per scene (Figure 5 shows the selected camera378

views). In our experiments, we measured the379

execution times for both CPU- and GPU-based380

computation, using a 2.67 GHz Intel Core i7 CPU381

and an NVIDIA GeForce GTX 480 GPU.382

383

Construction of the kd-trees All the tested384

kd-trees were built using a similar construction al-385

gorithm to that employed in the standard SAH386

method [11] except for the use of different cost met-387

rics. Given CT = 1, we used the relative intersec-388

tion cost CI = 2 (for both the CPU and the GPU)389

for the surface-area heuristic and CI = 0.7 (CPU)390

Scene
# of Reflection # of

triangles bounces lights

KITCHEN A 36,002 2 1

KITCHEN B 101,015 2 4

CONFERENCE 190,947 2 1

SPONZA 255,856 3 1

FAIRY 174,117 3 3

Table 2: Test scene statistics.

and CI = 1 (GPU) for the voxel-visibility heuris-391

tic. For our experiments, these were the values that392

achieved the best results. Note that the ratio of CI393

to CT influences the tree-construction process by394

affecting the termination of voxel subdivision. Be-395

cause the metrics used in the SAH and in our voxel-396

visibility heuristic are different in nature, the ratios397

that give the best performance may be different for398

each heuristic.399

To provide the best ray-tracing speed for each400

scene, we chose, manually for each scene, an empty401

bonus multiplier that usually ranged between 0.5402

and 0.9. In addition, the empty-box heuristic was403

applied during new tree construction unless said404

otherwise. Also, the switch was made from the405

voxel-visibility to surface-area heuristic when the406

ratio between the length of the smallest axis of407

the voxel and that of the cell became smaller than408

a given threshold CL, whose value usually stayed409

around 15.410

For each test scene, its domain was discretized us-411

ing a rectangular grid of resolution 256×256×256.412

To avoid the redundant computation, we first sam-413

pled 4,096 directions uniformly around each cell’s414

center using stratified sampling, and then used this415

sampled data to compute the incident ray density416

for each of the six directions (this amounted to417

2,048 direction samples over the hemisphere per418

density value). In addition, the surface visibility419

was evaluated at 1,000,000 sample points over the420

geometry.421

Most of the preprocessing time was spent on422

building the incident ray density fields. The423

KITCHEN B scene, for example, required 202.6424

seconds to evaluate the density values (Eq. (5))425

using the GPU, whereas only 7.21 seconds were426

necessary for the CPU to construct the hybrid427

kd-tree using the density field. When a second428

kd-tree was optionally built using the surface429

visibility, 19.8 seconds were required for the GPU430

to approximate the density values (Eq. (5)) at the431

7



(a) KITCHEN A 1 (b) KITCHEN A 2 (c) KITCHEN A 3 (d) KITCHEN A 4 (e) KITCHEN A 5

(f) KITCHEN B 1 (g) KITCHEN B 2 (h) KITCHEN B 3 (i) KITCHEN B 4

(j) CONFERENCE 1 (k) CONFERENCE
2

(l) CONFERENCE 3 (m) CONFERENCE
4

(n) SPONZA 1 (o) SPONZA 2 (p) SPONZA 3 (q) SPONZA 4 (r) SPONZA 5

(s) FAIRY 1 (t) FAIRY 2 (u) FAIRY 3 (v) FAIRY 4

Figure 5: Test scene statistics and camera views of example scenes. Because the visibility of the region seen by the camera
affects the performance of our visibility-based kd-trees, we selected camera views of various visibilities, ranging from good to
bad, to enable fair comparison with the SAH method.
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1,000,000 surface sample points. The GPU then432

required 629.0 seconds to estimate the density433

values (Eq. (10)) at the grid centers (includ-434

ing the nearest surface-sample search using a435

200 × 200 × 200 grid). An additional 8.50 seconds436

were spent by the CPU constructing the actual437

kd-tree. On the other hand, it took 5.39 seconds438

for the CPU to build the corresponding SAH tree439

for the scene.440

441

Comparison with the standard SAH In com-442

paring the voxel-visibility heuristic with the stan-443

dard SAH, two different tests were performed. In444

the first voxel-visibility heuristic test (VVH1), a445

single kd-tree was built via the visibility metric446

Υ(V ) described in Section 3.4. This was used447

for tracing both primary and secondary rays. In448

the second voxel-visibility heuristic test (VVH2),449

we built a kd-tree for tracing only primary rays,450

and constructed another kd-tree, using the metric451

Υsec(V ) described in Section 3.5, for tracing sec-452

ondary rays. Table 7 shows the overall statistics453

for the frame rates achieved when a 1024 × 1024454

image was generated by full ray tracing using four-455

threaded 4× 4 SIMD ray packets for the CPU and456

CUDA blocks of 8× 8 threads for the GPU.457

As summarized in the graph of Figure 6, the458

new kd-tree construction heuristics achieve signif-459

icant overall improvements in the rendering time,460

giving up to 53% and 42% speedup in the CPU-461

based and GPU-based computations, respectively.462

Although the speedup achieved differs slightly be-463

tween the CPU-based and GPU-based versions, the464

measurements exhibit a quite consistent pattern of465

improvement. The test results indicate that one466

of the most significant factors affecting the ren-467

dering performance is the visibility of the region468

within the camera’s viewing volume, as was the fo-469

cus of our work. It is observed that our visibility-470

based cost metrics tend to generate leaf nodes in471

the higher-visibility regions at the upper (closer to472

root node) levels of trees than the SAH metric, en-473

abling ray traversal within such regions to be more474

efficient. (Note that this does not mean that larger475

leaf nodes are created in the higher-visibility re-476

gions.) For example, when the camera views an477

open, mostly unoccluded space, as in Frame 5 of478

KITCHEN A (Figure 5(f)), the visibility-based kd-479

trees give very good performance. However, they480

offer relatively little speedup in the rendering com-481

putation when the camera views a region of low vis-482

ibility, as in Frame 2 of KITCHEN A (Figure 5(c)).483

In general, however, the visibility-based kd-trees484

perform quite favorably when compared with the485

SAH, for both types of processors.486

20%

30%

40%

50%

60%

VVH1 on CPU

VVH2 on CPU

VVH1 on GPU

VVH2 on GPU
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0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4

VVH1 on CPU

VVH2 on CPU

VVH1 on GPU

VVH2 on GPU

KITCHEN A KITCHEN_B CONFERENCE SPONZA FAIRY
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10%
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1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4

VVH1 on CPU
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KITCHEN A KITCHEN_B CONFERENCE SPONZA FAIRY

Figure 6: Speedup above the SAH method. Although the
performance enhancement depends on several parameters of
the test scenes, our experiments show that the cost func-
tions based on voxel visibility perform very favorably when
compared with the SAH.

As expected, the efficiency of the two-tree scheme487

(VVH2) over the one-tree scheme (VVH1) depends488

on how frequently secondary rays are generated in489

comparison with primary rays. For example, the490

same number (i.e., 1,048,576) of primary rays were491

shot to render the KITCHEN B 2 and SPONZA 2492

frames, but the numbers of traced secondary rays493

differed significantly, with 8,986,528 rays (1,163,616494

reflection rays and 7,822,912 shadow rays) and495

1,071,232 rays (120,640 reflection rays and 950,592496

shadow rays) being shot, respectively. Using a sec-497

ond kd-tree dedicated to the secondary rays en-498

abled an additional 9.2% speedup via the CPU for499

the KITCHEN B frame, whereas only a 1.7% im-500

provement was observed for the SPONZA frame.501

It would be natural for the two-tree scheme to be-502

come more effective when secondary rays outnum-503

ber primary rays, as in scenes containing many504

lights, soft shadows, and/or high numbers of re-505

flection bounces.506

It should be noted that the speedup values given507

in Table 7 are with respect to the entire ray-tracing508

time, including the setup and shading computa-509

tions. The actual improvement attributable to the510

new kd-trees is better than those figures indicate,511

as is demonstrated in Table 8, which compares512

the costs of kd-tree traversal and ray–triangle513

intersection for the three types of rays. We observe514

that the cost metric Υ(V ), used to build the515

kd-tree in VVH1, tends to reduce both costs516

equally. In contrast, the metric Υsec(V ), applied517

to building the second kd-tree in VVH2, appears518

9



(a) Traversal cost (SAH) (b) Intersection cost (SAH)

(c) Traversal cost (VVH1) (d) Intersection cost (VVH1)

(e) Traversal cost (VVH2) (f) Intersection cost (VVH2)

(g) Color map

Figure 7: Per-pixel counts of kd-tree traversal and ray–triangle intersection steps for the CONFERENCE scene. Each triplet
of images shows a typical pattern for the respective costs to the CPU for handling primary, reflection/refraction, and shadow
rays, in which the numbers of tree-traversal steps (‘Traversal cost’) and ray–triangle intersection operations (‘Intersection cost’)
carried out per pixel are color coded, increasing from red through yellow, green, and blue to white. Here, white indicates 180
and 60 for the traversal and intersection computations, respectively.

to offer more efficiency in reducing the intersection519

computation during secondary-ray tracing, which520

takes relatively longer than the traversal part521

on the CPU, despite the use of optimization522

techniques such as mailboxing. In some tests, the523

kd-tree traversal for the secondary rays was slower524

than for the SAH, as it tried to maximize the525

gain in the intersection part. In Figure 7, which526

illustrates the per-pixel counts of the tree-traversal527

steps and the ray–triangle intersection operations528

performed on the CPU, this tendency is clearly529

observed, with the major cost reduction being530

found more easily in the intersection part.531

532

Effect of the empty-box heuristic As ex-533

plained in Subsection 3.6, the heuristic of placing534

an empty box at the top of the kd-tree is often effec-535

tive when a given scene contains large empty space536

inside it. Among the tested scenes, KITCHEN B537

and KITCHEN A are the two for which this heuris-538

tic worked best in most cases. As indicated by the539

statistics in Table 3, it offered good improvement in540

frame rate for both the SAH and VVH2 schemes,541

which is remarkable considering the simplicity of542

the technique. When the heuristic was applied to543

both construction methods for the KITCHEN B544

scene, the voxel-visibility heuristic gave only 5%545

to 11% speedup over the SAH. This is because546

the selected empty box produced the top portion547

of the kd-tree so effectively that the advantage of548

exploiting the voxel visibility during the kd-tree549

construction was reduced. Nevertheless, for the550

KITCHEN A scene, we can see that the voxel-551

visibility heuristic still achieved more than 20% of552

additional increase in frame rate.553

Note that the empty-box heuristic is effective554

only when a given scene contains a ‘good’ empty555

box inside it. We tested the heuristic with another556

scene (KITCHEN A∗), which is the same as the557

KITCHEN A scene except it additionally contains558
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Scene 1 2 3 4 5

KIT. B

SAH × 1.07 1.14 1.19 0.74

SAH # 1.17 1.25 1.33 0.82

VVH2 × 1.09 1.22 1.25 0.77

VVH2 # 1.23 1.39 1.46 0.86

KIT. A

SAH × 6.05 6.79 8.57 5.72 5.97

SAH # 6.82 6.89 9.59 6.76 7.43

VVH2 × 8.29 8.10 11.13 7.80 8.20

VVH2 # 8.48 8.33 11.37 8.08 9.08

KIT. A∗

SAH × 6.07 6.28 8.06 5.88 6.58

SAH # 6.09 6.30 8.08 5.90 6.65

VVH2 × 7.56 7.23 10.18 7.09 7.77

VVH2 # 7.32 7.42 10.05 6.88 7.85

Table 3: Effect of the empty-box heuristic. The SAH and
VVH2 methods with (#) and without (×) the empty-box
heuristic applied are compared. The scene KITCHEN A∗ is
identical to KITCHEN A except that the model additionally
contains 100 small cubes in the open space that hinder from
locating a ‘good’ empty box. The frame rates achieved when
a 1024×1024 image was generated on the CPU are reported.

(a) KITCHEN A∗ 1 (b) KITCHEN A∗ 3

Figure 8: Two camera views of KITCHEN A∗.

100 randomly distributed small cubes in the open559

space, which hinder from finding large empty560

space (see Figure 8). As can be seen in Table 3,561

only insignificant improvement was accomplished562

by the heuristic in both kd-tree contraction563

methods. On the other hand, the voxel-visibility564

heuristic consistently achieved about 20% speedup565

on average whether the empty-box heuristic was566

applied or not. Lastly, it should be noted that567

using more than one empty box only slowed down568

the ray tracing computation because the increasing569

number of splitting planes for them diminishes the570

positive effect of the heuristic.571

572

Test with some other models We also tested573

our method with some additional scenes to see how574

our method performs on larger models. Table 4575

shows the statistics collected on the same CPU for576

the Soda Hall model (2.4M triangles), which has577

complex occlusion. To compute the voxel visibil-578

ity, the entire scene domain was discretized into579

a 1024 × 1024 × 1024 grid, where 2,048 directions580

were sampled using stratified sampling over the581

hemisphere around each cell’s center. To compute582

the surface visibility, on the other hand, 1,000,000583

points were uniformly distributed over the geom-584

etry. During new kd-tree construction, a switch585

from voxel-visibility to surface-area heuristic was586

made with the threshold value of CL = 10, and587

the empty-box heuristic was not applied because it588

only made an insignificant improvement in render-589

ing speed for this model.590

Cam. SAH VVH1 VVH2

1 2.63 2.64 (0.5%) 2.58 (-1.6%)

2 2.91 3.06 (5.4%) 3.12 (7.4%)

3 2.24 2.47 (10.3%) 2.53 (13.1%)

4 0.79 1.50 (89.0%) 1.53 (92.9%)

Table 4: Rendering speed comparison with the standard
SAH method. The frame rates achieved when a 1024× 1024
image was generated by full ray tracing the Soda Hall model
on the CPU are reported. For this model, the idea of placing
an empty box at the top level of the kd-tree was not applied
because it does not contain empty space inside the scene that
is large enough to allow a significant performance increase.

(a) SODA HALL 1 (b) SODA HALL 2

(c) SODA HALL 3 (d) SODA HALL 4

Figure 9: Camera views of SODA HALL.

Figure 9(a) to (d) show the four representative591

camera views that we selected for fair comparison592

with the SAH method. When the camera viewed593

the building from the outside (the SODA HALL594

1 frame), no improvement in frame rate was ob-595

served with our kd-trees. For this particular frame,596
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the SAH tree was sufficiently efficient because the597

SAH’s assumption that rays come from outside the598

scene is rather effective due to the camera’s position599

and orientation, and there was no room for the vis-600

ibility idea to work. Using two trees (VVH2) only601

slowed down the rendering process.602

In the second frame (SODA HALL 2), the cam-603

era was still outside the building. However, the604

nontrivial occlusion situation that its view created605

caused our kd-tree schemes to produce higher frame606

rates. When the camera was put in a room (the607

SODA HALL 3 frame), the voxel-visibility based608

kd-trees started to provide significant improvement609

in frame rate over the standard SAH tree as in-610

tended. In the fourth test frame (SODA HALL 4),611

we observed a somewhat unusual performance gain612

of 89.0% and 92.9% by our methods. We don’t ex-613

actly know the reason for this, but conjecture that614

the SAH tree was built rather poorly around that615

particular region.616

In addition, to understand how our methods per-617

form in a simple situation like when a single scanned618

model is viewed, we tested with the DRAGON619

model (871K triangles) put in a rectangular room620

with reflective walls (see Figure 10 for some exam-621

ple views). As expected and clearly indicated in622

Table 5, it was hard to find any meaningful perfor-623

mance difference between the voxel-visibility and624

surface-area heuristics, particularly if a single-tree625

scheme (VVH1) was used. The reason for this poor626

performance is basically the same as that of the627

SODA HALL 1 frame as we explained. With the628

two-tree scheme (VVH2), some increase in frame629

rate, although limited, was seen thanks to the effi-630

cient processing of reflection rays by the secondary,631

surface-visibility based kd-tree.632

Cam. SAH VVH1 VVH2

1 1.35 1.34 (-0.2%) 1.39 (3.5%)

2 1.39 1.36 (-1.8%) 1.44 (3.5%)

3 1.31 1.33 (1.5%) 1.31 (0.2%)

4 1.52 1.53 (0.7%) 1.60 (4.8%)

5 1.92 1.92 (0.1%) 2.01 (5.0%)

Table 5: Rendering speed comparison with the standard
SAH method. The frame rates achieved in the same CPU
environment are reported for the DRAGON model.

Comparison with other methods We com-633

pared our cost metrics with another variant of the634

SAH, presented by Fabianowski et al. [17], which635

may be viewed as a simplified version of our method636

in that the cost function also reflects internal rays637

(a) DRAGON 3 (b) DRAGON 5

Figure 10: Two camera views of DRAGON.

originating within voxels. In this test, we built the638

corresponding kd-trees simply by replacing our cost639

metric with the ‘fast approximation’ measure, and640

examined two pairs of constant parameters, namely641

(CT = 1, CI = 3), which was used in their pa-642

per (‘[FFD09] (a)’), and (CT = 1, CI = 2), which643

showed the best performance improvement gener-644

ally in our test environment (‘[FFD09] (b)’).645
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Figure 11: Comparison with the cost metric of [17].

As illustrated in Figure 11, the resulting646

speedups show that our method (‘VVH2’), evalu-647

ated with the constant pair (CT = 1, CI = 1) as648

mentioned above, consistently outperformed their649

approach, although the differences vary slightly de-650

pending on the chosen parameter set. Note that651

their idea of considering both internal and exter-652

nal rays in estimating the probability of a node be-653

ing visited was valid. However, because they were654

more concerned with a rapid approximation to the655

probability, their simplified formulation was rela-656

tively limited in modeling effectively the ray dis-657

tribution in space. Our visibility-based strategy re-658

quires more time for evaluating the cost metric, but659

as the scenes become more complex, the better our660

relative performance will become.661

To confirm that these improvements were662

not specific to our implementation, we663

also experimented with a different GPU664
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ray tracer, publicly available at http://665

dcgi.felk.cvut.cz/members/havran/rtgpu2009/ [26].666

To avoid modifying its core implementation, which667

employs a single kd-tree for acceleration, we668

examined only the single-tree scheme (VVH1), in669

which the tested kd-trees were simply converted670

to its file format. The experiment was performed671

on the NVIDIA GeForce GTX 280 GPU, on which672

(we assume) the ray tracer was implemented.673

Figure 12 displays the speedups achieved with674

respect to the standard SAH kd-tree scheme.675

Compared with the figures achieved with our GPU676

ray tracer (‘VVH1 on GPU’ in Figure 6), we again677

obtained good performance gains, although the678

graph exhibits a slightly different improvement679

pattern. Considering that this ray tracer was not680

tuned for our kd-tree construction algorithm, and681

that we still achieved on average a more than 15%682

increase in frame rate with the GPU, we believe683

that the results we have presented will not be684

limited to our particular ray tracers.685
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Figure 12: Speedup above the SAH method, using a publicly
available GPU ray tracer [26].

Estimation of the expected costs Finally,
we estimated and compared the expected costs
of the complete kd-trees T that were built us-
ing the two different strategies, where we modified
the often-used expected cost [3, 27], by replacing
the surface-area term SA(V ) with the new term
RayHitCount(V ):

C(T ) = CT ·
∑

N∈Nodes

RayHitCount(VN )

RayHitCount(VS)

+ CI ·
∑

L∈Leaves

RayHitCount(VL)

RayHitCount(VS)
nL.

Here, VS is the axis-aligned bounding box of the687

entire scene, nL is the number of triangles in leaf688

node L, and RayHitCount(V ) of voxel V is the689

number of rays that either originate within V or690

start from outside but intersect with V , incurring691

Scene SAH VVH1 (1) VVH1 (2)

KITCHEN A 30.71 26.48 23.42

KITCHEN B 29.43 25.34 22.76

CONFERENCE 34.19 30.08 27.96

SPONZA 39.22 36.81 34.43

FAIRY 34.06 28.91 26.52

Table 6: Comparison of the expected costs of kd-trees using
random rays selected stochastically according to the com-
puted visibility. This experiment shows empirically that our
voxel-visibility heuristic works as intended.

traversal of the corresponding kd-tree node. The692

idea behind this modified cost is that, when ran-693

dom rays are generated repeatedly, RayHitCount(V )
RayHitCount(VS)694

is a better approximation to the real probability of695

the node being traversed, reflecting the specific ge-696

ometric characteristics of a given scene.697

To simulate the rays that originate in empty698

space, we reused the grid explained in Section 3.2699

and 3.3, and applied a rejection method to select700

cells based on the computed voxel visibility. We701

then generated rays from the centers of the cells by702

importance-sampling the six visibility values (refer703

to Figure 13(a) for an example). Table 6 shows704

the resulting costs, estimated by using two mil-705

lion of such random rays. As seen by the fig-706

ures in the ‘VVH1(1)’ column that represent the707

costs for random rays that may exist anywhere in708

the entire empty space, the expected costs reduced709

markedly when the voxel-visibility techniques were710

applied, indicating that the new methods had built711

kd-trees that better match the actual geometry712

and possible ray distribution in the scene. When713

the viewer (camera) can stay only within some re-714

stricted empty space with good visibility, as shown715

in Figure 13(b), the expected costs decreased fur-716

ther, as expected (see the ‘VVH1(2)’ column in the717

table). In many applications, the viewer often tends718

to stay within a region of good visibility, such as719

during a walkthrough of a building model. In such720

cases, the visibility-based kd-trees will be able to721

provide an additional performance gain for the in-722

teractive ray tracing.723

5. Concluding remarks724

In this paper, we presented two heuristic methods725

for building efficient kd-trees for recursive ray trac-726

ing, and demonstrated their effectiveness through727

several examples. The implementation for both728

CPU-based and GPU-based computation showed729
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(a) Rays from the entire
empty space

(b) Rays from a re-
stricted empty space

Figure 13: Stochastically generated rays for estimating the
expected costs for kd-trees (KITCHEN B).

significant reductions in both ray-traversal and ren-730

dering times. The main idea was to exploit the ‘vis-731

ibility of voxels’ so that those with higher visibility732

are processed more efficiently in the kd-trees. Al-733

though the efficiency was often degraded when, for734

example, the camera viewed a region of low visibil-735

ity, the overall performance compared very favor-736

ably with that of the SAH.737

Currently, our method is appropriate only for738

static scenes because the computation for con-739

structing the incident ray density field usually takes740

several minutes for nontrivial scenes. Because our741

central concern was to enhance the run-time ray742

tracing performance for static scenes, we have im-743

plemented the precomputation code in a rather744

straightforward manner, in which the construction745

cost is basically linear to the numbers of ray samples746

and discretized cells in open space, and is logarith-747

mic to the number of polygons.748

It is interesting to see that, according to our749

preliminary experiment (for example, refer to the750

frame rates below measured on the CPU over sev-751

eral grids of different resolutions using 2,048 direc-752

tion samples over the hemisphere), the achieved753

speedup was not so sensitive to the grid’s resolu-754

tion.755

Scene Grid 1 2 3 4

KITCHEN B

323 1.22 1.36 1.43 0.84

643 1.22 1.37 1.44 0.84

1283 1.23 1.38 1.45 0.85

2563 1.24 1.39 1.47 0.86

5123 1.26 1.39 1.47 0.86

10243 1.26 1.41 1.48 0.87

756

Note that increasing the grid’s resolution twice757

would provide an additional precision of only a few758

depths in the voxel-visibility based kd-tree. This759

observation may suggest that it is, in fact, cost-760

effective to construct an upper part of the kd-tree761

well using a grid of rather low resolution, and build762

the remaining part using the SAH, which is exactly763

what we described in Subsection 3.6. In any case,764

finding a way of obtaining an optimal level of dis-765

cretization for the density field approximation that766

reduces the cost significantly without introducing767

serious discretization errors is left as a future re-768

search work.769

Finally, we conjecture that the idea of visibil-770

ity can lead to an effective tool for building effi-771

cient acceleration structures for the real-time ray772

tracing of dynamic scenes. For example, if we773

record a ray count per triangle that increments ev-774

ery time it is examined by a ray, whether primary775

or secondary, this additional form of ‘visibility in-776

formation’ could be exploited to construct a high-777

quality kd-tree applicable to the next frame ren-778

dering. Combined with a fast SAH-based kd-tree779

construction method, e.g., [12], a visibility-based780

algorithm might be able to update kd-trees for dy-781

namic scenes progressively and efficiently.782
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Scene
Cam.

CPU GPU
SAH VVH1 VVH2 SAH VVH1 VVH2

KITCHEN A

1 6.04 8.36 (1.38x) 8.49 (1.40x) 38.63 48.83 (1.26x) 49.16 (1.28x)
2 6.80 7.94 (1.17x) 8.26 (1.22x) 34.88 41.49 (1.19x) 41.70 (1.20x)
3 8.65 10.94 (1.26x) 11.31 (1.31x) 47.53 55.76 (1.17x) 55.79 (1.18x)
4 5.68 7.97 (1.40x) 8.11 (1.43x) 33.52 45.19 (1.35x) 45.61 (1.37x)
5 5.99 9.01 (1.50x) 9.14 (1.53x) 34.29 48.40 (1.41x) 48.51 (1.42x)

KITCHEN B

1 1.07 1.15 (1.07x) 1.23 (1.15x) 10.29 11.54 (1.12x) 11.55 (1.12x)
2 1.13 1.29 (1.14x) 1.39 (1.23x) 11.70 13.48 (1.15x) 13.64 (1.17x)
3 1.18 1.40 (1.19x) 1.47 (1.24x) 13.07 15.35 (1.17x) 15.44 (1.18x)
4 0.74 0.82 (1.12x) 0.86 (1.17x) 6.88 7.38 (1.07x) 7.38 (1.07x)

CONFER-
ENCE

1 7.56 9.12 (1.21x) 9.67 (1.28x) 26.85 30.37 (1.13x) 30.82 (1.15x)
2 8.65 10.49 (1.21x) 11.27 (1.30x) 54.97 62.52 (1.14x) 63.56 (1.17x)
3 7.07 8.19 (1.16x) 8.92 (1.26x) 27.59 31.86 (1.15x) 31.94 (1.16x)
4 8.12 9.52 (1.17x) 10.02 (1.23x) 28.94 33.20 (1.15x) 33.38 (1.16x)

SPONZA

1 5.72 6.47 (1.13x) 6.60 (1.15x) 32.56 34.43 (1.06x) 34.75 (1.09x)
2 5.55 6.96 (1.25x) 7.05 (1.27x) 33.82 37.99 (1.12x) 38.36 (1.14x)
3 7.67 8.29 (1.08x) 8.72 (1.14x) 45.54 50.53 (1.11x) 50.89 (1.14x)
4 6.47 7.74 (1.20x) 7.89 (1.22x) 33.85 31.51 (0.93x) 31.66 (0.94x)
5 9.41 10.23 (1.09x) 10.48 (1.11x) 37.37 39.35 (1.05x) 39.80 (1.08x)

FAIRY

1 2.89 3.19 (1.10x) 3.25 (1.13x) 11.78 12.34 (1.05x) 12.40 (1.06x)
2 3.97 4.10 (1.03x) 4.15 (1.05x) 18.54 19.35 (1.04x) 19.97 (1.09x)
3 3.24 3.46 (1.07x) 3.49 (1.08x) 13.54 14.05 (1.04x) 14.32 (1.07x)
4 3.37 3.81 (1.13x) 3.92 (1.16x) 22.07 25.93 (1.17x) 26.15 (1.18x)

Table 7: Rendering speed comparison with the standard SAH method (in frames per second). In this table, VVH1 refers to using
the voxel-visibility heuristic to build a single kd-tree. VVH2 refers to using the extended heuristics described in Section 3.5
to build a second kd-tree dedicated to secondary rays. The numbers in parentheses represent the speedup achieved with
respect to the SAH. All scenes were ray-traced with local shading, textures, reflection/refraction and shadows at a resolution
of 1024 × 1024.

(Sec.)

Cam.
Primary Reflection/Refraction Shadow

SAH VVH1 VVH2 SAH VVH1 VVH2 SAH VVH1 VVH2

1
Traversal

0.013 0.009 0.009 0.005 0.004 0.005 0.014 0.011 0.013
(1.44x) (1.37x) (1.31x) (1.07x) (1.32x) (1.10x)

Intersection
0.033 0.020 0.023 0.015 0.011 0.010 0.048 0.033 0.031

(1.59x) (1.43x) (1.36x) (1.53x) (1.44x) (1.52x)

2
Traversal

0.013 0.011 0.011 0.006 0.005 0.006 0.013 0.010 0.011
(1.09x) (1.13x) (1.10x) (0.98x) (1.32x) (1.17x)

Intersection
0.029 0.027 0.027 0.017 0.015 0.013 0.043 0.034 0.029

(1.08x) (1.06x) (1.09x) (1.25x) (1.23x) (1.48x)

3
Traversal

0.009 0.008 0.008 0.002 0.002 0.002 0.011 0.009 0.010
(1.20x) (1.21x) (1.07x) (0.94x) (1.17x) (1.07x)

Intersection
0.029 0.019 0.020 0.006 0.005 0.005 0.035 0.030 0.027

(1.49x) (1.40x) (1.14x) (1.22x) (1.15x) (1.27x)

4
Traversal

0.011 0.009 0.010 0.007 0.006 0.007 0.017 0.012 0.015
(1.17x) (1.11x) (1.19x) (1.02x) (1.37x) (1.14x)

Intersection
0.028 0.019 0.021 0.018 0.014 0.013 0.052 0.035 0.033

(1.46x) (1.32x) (1.28x) (1.47x) (1.50x) (1.56x)

5
Traversal

0.011 0.009 0.009 0.004 0.004 0.005 0.017 0.012 0.014
(1.20x) (1.26x) (1.09x) (0.92x) (1.41x) (1.21x)

Intersection
0.035 0.020 0.020 0.013 0.012 0.009 0.049 0.032 0.026

(1.72x) (1.73x) (1.09x) (1.43x) (1.56x) (1.91x)

Ave.
Traversal (1.21x) (1.21x) (1.16x) (1.00x) (1.33x) (1.14x)

Intersection (1.44x) (1.37x) (1.19x) (1.39x) (1.38x) (1.54x)

Table 8: Detailed analysis of ray-traversal costs. These measurements from the KITCHEN A scene are typical of CPU-
based computation times for the kd-tree traversal (‘Traversal’) and the ray–triangle intersection (‘Intersection’). The numbers
in parentheses represent the speedup achieved with respect to the SAH. As expected and shown in this table, the actual
improvement by the new kd-trees in the computation of ray–traversal is better than those speedup values in Table 7, which
are with respect to the entire ray tracing time. It is interesting to see that, on the CPU, the metric Υsec(V ) for building the
second kd-tree in VVH2, tends to offer more efficiency in reducing the intersection computation for the secondary rays, which
takes relatively longer than the traversal part.
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