
Chapter 13

On the Efficient Implementation of a Real-time

Kd-tree Construction Algorithm1

Byungjoon Chang Woong Seo Insung Ihm

Department of Computer Science and Engineering, Sogang University, Seoul, Korea

e-mail: {jerrun,wng0620,ihm}@ sognag.ac.kr

Abstract: The kd-tree is one of the most commonly used spatial data structures for

a variety of graphics applications because of its reliably high acceleration perfor-

mance. Several years ago, Zhou et al. devised an effective kd-tree construction al-

gorithm that runs entirely on a GPU. In this chapter, we present improved GPU

programming techniques for implementing the algorithm more efficiently on cur-

rent GPUs. One of the major ideas is to reduce the number of necessary kernel

functions by replacing the essential, segmented-scan, and reduction computations

by simpler per-block atomic operations, thereby alleviating the overheads from

multiple synchronous kernel calls. Combined with the efficient implementation of

intrablock scan and reduction, using recently introduced intrinsic functions, these

changes achieve remarkable performance enhancement to the kd-tree construction

process. Through an example of real-time ray tracing for dynamic scenes of non-

trivial complexity, we demonstrate that the proposed GPU techniques can be ex-

ploited effectively for various real-time applications.

13.1 Background and our contribution

For many important applications in computer graphics, such as ray tracing and

those relying on particle-based computations, adopting a proper acceleration struc-

ture will affect their run-time performance greatly. Among the variety of spatial

data structures, the kd-tree is frequently used because of its reliably high accelera-

tion performance. Compared to other techniques such as grids and bounding-

volume hierarchies, its relatively higher construction cost has been regarded as a

drawback, despite efforts to develop an optimized algorithm (e.g., [9]), which has

often restricted the use of the kd-tree for real-time applications.

1 Submitted to 2013 Symposium on GPU Computing & Applications.

2

Recently, much effort has gone into accelerating kd-tree construction, particu-

larly by developing effective parallel algorithms on modern CPUs and GPUs.

Shevtsov et al. [7] and Zhou et al. [11] presented parallel construction algorithms

for the CPU and GPU, respectively, in which, instead of applying a precise surface

area heuristic (SAH) metric, median-splitting schemes were used to build the up-

per levels of the trees to enable effective parallelization on the respective proces-

sors. To alleviate memory usage issues, Hou et al. improved Zhou et al.'s method

by modifying the kd-tree construction order [3]. In another approach, Choi et al.

[1] and Wu et al. [10] attempted to build better kd-trees for the CPU and GPU, re-

spectively, by applying the accurate SAH metric to the entire tree structure. As

pointed out in [1], the approximate approaches taken in [7, 11] may often lead to

kd-trees of somewhat degraded quality, which would influence the kd-tree per-

formance adversely. However, for interactive applications such as the real-time

ray tracing of dynamic scenes, where the kd-tree must be rebuilt for every frame

after ray tracing the scene, it is important to adopt an effective kd-tree construction

scheme that achieves a balance between tree-construction efficiency and run-time

acceleration performance.

In this chapter, we present enhanced CUDA programming techniques for im-

plementing the GPU method of Zhou et al. [11]. While their detailed algorithm,

proposed several years ago, is still effective, current GPU designs enable it to be

implemented more efficiently. In developing this CUDA implementation, we aim

to enhance the GPU performance, particularly by minimizing the overheads

caused by multiple synchronous kernel calls. For this, the essential, segmented-

scan, and reduction computations are replaced by simpler per-block atomic opera-

tions. Coupled with an efficient implementation of intrablock scan and reduction,

based on recently introduced intrinsic functions of the CUDA API, our methods

achieve significant performance improvements in the kd-tree construction process.

Via experiments on ray tracing for dynamic scenes of nontrivial complexity, we

demonstrate that the proposed GPU techniques can be applied effectively to vari-

ous real-time applications.

13.2 Optimizations for the large-node stage

In Zhou et al.'s method, the upper levels of the kd-tree were constructed using a

node-splitting scheme that comprised spatial median splitting and empty-space

maximizing. In particular, based on the observation that the assumptions made in

the SAH may often be inaccurate for large nodes, this stage of computation, called

the large-node stage, simply selects the spatial median of the longest axis of the

axis-aligned bounding box (AABB) of a node as its split position. For efficient

parallel implementation on a GPU, all triangles in each large node are grouped in-

3

to chunks of fixed size (i.e., 256), parallelizing the computation over the triangles

in the chunks. (Note that the triangles and chunks are mapped to the threads and

blocks, respectively, in the CUDA implementation.)

13.2.1 Triangle sorting with respect to splitting planes

The large-node stage iterates the node-splitting process until no large node is

left. In Algorithm 2 [11], the most time-consuming parts of each iteration are the

fourth and fifth steps, corresponding to lines 24-34 and 35-40, respectively, where

the triangles for each large node are first sorted with respect to the splitting plane,

and the triangle numbers of the resulting two child nodes are then counted. In this

subsection, we present two different approaches to implementing these two steps

on a GPU. We then analyze their performance in the section on experimental re-

sults.

13.2.1.1 Implementation using standard data-parallel primitives

As was done in [11], the first implementation relies on standard data-parallel

primitives such as (segmented) scan and reduction, but uses a slightly different al-

gorithm, which is computationally as efficient as the original one. The topmost

part of Figure 13.1 shows a situation where triangles in each large node are sorted

into two child nodes. Here, we allocate two lists statically, active list and next list,

to the global memory of the GPU to buffer the triangle indices. (Note that the tri-

angle indices are grouped into chunks of size 256, as shown in the dashed boxes,

which are then packed into the triangle index lists.)

For each triangle in a large node, mapped to a CUDA thread, the key issue is

how to efficiently calculate its address(es) in parallel in the new triangle index list

next list, whose production is complicated because of the simultaneous subdivi-

sions of the large nodes in the current list active list. For this, a kernel is first exe-

cuted over every thread block corresponding to a chunk of triangles, classifying

each triangle against the respective splitting plane, and generating two bit-flag se-

quences of size 256 per chunk triangle bit flags. Then, for each of these, an exclu-

sive scan is performed using the shared memory of the GPU, resulting in the local

triangle offset sequences. In addition, the kernel counts the number of triangles in

each bit-flag sequence by simple addition, and places this number in an array in

the global memory. (Note that, for the example in Figure 13.1, the two triangle

counts of 201 and 75 are written to the array marked [A] as a result of execution

over the first chunk of node 0.)

4

The next kernel then starts performing an inclusive segmented scan over this ar-

ray, storing the scanned result in another array, marked [B] in the example figure,

where each child node now comprises a segment in the sequence. After this scan,

a per-element subtraction is carried out in parallel between these two arrays to

build another chunk offset sequence that stores the displacement of the first trian-

gle in each chunk within a new child node. In the subsequent third kernel, an ex-

clusive segmented scan is carried out over the sequence of numbers formed by the

last element of each child node in the scanned array [B], whose resulting node off-

sets indicate the offsets of the first triangles of the new nodes within the new tri-

angle index list. Finally, a fourth kernel is executed over the thread blocks of tri-

angles in the triangle bit flags array, where, for a triangle whose bit flag is on, its

triangle index is stored in the appropriate place in the new triangle index list,

whose address can be calculated using the node offsets, chunk offsets, and triangle

offsets.

414 834 13430

337 44 47 5337 56 123 55 57 79 137 36 29 35 216 329 330 368

37 56 76 54 58 6855 35 44 53 88 329 368 55 57

96 99 98

 35 44 329 99

node 0 node 1

new node 0 new node 1 new node 2 new node 3

left child of node 0 right child of node 0 left child of node 1 right child of node 1

active list

next list

201 120 93 75 167 178 170 141 93 105 91 121 165 130

node 0 node 1

left child right child left child right child

201 321 414 75 242 420 170 311 404 509 91 212 377 507

414 420 509 507

node 0 node 1

0 414 834 1343

Inclusive segmented scan in global memory
Exclusive

segmented scan
in global
memory

0 201 321 0 75 242 0 170 311 404 0 91 212 377

Parallel subtraction in global memory-

node offsetschunk offsets

0 1 2 2 201 0 1 1 2 119 0 0 0 1 93 0 0 1 1 74 0 1 2 3 167 0 0 1 2 178

1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0

node 0

left child right child

Exclusive scan in share memory

+

triangle bit flags

1850

triangle offsets

[A]

[B]

+

Fig. 13.1. Parallel triangle sorting over splitting planes: using standard segmented-scan primi-

tives.

5

13.2.1.2 Implementation using atomic operations

The triangle-sorting technique described in the previous subsection requires a

segmented scan to be carried out twice on the data sequences stored in the global

memory, and can easily be implemented using the data-parallel primitive func-

tions provided by the CUDPP library [2], for example. Although very effective,

such an approach forces the run-time execution to be split into a sequence of syn-

chronous kernel calls, whose overheads will impact the run-time performance ad-

versely.

To address this, observe that a side effect of using a standard segmented-scan

method is that the relative order of triangle indices within a large node made of

multiple chunks is retained in the respective child nodes. Such a property is im-

portant when the order of elements is essential, as in a radix sort algorithm, for ex-

ample. However, retaining the strict order is unnecessary in the kd-tree construc-

tion algorithm because the order of triangles within a kd-tree's leaf node is not

critical in the later ray-tracing stage. This observation allows us to implement the

triangle-sorting computation by using a single faster-running kernel and replacing

the segmented-scan operations with simpler per-chunk atomic operations that are

supported by the CUDA API.

In the new implementation, the memory configuration for the triangle index

lists is slightly different, as shown in Figure 13.2. For the ith large node with ni

triangles in the current active list, 2ni elements, ni per child node, are consecutive-

ly allocated to the next list. In addition, an array of integer-valued chunk offset

counts, all initially set to zero, is allocated in the global memory, each of whose

elements corresponds to a child node, i.e., a new node in the next list. As before,

these atomic variables are intended to hold the displacements of the first triangles

in the chunks within a new child node, although the order between chunks may no

longer be preserved because of the use of the atomic operation.

For each chunk of triangle indices in the current list, the new kernel repeats the

same computation until the triangle numbers are calculated in the array [A]. A rep-

resentative thread then carries out two atomic additions, respectively fetching the

local offsets, one for each child node, from the corresponding atomic variables and

simultaneously adding the triangle counts to them, through which we will know

where to start storing the sorted triangle indices in the child nodes. Then, once per

child node, each thread checks the corresponding bit flag in the triangle bit flag

array, and, if set to on, puts its triangle index in the proper place in the next trian-

gle index list, whose location can easily be deduced from the fetched offset and

the offset in the triangle offsets array.

6

337 44 47 5337 56 123 55 57 79 137 36 29 35 216 329 330 368

37 56 76 55

96 99 98

node 0 node 1

new node 0 new node 1 new node 2

left child of node 0 right child of node 0 left child of node 1

active list

next list

201 120 93 75 167 178 170 141 93 105 91 121 165 130

node 0 node 1

left child right child left child right child

chunk offsets

0 1 2 2 201 0 1 1 2 119 0 0 0 1 93 0 0 1 1 74 0 1 2 3 167 0 0 1 2 178

1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0

node 0

left child right child

Exclusive scan in share memory

triangle bit flags

triangle offsets

[A]

 54 58 68 55 57 35 44

93 167 170 121

329

+ + + + Atomic add operations

+ +

Fig. 13.2. Parallel triangle sorting over splitting planes: using atomic add operations.

.

In this implementation, the two segmented scans over the arrays in the global

memory have been replaced by two atomic-add operations per thread block. While

the computation time is already reduced markedly by this change, two per-block

scans, one for each child, must still be carried out per chunk to compute the trian-

gle offsets. While such scans can be performed effectively in the shared memory

by using a standard scan method [6], recent GPUs offer useful intrinsic operations,

such as __ballot() for warp voting, __popc() for bit counting, and __shfl() for

warp shuffling, that can enable an efficient implementation of the per-block scan

[5]. Therefore, to achieve a further performance enhancement, our implementation

uses the __ballot() and __popc() functions for an intra-warp scan [8], and the

__shfl_up() function for an inter-warp scan. (Details of our CUDA implementa-

tion of the kernel function are described in the Appendix.)

7

13.2.2 AABB computations for active large nodes

Another time-consuming part of the large-node stage is the second step (lines 9

to 14 of Algorithm 2), in which the AABB of all triangles in each node is calculat-

ed. The optimization techniques described in the previous subsection can also be

applied to this AABB computation. The standard reduction in the shared memory

for computing per-chunk bounding boxes can be implemented more efficiently on

the GPU by a simple modification of the scan implementation using the intrinsic

shuffle function __shfl_up(). Then, via three pairs of atomic min and max opera-

tions, the result of each chunk reduction is written in parallel to the location in the

global memory that corresponds to the large node to which the chunk belongs.

Although such atomic operations are still regarded as expensive on current GPUs,

we observe that our single-kernel implementation based on atomic operations runs

significantly faster on the GPU than the original implementation, which needed to

perform segmented reductions six times.

13.3 Optimizations for the small-node stage

After all large nodes are split into nodes whose triangle numbers do not exceed

64, the small-node stage starts. Because sufficient nodes are available, the compu-

tation in this stage is parallelized over nodes instead of triangles, evaluating the

precise SAH metric to find the best splitting plane for each small node. The key to

the efficient implementation of this stage is exploiting a preprocessed data struc-

ture that facilitates the iterative node-splitting process. For each initial small node,

called the small root node, up to 384 (= 64 (triangles) * 3 (x-, y-, z-axes) * 2

(min/max)) splitting-plane candidates are first collected from triangles in the node.

Then, for each candidate, two 8-byte bit masks are generated to represent the tri-

angle sets contained in both sides. To represent this information, 20 bytes of

memory per node is necessary, including the 4 bytes used to store the location of

the splitting plane, implying that up to 7,680 (=20 * 384) bytes of memory may be

necessary for each small root node. It is important to choose an appropriate

memory layout for the representation because the nontrivial amount of data will be

accessed in parallel during the small-node stage. Although several different con-

figurations are possible, we observed that the combination of a 4-byte access from

the global memory for the splitting plane location and another 16-byte access from

the texture memory for the triangle sets incurred the lowest memory latency on the

GPU tested. (Our analysis of the generated PTX code showed that 16 bytes of data

were fetched from texture memory even for a 4-byte access command.)

With this representation, the SAH cost evaluation and triangle sorting in the

subsequent node-splitting step can be performed efficiently using simple bitwise

8

operations. In this process, a parallel bit-counting operation is carried out very fre-

quently to obtain the numbers of triangles in the child nodes. Whereas the method

presented in [4] was used in the original description of Zhou et al.'s algorithm, we

find that the __popc() intrinsic function accelerates the counting process signifi-

cantly, as will be shown in the next section. Furthermore, we can also accelerate

the intrablock scan, using the same intrinsic functions as for the triangle-sorting

computation, which improves the performance slightly.

13.4 Experimental results

To measure the performance improvement achieved by the optimization tech-

niques presented here, we first implemented the kd-tree construction algorithm of

Zhou et al. on an NVIDIA GeForce GTX 680 GPU, effectively as described in the

original paper. In doing this, we used the scan and reduction techniques described

in [6] for both intra-chunk and segmented scan and reduction. Here, the CUDPP

primitive functions [2] were utilized for the segmented data. Furthermore, the par-

allel bit counting operation needed in the small-node stage was implemented as

proposed in [4]. Starting with this original implementation, we applied the optimi-

zation techniques described above one at a time, in the order given in Table 13.1,

and measuring their impact on the timing performance. Note that the order of tri-

angle indices in the leaf nodes of the produced kd-trees may be different because

of the simultaneous atomic operations performed in our method. To check for any

effects on rendering performance, we also measured the time to render a 1024 *

1024 image by full ray tracing with shading, textures, reflection, and shadows. To

experiment with dynamic scenes of nontrivial complexity, we synthesized some

test scenes from commonly used scenes, made available by courtesy of the Utah

3D Animation Repository, Joachim Helenklaken, and Marko Dabrovic: “Sponza

with i Runners” (SRi) and “Kitchen with i Runners” (KRi), for i = 1, 2, 3. These

scenes comprise 66,454 + i * 78,029 triangles and 101,015 + i * 78,029 triangles,

respectively. (See Figure 13.3.)

For 7 representative scenes, Table 13.2(a) gives the stage-by-stage reduction in

the kd-tree construction time, achieved as a result of the application of the series

of optimization techniques described above. It is clear that the replacement of

segmented scan and reduction by per-block atomic operations produced signifi-

cant improvements despite atomic operations still being regarded as costly in the

current CUDA architecture. (See the changes from “Original” to “[A]” and “[A] -

[B]” to “[A] - [C]”.) A major reason is that the operations explained in Sections

2.1 and 2.2, respectively, were able to be executed more efficiently on the GPU

using fewer numbers of kernels, as clearly indicated in the “Kernel calls” row,

which markedly reduced the overheads from multiple synchronous kernel calls.

(Note that a single kernel was sufficient for the triangle-sorting process, while four

9

plus those necessary for the two segmented-scan calls were needed, which was re-

peated per each iteration.) Also, by exploiting the intrinsic functions offered by the

more recent CUDA compute capability, we could reduce the computation cost for

the intrablock scan and reduction further.

(a) SR1 (b) SR2 (c) SR3

(d) KR1 (e) KR2 (f) KR3

 (g) FF

Fig. 13.3. Test scenes. The numbers of triangles in these scenes are 144,483(SR1),

222,512(SR2), 300,541(SR3), 179,044(KR1), 257,073(KR2), 335,102(KR3), and 174,117(FF).

10

Table 13.1. Applied optimization techniques. In (a), LNS1 and LNS2 denote the computation for

triangle sorting (Sec. 2.1) and AABB computation (Sec. 2.2), respectively, in the large-node

stage, while SNS denotes the small-node stage (Note that
†
 refers to the intra-warp scan of binary

numbers and
‡
 refers to the inter-warp scan).

 Stage Operations Our implementation

[A] LNS1 Two segmented scans two atomic operations per block

[B] LNS1 Intra-block scans __ballot()/__popc()
†

__shfl_up()
‡

[C] LNS2 Six seg. reductions six atomic operations per block

[D] LNS2 Intra-block reductions __shfl_up()

[E] SNS Intra-block scans __popc()

same as [B]

As can be verified from the ray-tracing time “R” in Table 13.2(b), the modifica-

tions to the original kd-tree construction algorithm did not incur any noticeable

degradation in the quality of generated trees except a few cases, despite the differ-

ent orders of triangle indices stored in the leaf nodes. As a result, we were able to

accelerate the process of interactive ray tracing of nontrivial dynamic scenes on

the GPU effectively. (This is shown by the “T” values in Table 13.2(b).)

13.5 Concluding remarks

In this chapter, we have presented efficient GPU programming techniques for

implementing the well-known kd-tree construction algorithm [11], and demon-

strated its effectiveness through several examples. With current GPUs, executing a

CUDA kernel is still a relatively expensive operation, and thus it is important to

make an effort to minimize the number of kernel calls made. As shown in the re-

sult section, our method was shown to be very successive in building kd-trees us-

ing much fewer numbers of kernels, which resulted in a markedly more efficient

GPU implementation. We believe that the ideas presented are also relevant to the

development of applications that use other hierarchical spatial data structures.

Acknowledgments: This work was supported by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MOE) (No. 2012R1A1A2008958).

11

Table 13.2. Performance of the kd-tree construction. In (a), we provide the total time spent on

the kd-tree construction, averaged for given animation sequences, where the number in parenthe-

ses represents the timing obtained by summing each kernel's execution time. Also, the averaged

numbers of CUDA kernel calls made by the original and our implementations are compared, in

which the extra calls within the CUDPP functions for the original implementation were not

counted here. In (b), the average ray-tracing time (R) and the average total time (T), which in-

cludes both construction and ray tracing, are given. FF denotes the “Fairy Forest” scene compris-

ing 174,117 triangles.

(a) Construction time (in milliseconds) and numbers of kernel calls

 SR1 SR2 SR3 KR1 KR2 KR3 FF

Original
120.9

(46.3)

146.2

(59.1)

181.8

(77.7)

130.9

(47.1)

149.7

(60.0)

185.5

(77.8)

107.4

(42.1)

[A]
88.6

(34.8)

93.0

(49.9)

109.7

(64.2)

91.8

(35.1)

109.1

(50.0)

118.9

(64.9)

76.2

(36.8)

[A] - [B]
76.3

(34.1)

89.2

(49.0)

107.4

(62.8)

85.7

(34.3)

94.7

(48.6)

104.4

(62.6)

67.1

(36.2)

[A] - [C]
52.3

(29.9)

67.5

(44.7)

79.8

(59.0)

62.3

(31.1)

67.6

(44.9)

90.6

(59.3)

58.5

(34.0)

[A] - [D]
51.6

(29.2)

66.4

(43.3)

78.1

(56.9)

60.1

(29.8)

67.1

(43.6)

88.6

(57.4)

54.5

(32.8)

Ours(All)
48.5

(26.7)

64.3

(39.1)

74.1

(52.4)

48.8

(27.4)

64.0

(40.6)

72.5

(52.8)

48.1

(30.4)

Kernel Calls
1,031

/221

1,041

/229

1,069

/232

977

/214

995

/219

1,034

/223

681

/153

(b) Rendering time (in milliseconds)

 SR1 SR2 SR3 KR1 KR2 KR3 FF

Orig.
R 92.5 83.9 95.4 90.0 83.5 88.7 92.1

T 213.4 230.1 277.2 220.9 233.2 274.2 199.5

Ours
R 90.1 92.7 93.5 88.2 94.3 100.5 103.3

T 138.6 157.0 167.6 137.0 158.3 173.0 157.8

12

References

[1] Choi B, Komuravelli R, Lu V, Sung H, Bocchino R, Adve S, Hart J (2010) Parallel SAH k-D

tree construction. In Proc of High Perf Graph (HPG ’10), 77–86

[2] CUDPP Google Group (2011) CUDA data parallel primitives library release 2.0.

http://code.google.com/p/cudpp/. Accessed 1 June 2013

[3] Hou Q, Sun X, Zhou K, Lauterbach C, Manocha D (2011) Memory-scalable GPU spatial hi-

erarchy construction. IEEE Trans on Vis & Comp Graph 17:466–474

[4] Manku G (2002) Fast bit counting routines. http://cpptruths.googlecode.com/svn/trunk/c/

bitcount.c. Accessed 1 June 2013

[5] NVIDIA (2012) CUDA C Programming Guide: Design Guide (PG-02829-001 v5.0)

[6] Sengupta S, Harris M, Garland M, Owens J (2011) Efficient parallel scan algorithms for

many-core GPUs. In Scientific Computing with Multicore and Accelerators, Taylor & Fran-

cis, 413–442

[7] Shevtsov M, Soupikov A (2007) Highly parallel fast Kd-tree construction for interactive ray

tracing of dynamic scenes. Comp Graph Forum (Proc of Eurographics) 26:395–404

[8] Skjellum A, Whittaker D, Bangalore P (2010) Ballot counting for optimal binary prefix sum.

Presented in the GPU Tech Conf 2010

[9] Wald I, Havran V (2006) On building fast kd-trees for ray tracing, and on doing that in

O(Nlog N). In Proc of the IEEE Symp on Interactive Ray Tracing, 61–69

[10] Wu Z, Zhao F, Liu X (2011) SAH KD-tree construction on GPU. In Proc of High Perf

Graph (HPG ’11), 71–78

[11] Zhou K, Hou Q, Wang R, Guo B (2008) Real-time KD-tree construction on graphics hard-

ware. ACM Trans on Graph 27:1–11

13

Appendix: A single kernel implementation for the triangle

sorting process (Section 13.2.1.2)

 /* This kernel corresponds to the fourth and fifth steps of the large node stage de-

scribed in [11]. */

__global__ void MedianSplitChunk(float *TriAABB, int *ChunkNodeIDs,

int *NodeTriOffsets, int *NodeTriNums,

int *ChunkStartIndices, int *ActiveNodeList,

char *NodeSplitAxes, float *NodeSplitPoss,

int *ChunkOffsets, int *NextNodeList) {

__shared__ volatile int LChildTriOffsets2[9], RChildTriOffsets2[9];

__shared__ int LChildNodesID, RChildNodesID, LOffset, ROffset;

int LaneID = threadIdx.x & 0x0000001f;

int NodeID = ChunkNodeIDs[CurBlockIndex];

int CurBlockIndex = blockIdx.x

int TriNum = NodeTriNums[NodeID], TriOffset = NodeTriOffsets[NodeID];

int LChildTriOffsets, RChildTriOffsets;

if (threadIdx.x < 9)

LChildTriOffsets2[threadIdx.x] = RChildTriOffsets2[threadIdx.x] = 0;

int TriIndex, StartPos = ChunkStartIndices[CurBlockIndex];

int CurPos = StartPos + threadIdx.x;

/* Classify the current triangle w.r.t. splitting plane. */

unsigned int LChildTriBitFlag = 0, RChildTriBitFlag = 0;

if (CurPos<TriNum) {

/* The last chunk may have fewer than 256 triangles. */

int SplitAxis = NodeSplitAxes[NodeID];

float SplitPos = NodeSplitPoss[NodeID];

TriIndex = ActiveNodeList[TriOffset+ CurID];

float MinPos = TriAABB[TriIndex + SplitAxis * TRI OFFSET];

float MaxPos = TriAABB[TriIndex + (SplitAxis + 3) * TRI OFFSET];

LChildTriBitFlag = (MinPos < SplitPos);

RChildTriBitFlag = (MinPos >= SplitPos);

if (LChildTriBitFlag)

RChildTriBitFlag = (SplitPos < MaxPos);

}

/* Perform intra-warp scan. */

unsigned int LeftMask = ballot(LChildTriBitFlag), LaneMaskLT = 0;

14

unsigned int RightMask = ballot(RChildTriBitFlag), LaneMaskLE = 0;

asm("mov.u32 %0, %%lanemask lt;" : "=r"(LaneMaskLT));

asm("mov.u32 %0, %%lanemask le;" : "=r"(LaneMaskLE));

LChildTriOffsets = popc(LeftMask & LaneMaskLT);

RChildTriOffsets = popc(RightMask & LaneMaskLT);

if (LaneID == 31) {

LChildTriOffsets2[(threadIdx.x >> 5) + 1] = popc(LeftMask & LaneMaskLE);

RChildTriOffsets2[(threadIdx.x >> 5) + 1] = popc(RightMask & LaneMaskLE);

}

syncthreads();

/* Perform inter-warp scan. */

float Scan8[2];

if (threadIdx.x < 8) {

Scan8[0] = LChildTriOffsets2[threadIdx.x + 1];

Scan8[1] = RChildTriOffsets2[threadIdx.x + 1];

for (int i = 1; i <= 4; i *= 2) {

float n0 = shfl up(Scan8[0], i, 8);

float n1 = shfl up(Scan8[1], i, 8);

if (LaneID >= i) {

Scan8[0] += n0;

 Scan8[1] += n1;

}

}

}

if (threadIdx.x < 8) {

LChildTriOffsets2[threadIdx.x + 1] = Scan8[0];

RChildTriOffsets2[threadIdx.x + 1] = Scan8[1];

}

/* Fetch start positions for the current chunk. */

if (threadIdx.x == 0) {

LChildNodesID = 2*NodeID; RChildNodesID = 2*NodeID + 1;

LOffset = atomicAdd(&ChunkOffsets[LChildNodesID], LChildTriOffsets2[8]);

ROffset = atomicAdd(&ChunkOffsets[RChildNodesID], RChildTriOffsets2[8]);

}

syncthreads();

LChildTriOffsets += LChildTriOffsets2[(threadIdx.x >> 5)];

15

RChildTriOffsets += RChildTriOffsets2[(threadIdx.x >> 5)];

if (LChildTriBitFlag != 0)

NextNodeList[LOffset + LChildTriOffsets] = TriIndex;

if (RChildTriBitFlag != 0)

NextNodeList[ROffset + RChildTriOffsets] = TriIndex;

}

