
Noname manuscript No.
(will be inserted by the editor)

GPU-based Parallel Construction of Compact Visual Hull
Meshes

Byungjoon Chang · Sangkyu Woo · Insung Ihm

Received: date / Accepted: date

Abstract Building a visual hull model from multiple

two-dimensional images provides an effective way of un-

derstanding the three-dimensional geometries inherent

in the images. In this paper, we present a GPU accel-

erated algorithm for volumetric visual hull reconstruc-

tion that aims to harness the full compute power of the

many-core processor. From a set of binary silhouette

images with respective camera parameters, our paral-

lel algorithm directly outputs the triangular mesh of

the resulting visual hull in the indexed face set for-

mat for a compact mesh representation. Unlike previous

approaches, the presented method extracts a smooth

silhouette contour on the fly from each binary image,

which markedly reduces the bumpy artifacts on the vi-

sual hull surface due to a simple binary in/out classifica-

tion. In addition, it applies several optimization tech-
niques that allow an efficient CUDA implementation.

We also demonstrate that the compact mesh construc-

tion scheme can easily be modified for also producing

a time- and space-efficient GPU implementation of the

marching cubes algorithm.

Keywords Visual hull · volumetric approach · com-

pact mesh · GPU algorithm · CUDA implementation ·
marching cubes algorithm.

B. Chang, S. Woo, I. Ihm (Corresponding author)
Department of Computer Science and Engineering
Sogang University, Seoul, Korea
Tel.: +82-2-705-8493
Fax: +82-2-704-8273
E-mail: jerrun@sogagn.ac.kr, coldnight.w@gmail.com,
ihm@sogang.ac.kr

1 Introduction

Since it was introduced to the computer vision commu-

nity, the idea of reconstructing three-dimensional (3D)

shapes from object silhouettes in two-dimensional (2D)

images [1] has been applied to model static or dynamic

3D objects effectively in scenes. Given silhouette images

from multiple camera views along with their viewing

parameters, a visual hull can be constructed by inter-

secting the silhouette cones they respectively define [8],

thus representing the maximal volume implied by the

silhouettes.

Volumetric methods employ a fixed or adaptive vol-

ume grid representation to produce a visual hull. A set

of small 3D cells that approximate the visual hull re-

gion are generated or its boundary surface is polygo-
nized using a surface extraction technique such as the

marching cubes algorithm [10] (refer to, for instance,

[15] for a quick review of volumetric visual hull meth-

ods). The volumetric approach, while numerically ro-

bust, has sometimes been regarded as less accurate

than the polyhedral approach, e.g. [11,5], that attempts

to compute the exact intersection of silhouette cones

via explicit geometry processing. Current hardware sys-

tems, however, cope easily with high-resolution grids to

increase the precision of the resulting visual hull. Fur-

thermore, thanks to efforts to sample the volume space

adaptively and estimate its boundary surface more ac-

curately, e.g. [4,9], high-quality visual hull meshes are

now routinely generated by the volume-based methods.

Important advantages of the volumetric approach

are the simplicity of its algorithm and its inherent paral-

lelism in computation, which allows an efficient parallel

implementation with current hardware (refer to [7] to

see some previous implementations in various parallel

environments). In particular, it is well suited to imple-

2 Byungjoon Chang et al.

mentation on current GPUs, which are highly parallel,

multithreaded, many-core processors. This observation

naturally led to several GPU-based implementations of

volumetric visual hull algorithms [7,14,16], particularly

using the compute unified device architecture (CUDA)

API from NVIDIA [12].

In this paper, we present a GPU accelerated paral-

lel algorithm for volumetric visual hull reconstruction

that, from a sequence of multiple binary silhouette im-

ages, constructs exact visual hull models effectively by

fully exploiting the compute power of the many-core

processor. Unlike previous marching cubes-based tech-

niques that simply list extracted triangles with the same

vertices repeated in the representation, our GPU algo-

rithm removes such duplication and produces a trian-

gular mesh in compact form using the indexed face set

method so that the resulting mesh is instantly available

for efficient applications. Our method extracts smooth

piecewise-linear silhouette contours on the fly for a so-

phisticated voxel classification, which leads to signifi-

cant reduction of the bumpy artifacts that often occur

on the visual hull surface due to a simple binary in/out

classification. For a time- and space-efficient CUDA im-

plementation, we apply several optimization and data-

parallel programming techniques including parallel pre-

fix sum [6] and parallel radix sort [13]. In particular, as

in [9], our method also estimates the exact locations of

vertices on the visual hull surface using input silhouette

images. However, ours is based on the concept of per-

spective correction, which requires fewer floating-point

operations to implement. Last but not least, the pre-

sented GPU technique for the direct construction of a

compact mesh can easily be modified for also produc-

ing an efficient GPU implementation of the marching

cubes algorithm, as demonstrated in the paper.

2 Our methods

Our GPU computation framework has three main

phases, which are explained in the following subsec-

tions. Throughout this work, we assume that the 3D

computational volume is discretized into a regular grid

of given resolution, where its grid points and cubes

made of eight neighboring grid points are called vox-

els and cells, respectively. Recall that the input to our

scheme is a set of multiple binary silhouette images with

respective camera viewing parameters, which is repeat-

edly produced for every time frame (see Fig. 1 for some

example input images). In particular, the object to be

reconstructed is represented as black pixels in the im-

ages, and the background as white pixels.

(a) Camera view 0 (b) Camera view 1

(c) Camera view 2 (d) Camera view 3

(e) The resulting model

Fig. 1 Input binary silhouette images and the generated
visual hull model. Our test dataset consists of 20 binary sil-
houette images of 1, 280 × 720 pixels per time frame with
respective camera calibration parameters. Figures (a) to (d)
show four selected input images for a given time frame, and
(e) displays the created visual hull model.

2.1 Phase 1: Extraction of smooth piecewise-linear

silhouette contours

Unlike the previous interactive visual hull techniques

that are based on a simple binary classification of pro-

jected voxels, our method initially constructs smooth

silhouette contours on the fly from the input binary

silhouette images for a more refined classification that

markedly reduces bumpy artifacts on the surface of the

resulting visual hull.

The first step in our GPU accelerated scheme is to

apply a Gaussian filter of given size to each input bi-

nary image, where we use the recursive filtering tech-

nique [3] that is easily implemented with separable hor-

izontal and vertical convolutions. To improve the filter-

ing efficiency, the binary image is partitioned into tiles

of m×m pixels (for our test images having resolution of

1, 280 × 720 pixels, the best performance was observed

in our parallel implementation when 32 × 32 tiles were

used). A CUDA kernel is then executed over the tiles

to see if a given tile is on the border, i.e. if it con-

tains both black and white pixels, marking the bound-

ary tile and its eight neighboring tiles as valid. Then,

the actual Gaussian filtering is performed tile by tile by

GPU-based Parallel Construction of Compact Visual Hull Meshes 3

a second kernel, where the convolution operations are

carried out only with respect to the valid tiles. In our

experimentation, this border-tile-only filtering strategy

resulted in significant speedup over a simple CUDA im-

plementation, performing the convolutions against the

entire image pixels because the input binary images of-

ten possess a high degree of spatial coherence as those

in Fig. 1(a) to (d).

As a result of the smoothing process, the input bi-

nary images are converted to grayscale images whose

pixel values now vary from zero (inside) to one (out-

side). For efficient GPU processing in later stages, this

first phase produces a 2D array for every input im-

age, each of whose elements corresponds to a square

region, formed by four adjacent pixels of the filtered

silhouette image (note that the square in the screen

space is the 2D version of the cell in the 3D volume

space). For this, another group of parallel threads are

spawned, one for each square, where each thread clas-

sifies the four corners of the assigned square using a

given threshold value, i.e. a given iso-value. When all

the four intensity values are less than (greater than) the

iso-value, the square is simply marked inner (outer).

Otherwise, it is marked boundary, and stored with a

line segment (or segments) extracted through linear in-

terpolation using a simple 2D version of the marching

cubes algorithm (see Fig. 2).

0.69

I

I

I

I

I

I

OOO

O

O

O BB

B

B B B

B B

0.410.61

0.54

Iso-value = 0.5

Fig. 2 Square classification and extraction of piecewise-
linear silhouette contour. Each square region, made of four
adjacent pixels of a Gaussian-filtered silhouette image, is clas-
sified as inner (I), outer (O), or boundary (B) according to the
pixels’ intensities and a given threshold value. For a boundary
square, an oriented line segment (or segments) is additionally
stored so that the 3D voxel classification in the second phase
of our method can be made efficiently.

The extracted line segments together form a smooth

piecewise-linear silhouette contour. However, it should

be emphasized that the connection information be-

tween line segments is not recorded explicitly while they

are independently generated by parallel threads on the

GPU. Instead, we store each line segment with an ori-

entation in the boundary square such that the interior

region always locates on the right side, which allows

an easy in/out classification for the boundary square

region. Once this 2D inner/outer/boundary classifica-

tion is over for each input silhouette image, in the next

stage, the decision whether a voxel in the 3D volume

space is contained in a silhouette cone, generated by a

given input image, can be made efficiently by project-

ing the voxel onto the corresponding silhouette image

and checking, using the simple 2D classification data,

if the projected voxel resides in the interior area of the

extracted silhouette contour.

Fig. 3 shows three example sets of a binary silhou-

ette, a Gaussian-filtered silhouette, and an extracted

contour (from left to right, respectively), where it is

demonstrated that the Gaussian filter successfully re-

moved the bumpy silhouettes in the original binary im-

ages to generate smooth but feature preserving silhou-

ette contours.

2.2 Phase 2: Construction of compact mesh structure

Given the 2D classification data for extracted silhouette

contours, we start to build a visual hull model. We aim

to represent the model compactly in the indexed face

set format, where the triangular mesh structure con-

sists of a simple list of vertex coordinates and a list of

triangles that index the vertices they use. In this phase,

the mesh structure is constructed only partially using

temporary vertex information (refer to Fig. 8), and the

actual vertex coordinates of the model are computed in

the final phase.

The first step in this phase is to identify the bound-

ary cells with which the visual hull surface intersects.

For efficient GPU computation, we first linearize the

3D voxel grid into a one-dimensional (1D) array called

a voxel array (VA) with a simple address calculation, in

which chunks of contiguous voxel elements form CUDA

blocks of threads (see Fig. 4). Each thread executes

a voxel classification kernel which projects the corre-

sponding voxel onto input silhouette images and uses

the 2D inner/outer/boundary classification information

to check whether it resides inside of the respective sil-

houette contours. Since the visual hull is the intersec-

tion of all silhouette cones, the voxel is marked inner

only if it is found to exist within all silhouette contours.

Similarly, the 3D cells in the volume space are enu-

merated linearly into a 1D array called a boundary cell

array (BCA), which is for marking the boundary cells.

We also allocate another array of the same dimension,

called a triangle count array (TCA), for remembering

the number of triangles generated in each boundary

cell. A cell classification kernel is then executed by each

4 Byungjoon Chang et al.

(a) Example 1

(b) Example 2

(c) Example 3

Fig. 3 Construction of smooth piecewise-linear silhouette
contours (left and center: binary and filtered silhouette im-
ages, right: extracted contour). We find that, for input binary
images of 1, 280 × 720 pixels, a 7 × 7 Gaussian filter with
threshold value 0.5 usually enables to generate satisfactory
contours.

1 1 11 1 1 11 0 0 11 0 1 10

Voxel Array (VA)

Fig. 4 Inner/outer classification of voxels. In the beginning
of the second phase, the voxels in the 3D volume space, lin-
earized into a 1D array on the GPU memory, are classified as
inner (1) or outer (0) according to whether they are inside of
the visual hull, i.e. whether they are inside of all the silhouette
cones, generated by the extracted silhouette contours.

thread that, using the information in the VA, classifies

the cell it handles and marks the corresponding BCA

element if it intersects the visual hull surface, i.e. if the

inner/outer classifications of the eight incident voxels

do not coincide. In that case, the thread additionally

calculates how many triangles are created in the cell,

and stores the count in the corresponding TCA ele-

ment. At this moment, only the triangle count is cal-

culated quickly by referring to the marching cubes ta-

ble without generating the actual triangles. Fig. 5 il-

lustrates an example in which the second, fourth, fifth,

and sixth cells (counting from zero) are classified as

boundary cells and their triangle counts are accordingly

stored (see the second row).

0 0 00 0 0 00 0 0 00 0 0 00

Boundary Cell Array (BCA) Triangle Count Array (TCA)

0 0 01 1 01 0 0 02 1 3 01

0 0 20 2 763

after scanned

[2] [4] [6][5]

[2] [4] [5] [6]

0 2 63 7

Boundary Cell ID Array (BCIDA) Triangle Offset Array (TOA)

0 0 10 1 432

after scanned

1

[2] [4] [5] [6]

Fig. 5 Extraction of boundary cell information. Using the
voxel classification information in the VA, each cell of the 3D
grid, initially linearized into a 1D array on the GPU memory,
is first checked if it is a boundary cell. If it is, the number
of triangles that will be created in the cell by the marching
cubes algorithm is also stored (the two arrays in the second
row). Then, through the help of the exclusive-scan operation,
only the boundary cells are packed into an array (BCIDA). At
the same time, the accumulated number of triangles created
before a current boundary cell is also recorded in an extra
array (TOA) for a proper address calculation in a later stage.

We next perform a data-parallel prefix sum (scan)

operation [6] on both the BCA and the TCA. Note

that an application of the exclusive scan operation

on a sequence (a0, a1, a2, · · ·) returns another sequence

(0, b1, b2, · · ·) such that bi =
∑i−1

j=0 aj , i = 1, 2, · · ·. So,

for a boundary cell, the scanned BCA contains the num-

ber of boundary cells that precede it in the cell enu-

meration, and hence the offset for storing the bound-

ary cell’s ID in the compacted boundary cell ID ar-

ray (BCIDA). Likewise, the corresponding element of

the scanned TCA indicates the number of all triangles

generated in the preceding boundary cells. By storing

this information using the same offset in another array

called a triangle offset array (TOA), the triangles from

the boundary cell can be generated and stored in the

proper location by a parallel CUDA thread in a later

stage. See an example in Fig. 5, where the ID of the

second boundary cell in the BCA is 5, and its three tri-

angles should be stored in the triangle list of the mesh

structure, starting from the third element.

We are now prepared to fill in the triangle and the

vertex lists of the triangular mesh structure. Fig. 6 illus-

trates a list of triangles, called a triangle list (TL), that

initially contains a sequence of triples, one per triangle,

in which each (i, j), encoded in a 32-bit unsigned inte-

ger, indicates the jth vertex of the ith triangle. In addi-

tion, we use another list called an edge ID list (EIDL);

its elements, mapped one to one with those of the TL,

will hold temporary vertex information. Here, a trian-

GPU-based Parallel Construction of Compact Visual Hull Meshes 5

(0, 0)

(16, -z)

(0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) (3, 0) (3, 1) (3, 2)

(4, 0) (4, 1) (4, 2) (5, 0) (5, 1) (5, 2) (6, 0) (6, 1) (6, 2)

0 3 6 9

12 15 18

(17, -z) (16, +y) (81, -y) (81, -z) (81, -x) (27, +x) (27, +y) (27, -z) (72, +z) (72, +y) (9, +x)

(3, +x) (73, +y) (3, -y) (55, -x) (3, -x) (67, -z) (43, -x) (12, +y) (27, +x)

Triangle List (TL)

(3, -x) (3, -x) (3, +x) (3, +x) (3, +x) (3, +x) (3, -y) (3, -y) (9, +x)(9, +x) (9, -y) (9, -y)

(9, -y) (9, -y) (12, +x) (12, +x) (12, +x) (12, +y) (12, +y) (12, +y) (12, +z)

Edge ID List (EIDL) 3 6 9

12 15 18

0

(17, 1) (5, 1) (4, 0) (19, 2) (26, 1) (57, 1) (29, 0) (4, 2) (35, 0)(3, 2) (88, 0) (87, 2)

(47, 2) (37, 2) (57, 0) (16, 0) (55, 0) (29, 0) (67, 1) (15, 1)

after radix-sorted with respect to EIDL elements

1 0 1 0 0 1 0 0 1 0 0 1 0 0 10 1 0 01

0 1 1 2 2 4 5 5 5 6 6 6 7 7 72 2 3 43

0 3 6 9 12 15 18

8

8

8

after scanned 8

(19, 0)

0

5

12

(A)

(D)

(C)

(B)

(E)

Fig. 6 GPU-based removal of duplicate vertices generated by the marching cubes algorithm. Here, the ‘on’ flag of the eighth
element of the extra array (marked by (A)) indicates that the second vertex of the third triangle (B) is (9,+x) (C), and should
be stored in the third slot (D) of the redundancy-free vertex list of the compact triangular mesh structure. The 0/1 array in
the below indicates the head vertex of each redundant vertex group. Note that the index of a temporary vertex to the vertex
list can be calculated by subtracting one from the sum of the corresponding values in the 0/1 array and its scanned sequence.
For instance, the index of the vertex (19, 0) in the twelfth slot of the sorted TL (E) is 4 (= 0 + 5− 1).

gle’s vertex that exists along an edge of a boundary cell

is temporarily denoted by a pair made of the ID of the

inner voxel and the axis direction from the base voxel.

For instance, the triangle in Fig. 7 is represented by a

triple of vertices: ((16,−z), (17,−z), (16,+y)).

16 17

In Out

-z -z

+y

(16, -z)

Fig. 7 Temporary vertex representation. A vertex along an
edge of a boundary cell, whose exact location is not known
yet, is temporarily denoted by the ID of the inner voxel and
the axis direction from the voxel. Its actual coordinates are
calculated in the third phase.

Then, each CUDA thread, launched one per bound-

ary cell in the BCIDA, again refers to the marching

cubes table to compute the temporary vertex pairs of

all triangles that are created from the cell, storing them

in the proper place in the EIDL using the offset informa-

tion found in the TOA. After that, the TL and EIDL are

simultaneously sorted by the EIDL’s values, which have

been encoded in a 32-bit unsigned integer, using the

parallel radix sort algorithm [13]. As a result, the du-

plicate vertices, shared by adjacent triangles, are placed

in a contiguous region of the EIDL with corresponding

vertex identifications in the TL. Now, a CUDA thread,

generated one per sorted EIDL element, checks whether

the assigned element’s vertex is the first one in the same
vertex group (this can be done easily by comparing with

the preceding element in the EIDL), and marks the re-

sult in an extra array. This 0/1 array, together with an

additional sequence obtained through an exclusive scan,

provides the offset information with which the locations

of (temporary) vertices in the redundancy-free vertex

list of the mesh structure are easily determined (refer

to Fig. 6 again to see how to decide the index of an

arbitrary vertex to the compacted vertex list).

Finally, a CUDA kernel is executed on the threads

spawned with respect to the sorted TL elements, where,

for the corresponding vertex (i, j), each thread calcu-

lates the index, d, to the vertex list of the triangular

mesh (Vertex list in Fig. 8), and records d as the jth

index of the ith triangle in the triangle list (Triangle

list). Also, to reduce memory bandwidth consumption,

only the thread for the head vertex, i.e. the thread cor-

responding to the first one in the same vertex group,

stores the temporary vertex information of the vertex

(i, j) in the x-coordinate field of the dth vertex in the

6 Byungjoon Chang et al.

(0,0) (3, -x)(0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(3,0) (3,1) 3

1 (4,1) 2

(5,0) 0 (5,2)

-- --

(3, +x) -- --

(3, -y) -- --

(9, +x) -- --

(9, -y) -- --

(12, +x) -- --

(12, +y) -- --

Triangle list Vertex list

0

1

2

3

4

5

0

1

2

3

4

5

6

4 (19,1) (19,2) (12, +z) -- --19 7

Fig. 8 The compact triangular mesh structure in the in-
dexed face set representation after the second phase of our
method. In the following third stage, a thread is spawned for
each x-component value of Vertex list to compute the actual
xyz coordinates, and store them in the corresponding slot,
completing the construction of a compact triangular mesh
structure. Note that Triangle list in this figure has only been
partially filled with the example data from Fig. 6.

vertex list. For example, in Fig. 6, the index of the

vertex (3, 2) in the eighth slot of the sorted TL (B)

is 3 (= 1 + 3 − 1). Hence, the second index (count-

ing from zero) of the third triangle becomes 3 (see

Fig. 8). Also, since the vertex is a head vertex, the

corresponding thread stores its temporary vertex in-

formation (9,+x) (C) in the x component of the third

vertex of the vertex list.

2.3 Phase 3: Efficient generation of exact vertex

coordinates using the idea of perspective correction

To complete the construction of the compact mesh

structure, a parallel thread, spawned with respect to
each temporary vertex information in the x component

of the vertex list, finds the actual location of the cor-

responding vertex, and overrides the temporary vertex

information with its xyz coordinate vector. In this pro-

cess, we exploit the idea of perspective correction, which

has been effectively applied in 3D graphics for correct

texture mapping, to efficiently estimate the exact in-

tersection in the world space, i.e. in the volume space,

between an edge of a boundary cell and a silhouette

cone formed by an extracted silhouette contour.

For the edge containing the temporary ver-

tex of a current thread, let pi
c = (xic yic zic)

t and

po
c = (xoc y

o
c z

o
c)t be the camera space coordinates of its

two end voxels pi
w and po

w in the world space, between

which the intersection ps
w = α · po

w + (1 − α) · pi
w is

to be computed (see Fig. 9). For each camera view,

the thread projects pi
w and po

w into the screen space

where the input silhouette image exists, and finds

the exact intersection ps
s between the projected edge

(pi
s,p

o
s) and the piecewise-linear silhouette curve

using an extended version of Bresenham’s line-drawing

algorithm [2], which reveals the ratio t =
|pispss |
|pispos |

.

Because of the perspective projection, t is in general

different from the needed ratio α. In fact, it can be

shown that α =
t/zoc

t/zoc+(1−t)/zic
=

tzic
tzic+(1−t)zoc

, which

requires only two additions, two multiplications, and

one division to calculate from t (refer to Appendix

for the correctness of the formula and Fig. 10 for a

pseudocode for computing the α value).

Screen Space

World Space

x

1¡ t 1¡®

t

z

y
®

pi
w

ps
w

po
wpo

s

pi
s

ps
s

Fig. 9 Efficient computation of exact intersection in the
world space. For a given camera view, the intersection psw in
the world space between an edge of a boundary cell, (piw, pow)
and the corresponding silhouette cone can only be calculated
by finding the intersection pss in the screen space between the
projected edge (pis, pos) and the piecewise-linear silhouette
contour (the curve on the plane), extracted in the first phase
of our method.

Input: two voxel coordinates Pi w & Po w in volume

space and a camera ID.

Output: alpha, the distance ratio from Pi w to the

point Ps w on the silhouette cone.

Begin
SI := the current silhouette image;

Pi s := the projection of Pi w onto SI;

Po s := the projection of Po w onto SI;

March from Pi s to Po s in SI until a boundary

square BS is met;

Ps s := the intersection between the BS’s

line segment(s) and (Pi s, Po s);

t := the distance ratio from Pi s to Ps s;

zi c := the z coordinate of Pi w in camera space;

zo c := the z coordinate of Po w in camera space;

tmp := t*zi c;

alpha := tmp/(tmp + (1-t)*zo c);

End

Fig. 10 Pseudocode for the computation of the α value for
a given camera view.

Then, taking the smallest of the α values from all

camera views, we can locate the intersection point on

the visual hull boundary. It should be mentioned that

the exact intersection was also proposed in previous

GPU-based Parallel Construction of Compact Visual Hull Meshes 7

work based on a matrix computation [9]. Our technique

finds the same intersection with fewer floating-point op-

erations, which allows a marked performance enhance-

ment for nontrivial numbers of cameras and volume res-

olutions.

3 Implementation results

3.1 Construction of visual hull meshes from input

silhouette images

We implemented our GPU algorithm using the CUDA

API [12], and evaluated its performance using several

example images, generated by the real-time 3D mod-

eling system at the Electronics and Telecommunica-

tions Research Institute in Korea. Fig. 11 shows the vi-

sual hull models constructed from three representative

test datasets, named Woo, Bboy, and Girl, respectively.

Each dataset consists of 20 binary silhouette images of

1, 280 × 720 pixels with the corresponding camera cali-

bration parameters.

Fig. 11 Visual hull models created from three test datasets:
Woo, Bboy, and Girl (from left to right).

Table 1 shows statistics measured on an NVIDIA

GeForce GTX 580 GPU with 1.5 GB of graphics mem-

ory with respect to three different volume resolutions,

where each row reveals the size of the produced trian-

gular mesh, represented in the indexed face set, and

the total GPU time along with the relative overhead

of the three computational phases. Here, the figure in

parentheses in the ‘Vertices’ column denotes the value

of three times the number of faces divided by the num-

ber of vertices, which indicates the degree of vertex re-

dundancy in the simple mesh representation that sim-

ply enumerates the vertices of triangles. Interestingly,

the observed ratios, including those from our march-

ing cubes implementation (refer to Table 3) were quite

consistent, and the removal of vertex duplication in the

mesh representation resulted in the time- and space-

efficient GPU implementation.

The timing results show that the computation time

taken by our method greatly depends on the voxel res-

olution. When a lower-resolution volume grid was se-

lected, the first phase for extracting a smooth silhouette

contour required a relatively significant period of the

time. However, as the volume resolution increased, the

GPU implementation became dominated by the second

phase since the numbers of voxels and cells to be pro-

cessed increased with the cube of the volume resolution.

On the other hand, the third phase of finding the ex-

act vertex locations consumed only a moderate amount

of time because of our efficient calculation framework

that only processed a relatively small number of bound-

ary cells. In particular, launching one CUDA thread

per one and only one unique temporary vertex in the

compacted vertex list avoided unnecessary thread di-

vergence, leading to an increase in the GPU occupancy

during the vertex coordinate calculation.

Recall that the two major computations carried out

in the first phase are the application of the Gaussian

filter and the extraction of the piecewise-linear silhou-

ette contour, which implies that the computation time

of this phase is basically dependent on the image reso-

lution and the complexity of the contour curve. As can

be seen in the timings in the ‘Phase I’ columns of Ta-

ble 1 and 2, relatively small amounts of time were spent

applying the 7 × 7 Gaussian filter to 20 binary images

of 1, 280 × 720 pixels thanks to our GPU accelerated

filtering scheme that applies the separated convolution

only to the pixels neighboring to the silhouette contour.

In particular, when a nontrivial volume resolution (e.g.

256×256×256) was chosen, the additional cost for the

Gaussian filtering was just small compared to the entire

computation time.

It should be mentioned that, while the visual hull

construction speed was slightly improved without the

Gaussian filtering, the gain only came with unsightly

bumpy artifacts on the visual hull surfaces. When no

smoothing filter was applied, the extracted silhouette

contour almost coincided with the boundary of the bi-

nary silhouette. Hence, the aliases on the surfaces be-

came unavoidable, although the exact intersections be-

tween the respective silhouette cones and the edges of

the 3D cells were computed in the third phase. Fig. 12

compares the outputs produced for the volume resolu-

tion of 256×256×256 voxels without and with the Gaus-

sian filter applied, in which we clearly observed that the

undesirable surface effects were nicely smoothed out

through the refined voxel classification. We also ob-

served that the elaborate extraction of the piecewise-

linear silhouette contours created less visual artifacts

8 Byungjoon Chang et al.

Dataset
Volume Size of mesh Computation time (ms)

resolution Vertices Faces Phase I Phase II Phase III Total

Woo
643 3,222 (6.004) 6,448 12.03 (74.9%) 3.12 (19.4%) 0.92 (5.7%) 16.07

1283 13,118 (6.000) 26,236 12.12 (60.7%) 6.78 (34.0%) 1.06 (5.3%) 19.96

2563 53,194 (5.999) 106,376 12.04 (29.5%) 26.83 (65.7%) 1.97 (4.8%) 40.84

Bboy
643 2,986 (5.996) 5,968 12.43 (75.9%) 2.96 (18.1%) 0.99 (6.0%) 16.38

1283 12,302 (6.000) 24,604 12.40 (61.5%) 6.65 (33.0%) 1.12 (5.5%) 20.17

2563 50,010 (6.000) 100,016 12.41 (29.7%) 27.44 (65.7%) 1.92 (4.6%) 41.77

Girl
643 2,290 (6.000) 4,580 11.55 (78.8%) 2.25 (15.4%) 0.85 (5.8%) 14.65

1283 9,368 (6.000) 18,736 11.48 (61.9%) 6.12 (33.0%) 0.95 (5.1%) 18.55

2563 38,104 (6.000) 76,208 11.53 (29.8%) 25.70 (66.4%) 1.47 (3.8%) 38.70

Table 1 Performance statistics on our GPU accelerated visual hull construction method. Three different datasets, each made
of 20 binary silhouette images of 1, 280 × 720 pixels, were tested with respect to three volume resolutions, where a 7 × 7
Gaussian filter was applied in Phase I. The numbers of vertices and faces of the generated triangular meshes represented in
the indexed face set format are shown. The figures in parentheses in the ‘Vertices’ column denote the ratios 3*(# of faces)/(#
of vertices), indicating the degree of redundancy of vertices in the simple mesh representation, in which the vertex coordinates
of extracted triangles are simply enumerated with the same vertex repeated. The phase-by-phase dissection of computation
times required by the GPU is also provided.

Dataset
Volume Size of mesh Computation time (ms)

resolution Vertices Faces Phase I Phase II Phase III Total

Woo
643 2,972 (6.004) 5,948 10.98 (74.3%) 2.99 (20.2%) 0.81 (5.5%) 14.78

1283 12,476 (6.000) 24,952 10.98 (60.2%) 6.26 (34.3%) 1.01 (5.5%) 18.25

2563 51,520 (5.998) 103,012 10.97 (27.9%) 26.48 (67.2%) 1.93 (4.9%) 39.38

Bboy
643 2,816 (5.979) 5,612 10.97 (74.7%) 2.90 (19.7%) 0.82 (5.6%) 14.69

1283 11,660 (5.990) 23,280 10.96 (58.6%) 6.64 (35.5%) 1.1 (5.9%) 18.70

2563 47,858 (5.996) 95,660 10.97 (27.6%) 26.86 (67.7%) 1.86 (4.7%) 39.69

Girl
643 2,136 (6.000) 4,272 11.00 (78.5%) 2.27 (16.2%) 0.75 (5.3%) 14.02

1283 8,864 (6.001) 17,732 11.00 (60.6%) 6.15 (33.9%) 1.01 (5.5%) 18.16

2563 36,574 (6.000) 73,144 11.01 (29.3%) 25.11 (66.9%) 1.44 (3.8%) 37.56

Table 2 Performance statistics without a Gaussian filter applied. As can be identified in the computation times taken by the
first phases of the two implementations with and without the application of the Gaussian filter, the computational burden of
the Gaussian filtering was alleviated significantly through the parallel convolution computation only on the border regions of
the silhouette contours. Note that, when no Gaussian filter was applied, somewhat smaller triangular meshes were produced
in slightly less time, but only at the expense of ugly looking artifacts on the surfaces of the visual hull objects.

when the reconstructed objects were rendered with var-

ious texture images.

3.2 Application to the marching cubes algorithm

The presented GPU technique for directly generating

compact triangular meshes in the form of indexed face

set can be easily modified for implementing the fre-

quently used, marching cubes algorithm [10] on the

GPU. Given a volumetric dataset and an iso-value, the

second phase of our method builds, as before, the tri-

angle index list and the temporary vertex list, initially

containing the vertex offset information. Then, in the

following stage, the actual vertex coordinates (option-

ally with normal coordinates) are generated by simple

linear interpolation along the edges of boundary cells,

storing them in the corresponding locations of the com-

pact vertex array.

The experimental results in Table 3, obtained with

respect to four volumetric datasets (see Fig. 13) with

two different volume resolutions, compare our GPU

implementation with a conventional implementation

which simply classifies boundary cells and lists the ver-

tex and normal coordinates of each triangle extracted

from them. Obviously, our implementation is more com-

plicated than the simple implementation because ours

should go through an additional GPU stage that builds

the indexed face set structure. Interestingly, however,

our method turned out to be faster significantly on the

NVIDIA GeForce GTX 580 GPU as demonstrated in

the table.

Notice that, in the NVIDIA’s Fermi architecture,

memory operations are issued per warp (32 threads),

and it is critical to the performance of CUDA applica-

tions to have each warp access global memory as coa-

lesced as possible. The major difference between the two

GPU implementations is the amount and locality of the

GPU-based Parallel Construction of Compact Visual Hull Meshes 9

(Time: ms, Memory: MB)

Dataset
Volume Size of mesh Ours Conventional

resolution Vertices Faces Time Memory Time Memory

Bunny
1283 33,392 (5.974) 66,491 4.84 1.53 7.22 4.57

2563 132,883 (5.987) 265,194 15.58 6.08 29.20 18.21

Armadillo
1283 23,528 (5.999) 47,052 4.36 1.08 7.18 3.23

2563 95,004 (6.000) 190,004 15.50 4.35 28.77 13.05

Dragon
1282 × 256 41,473 (5.979) 82,659 7.14 1.90 12.50 5.68

2562 × 512 167,684 (5.990) 334,796 26.62 7.67 55.94 22.99

Happy 1282 × 256 31,833 (5.990) 63,565 6.87 1.46 12.44 4.37

Buddha 2562 × 512 129,815 (5.994) 259,361 26.12 5.94 55.56 17.81

Table 3 Statistics on the two GPU implementations for the marching cubes algorithm. In this table, ‘Ours’ represents the
implementation produced based on the presented GPU technique, while ‘Conventional’ corresponds to the classic implemen-
tation that simply lists the vertex and normal coordinates of extracted triangles with the same vertex information repeated in
the representation. Again, the figures in parentheses in the ‘Vertices’ column indicate the degree of vertex redundancy (refer
to Table 1 for an explanation of these values).

(a) Woo without smoothing (b) Woo with smoothing

(c) Girl without smoothing (d) Girl with smoothing

Fig. 12 Effect of the sophisticated voxel classification. To
clearly see the effect of the smooth contour extraction carried
out in the first phase, the triangular meshes are rendered with
flat shading such that the individual triangles are visible.

mesh data that each warp must write in parallel into the

global memory of the GPU. In the final stage of the con-

ventional implementation, each thread of a warp writes

the coordinate data of all triangles extracted from a

boundary cell assigned to it. While the most efficient

situation for the Fermi architecture is that each warp

requests 32 aligned, consecutive 4-byte words within a

single, aligned 128 byte-long segment of global mem-

ory, there is a high probability that the memory access

from the warps are very scattered in the conventional

(a) Bunny (b) Armadillo

(c) Dragon (d) Happy Buddha

Fig. 13 Triangular meshes produced by the marching cubes
algorithm from four test datasets.

implementation, leading to a marked performance de-

crease, since each triangle consumes 72 bytes (6 floats

per vertex and 3 vertices per triangle). In contrast, in

the new implementation, the global memory access is

relatively less scattered as only the coherent vertex ar-

ray region is accessed in this stage, enabling a better

timing performance in spite of the additional compu-

tation for building the indexed face set structure. This

experimental result strongly implies that constructing

compact visual hull meshes is equally important for ef-

ficient GPU processing.

10 Byungjoon Chang et al.

4 Concluding remarks

We have presented an effective parallel volumetric vi-

sual hull construction algorithm that employs a novel

technique for creating a compact triangular mesh of

the reconstructed visual hull model as well as sev-

eral optimization techniques for producing a time- and

space-efficient GPU implementation. To the best of our

knowledge, our computation scheme is the first par-

allel algorithm that, fully run on the GPU, generates

smooth high-resolution visual hull meshes in compact

form, based on a refined voxel classification.

We have also shown that the presented GPU tech-

nique allows an easy modification for another impor-

tant problem, that is, the GPU implementation of the

marching cubes algorithm. Through our experiments,

it was demonstrated that, with the current GPU ar-

chitecture, it is undoubtedly worthwhile to develop

GPU schemes that facilitate compact data representa-

tion by reducing wasteful data redundancy. Of course,

this statement is also true when visual hull meshes are

to be constructed on the GPU.

Acknowledgements This research was supported by Ba-
sic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Educa-
tion, Science and Technology (grant no. 2012R1A1A2008958),
and by the strategic technology development program
of MCST/MKE/KEIT (Development of Full 3D Recon-
struction Technology for Broadcasting Communication Fu-
sion (KI001798)).

References

1. Baumgart, B.: Geometric modeling for computer vision.
Ph.D. thesis, Stanford University (1974)

2. Bresenham, J.: Algorithm for computer control of a dig-
ital plotter. IBM Systems Journal 4(1), 25–30 (1965)

3. Deriche, R.: Recursively implementing the Gaussian and
its derivatives. Unité de Recherche INRIA-Sophia An-
tipolis, Tech. Rep. No. 1893 (1993)

4. Erol, A., Bebis, G., Boyle, R., Nicolescu, M.: Visual hull
construction using adaptive sampling. In: Proc. of the 7th
IEEE Works. on Application of Computer Vision, vol. 1,
pp. 234–241 (2005)

5. Franco, J.S., Boyer, E.: Exact polyhedral visual hulls.
In: Proc. of British Machine Vision Conf., pp. 329–338
(2003)

6. Harris, M.: Parallel prefix sum (scan) with CUDA. In:
H. Nguyen (ed.) GPU Gems 3, chap. 39, pp. 851–876.
Addison Wesley (2008)

7. Ladikos, A., Benhimane, S., Navab, N.: Efficient visual
hull computation for real-time 3D reconstruction using
CUDA. In: Proc. of the Conf. on Computer Vision and
Pattern Recognition Works., pp. 1–8 (2008)

8. Laurentini, A.: The visual hull concept for silhouette-
based image understanding. IEEE Trans. PAMI 16(2),
150–162 (1994)

9. Liang, C., Wong, K.Y.: Exact visual hull from marching
cubes. In: Proc. of the 3rd Int. Conf. on Computer Vision
Theory and Applications, vol. 2, pp. 597–604 (2008)

10. Lorensen, W., Cline, H.: Marching Cubes: A high reso-
lution 3D surface construction algorithm. Proc. of ACM
SIGGRAPH 21, 163–169 (1987)

11. Matusik, W., Buehler, C., McMillan, L.: Polyhedral vi-
sual hulls for real-time rendering. In: Proc. of the 12th
Eurographics Works. on Rendering Techniques, pp. 115–
126 (2001)

12. NVIDIA: NVIDIA CUDA C Programming Guide (Ver-
sion 3.2) (2010)

13. Satish, N., Harris, M., Garland, M.: Designing efficient
sorting algorithms for manycore GPUs. In: Proc. of the
2009 IEEE Int. Symp. on Parallel & Distributed Process-
ing, pp. 1–10 (2009)

14. Shujun, Z., Cong, W., Xuqiang, S., Wei, W.: Dream
World: CUDA-accelerated real-time 3D modeling sys-
tem. In: Proc. of the IEEE Int. Conf. on Virtual En-
vironments, Human-Computer Interfaces and Measure-
ment Systems, pp. 168–173 (2009)

15. Slabaugh, G., Culbertson, B., Malzbender, T., Schafer,
R.: A survey of methods for volumetric scene reconstruc-
tion from photographs. In: Proc. of Int. Works. on Vol-
ume Graphics, pp. 81–100 (2001)

16. Waizenegger, W., Feldmann, I., Eisert, P., Kauff, P.: Par-
allel high resolution real-time visual hull on GPU. In:
Proc. of the 16th IEEE Int. Conf. on Image Processing,
pp. 4301–4304 (2009)

Appendix: Proof of perspective-corrected ratios

We want to reveal the relation between the points piw, psw,
pow in the world space and the mapped points pis, p

s
s, p

o
s in

the screen space (see Fig. 9 again). Note that the transfor-
mation from the normalized image space to the screen space
is an affine transformation because it involves only transla-
tion, scaling, and possibly shearing. So is the view transforma-
tion that converts points from the world space to the camera
space. Since the affine transformations preserve the ratios of
distance along a line, it is enough to consider the mapping
between the corresponding points pic, psc, poc in the camera
space and pin, psn, pon in the normalized image space (see
Fig. 14).

Normalized Image Space

Camera Space

1¡®

®

1¡ t

tps
n

pi
n

po
n po

c

ps
c

pi
c

zc

yc

xc

yn

xn

f

Fig. 14 Mapping between the camera space and the nor-
malized image space.

GPU-based Parallel Construction of Compact Visual Hull Meshes 11

Assume that pic = (xic y
i
c z

i
c)
t, psc = (xsc y

s
c z

s
c)t, poc =

(xoc y
o
c z

o
c)t, where

psc = α

(
xoc
yoc
zoc

)
+ (1− α)

(
xic
yic
zic

)
.

Similarly, let pin = (xin y
i
n)t, psn = (xsn y

s
n)t, pon = (xon y

o
n)t.

When psc is transformed into the normalized image space by
multiplying the perspective transformation matrix, we get[
f 0 0
0 f 0
0 0 1

]
psc =

(
fαxoc + f(1− α)xic
fαyoc + f(1− α)yic
αzoc + (1− α)zic

)
,

which, via perspective division, leads to

psn =
fα

αzoc + (1− α)zic

(
xoc
yoc

)
+

f(1− α)

αzoc + (1− α)zic

(
xic
yic

)
.

By the same perspective transformation, it becomes that

(xin yin)t =
(fxi

c

zi
c

fyi
c

zi
c

)t
and (xon yon)t =

(fxo
c

zo
c

fyo
c

zo
c

)t
. From

these, we obtain that

psn =
αzoc

αzoc + (1− α)zic

(
xon
yon

)
+

(1− α)zic
αzoc + (1− α)zic

(
xin
yin

)
=

αzoc
αzoc + (1− α)zic

pon +
(1− α)zic

αzoc + (1− α)zic
poi .

This implies that t =
αzo

c

αzo
c
+(1−α)zi

c

, from which we are led to

α =
tzi
c

tzi
c
+(1−t)zo

c

. ut

