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Abstract
Compared with its competitors such as the bounding volume hierarchy, a drawback of the kd-tree structure is
that a large number of triangles are repeatedly duplicated during its construction, which often leads to inefficient,
large and tall binary trees with high triangle redundancy. In this paper, we propose a space-efficient kd-tree
representation where, unlike commonly used methods, an inner node is allowed to optionally store a reference to
a triangle, so highly redundant triangles in a kd-tree can be culled from the leaf nodes and moved to the inner
nodes. To avoid the construction of ineffective kd-trees entailing computational inefficiencies due to early, possibly
unnecessary, ray-triangle intersection calculations that now have to be performed in the inner nodes during the
kd-tree traversal, we present heuristic measures for determining when and how to choose triangles for inner nodes
during kd-tree construction. Based on these metrics, we describe how the new form of kd-tree is constructed and
stored compactly using a carefully designed data layout. Our experiments with several example scenes showed
that our kd-tree representation technique significantly reduced the memory requirements for storing the kd-tree
structure, while effectively suppressing the unavoidable frame-rate degradation observed during ray tracing.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Raytracing

1. Introduction

1.1. Background

Thanks to their reliable high performance in the calcula-
tion of ray-object intersections, kd-trees are considered one
of the most effective acceleration structures for ray tracing.
Given a three-dimensional scene, the kd-tree is constructed
in a top-down manner by recursively subdividing the scene’s
voxel space using axis-aligned splitting planes. The timing
performance of the resulting kd-tree is affected greatly by
the fundamental decisions of where to position the split-
ting planes and when to stop the recursive subdivision. The
surface-area heuristic (SAH), introduced by MacDonald and
Booth [MB90], is generally acknowledged as the best strat-
egy for building high-quality kd-trees [Hav01, Wal04], be-
cause its simple cost-prediction model based on the theory
of geometric probability [San02] usually facilitates reason-
ably good decision making.

In the standard kd-tree representation, each inner node
stores information about the splitting plane and addresses

pointing to its two child nodes, while each leaf node stores
a list containing indices referring to the triangles that over-
lap with the voxel referenced by the leaf. This method is
used widely but this representation cannot avoid the follow-
ing inherent problem that arises during the construction of
kd-trees. If a triangle in the voxel penetrates a selected split-
ting plane when a voxel is being subdivided, this triangle
is sorted into both subvoxels redundantly, which increases
the actual number of triangles handled by the construction
algorithm. If this happens frequently, the leaf nodes in the
resulting kd-tree have a high frequency of duplicate refer-
ences to the same triangles. This is known to be a drawback
of the kd-tree structure, especially when compared with the
bounding volume hierarchy (BVH), in which triangles are
generally not shared by leaf nodes, so the resulting binary
trees are usually smaller and shallower than the kd-trees.

Table 1 shows that many duplicate triangles are present in
the leaf nodes of kd-trees constructed for five representative
scenes using the de facto standard SAH-based construction
algorithm [WH06]. The count column shows the number of

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

ihm
Typewritten Text

ihm
Typewritten Text

ihm
Typewritten Text
The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

ihm
Typewritten Text

ihm
Typewritten Text

ihm
Typewritten Text

ihm
Typewritten Text

ihm
Typewritten Text

ihm
Typewritten Text

ihm
Typewritten Text

ihm
Typewritten Text

ihm
Typewritten Text



B. Choi, B. Chang, & I. Ihm / Improving Memory Space Efficiency of Kd-tree

interval

Kitchen
(101,015)

Conference
(190,947)

Soda Hall
(2,167,474)

San Miguel
(10,500,551)

Power Plant
(12,748,510)

count longest count longest count longest count longest count longest

10,001 ∼ 15,000 0 - 0 - 0 - 2 6.395 0 -
5,001 ∼ 10,000 0 - 0 - 0 - 3 4.267 18 139.3
2,001 ∼ 5,000 0 - 1 84.77 0 - 43 5.069 150 73.43
1,001 ∼ 2,000 1 6.265 10 11.77 36 184.6 147 1.276 451 72.85
501 ∼ 1,000 0 - 73 5.029 215 139.0 776 1.020 1,955 63.27
201 ∼ 500 3 3.763 591 2.882 3,131 42.66 4,926 0.398 15,619 36.00
101 ∼ 200 8 0.995 4,100 2.054 4,468 51.36 15,360 0.196 36,530 32.04
51 ∼ 100 50 0.860 6,901 1.808 20,527 34.96 64,113 0.121 85,873 25.38
21 ∼ 50 322 0.315 16,143 1.061 112,036 24.24 364,056 0.076 363,373 15.51
11 ∼ 20 1,782 0.157 22,758 0.521 249,662 16.86 1,151,922 0.047 690,882 10.94
1 ∼ 10 98,849 0.034 140,370 0.353 1,777,399 7.304 8,899,203 0.025 11,553,659 2.625

no. of indices 323,606 (x3.20) 2,752,009 (x14.41) 16,539,116 (x7.63) 77,619,842 (x7.39) 78,550,737 (x6.16)

Table 1: Redundant triangles in kd-trees. The figures in parentheses below the scene name indicate the number of triangles in
each scene. The figure in the last row shows the total number of triangles actually represented in the leaf nodes of the respective
kd-tree, which has a high degree of redundancy.

triangles in a scene for each interval. Compared with the
original number of triangles in each scene, the total numbers
of indices stored in the leaf nodes of the respective kd-trees,
i.e., the no. of indices, demonstrate the redundancy problem,
which is inevitable in the current kd-tree representation and
it may lead to inefficient tree structures.

We tested several scenes and found that most of
the triangles in the Kitchen scene, i.e., 98,849 out of
101,015 (97.9%), were small and well tessellated. This was
a rather good example because there was only a 3.20 times
increase in the number of stored references. By contrast, a
substantial amount of ill triangles in the Conference scene
intersected repeatedly with the splitting planes selected by
the SAH metric, which produced a high ratio of 14.41. In
this table, the figures in the longest column denote the av-
erage length of the longest edges of triangles in the corre-
sponding frequency range. In many cases, these results show
that relatively large and/or skinny triangles generally led to
excessive redundancy in the tree structure (refer to Figure 1).

The replication of triangles during kd-tree construction
means that the acceleration structure often imposes a non-
trivial spatial overhead. This is shown in Table 2, where
the size of the kd-trees built using a construction algo-
rithm [WH06] and represented with a compact data structure
proposed by Wald [Wal04] are compared with the normal-
ized sizes of the geometry data. This analysis and that in the
previous table suggest that it would undoubtedly be worth-
while to develop a new kd-tree scheme that facilitates a more
compact representation by reducing triangle redundancy.

1.2. Our contribution

In this paper, we propose a space-efficient kd-tree repre-
sentation method that unlike the standard method, permits

no.’s of
triangles

(K)

no.’s of
vertices

(K)

size of
geom.
(MB)

size of
kd-tree
(MB)

Kitchen 101.0 53.4 2.79 2.94
Conference 190.9 114.3 5.67 21.06
Soda Hall 2,167.5 5,489.8 192.34 131.98

San Miguel 10,500.6 6,093.5 306.13 662.74
Power Plant 12,748.5 5,731.5 320.81 635.22

Table 2: Relative sizes of the geometry data and kd-trees.
Several different representations are possible for a polygo-
nal model with normals and texture coordinates at the ver-
tices. Therefore, we simply assume that they are represented
using the ‘indexed face set’ method to view the spatial over-
heads of the kd-tree structure, where the size of geometry in
the table was calculated as (no. of triangles)*12 bytes + (no.
of vertices)*32 bytes.

the optional storage of a reference to a triangle in the in-
ner nodes. The inherent problem of kd-trees that the tree
structure easily grows in size due to duplicate references to
the geometry is eased markedly by selecting triangles that
cause excessive duplication, and storing them in proper in-
ner nodes, which significantly reduces the memory space to
store the redundant references in the leaf nodes.

Our new kd-tree representation method requires a slight
modification of the standard kd-tree traversal algorithm (e.g.,
that summarized in [Hav01,Wal04]), where a ray-triangle in-
tersection computation is required each time an inner node
containing a triangle reference is visited, and the first hit in
a leaf node is compared to that, if any, between the ray and
the triangles of the visited inner nodes. This method is sim-
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(a) Conference (standard) (b) Conference (ours)

(c) Power Plant (standard) (d) Power Plant (ours)

(e) Color map

Figure 1: Problematic triangles in kd-trees. For each trian-
gle, the number of duplicates in the kd-tree are color coded
in descending order from red (indicating the frequency range
[4001 to∞]) to orange ([2001 to 3000]), yellow ([1401 to
1500]), green ([1001 to 1100]), sky blue ([601 to 700]), and
blue ([101 to 500]). As easily understood, relatively large
and/or skinny triangles tended to be duplicated repeatedly
during kd-tree construction. Unfortunately, it is often diffi-
cult to remove these types of triangles during the modeling
stage. However, if the inner nodes are allowed to store in-
dices to triangles, as proposed in this paper, this new kd-tree
representation (ours) may reduce the redundancy problem
substantially compared with the widely accepted represen-
tation (standard).

ple to implement but this extended traversal algorithm may
degrade the ray-tracing performance markedly because ap-
plication of the early intersection test to a triangle that has
been moved to an inner node often turns out to be unnec-
essary (compare with the lazy intersection test carried out
in the standard kd-tree traversal algorithm). Thus, it is im-
portant to build an efficient kd-tree that avoids unnecessary
early intersection tests as much as possible while maximiz-
ing the benefit of the elimination of duplicate references
from leaf nodes. To address this problem, we present a kd-
tree construction algorithm based on two simple cost met-
rics, which allows us to effectively determine when and how
to choose triangles for inner nodes during kd-tree construc-
tion. Then, we explain how the new form of kd-tree is stored
efficiently using a compact data layout, which facilitates its
efficient runtime execution.

2. Related work

The ray-tracing performance of kd-trees is affected greatly
by the way they are constructed, particularly the positioning
of the axis-aligned splitting planes during recursive kd-tree
construction. Among several possible strategies, the surface
area heuristic (SAH) method introduced by MacDonald and
Booth [MB90], is generally acknowledged to produce the
best kd-trees in terms of ray-tracing speed [Hav01, Wal04].
Several modifications have been made to the SAH-based
cost metric [Hav01,HKRS02,Hun08,RKJ96,FFD09,CCI12,
WGS04, IH11] to further enhance the temporal performance
of SAH kd-trees.

From an algorithmic point of view, Wald and Havran in-
troduced an algorithm constructing a kd-tree in O(n logn)
time, which is the theoretical lower bound [WH06]. Hunt
et al. [HMS06], Popov et al. [PGSS06], and Shevtsov et
al. [SSK07] presented faster, scanning-based algorithms that
approximated the SAH cost function with only slight frame-
rate degradation. High construction costs were considered to
be a key drawback that prevented kd-trees from being used
in the rendering of dynamic scenes. However, fast kd-tree
construction is now possible via the effective parallelization
of the construction process on modern CPUs and GPUs, as
reported previously [ZHWG08, CKL∗10, WZL11]. Further-
more, considerable attention has been paid to the develop-
ment of memory-efficient kd-tree layouts and the optimiza-
tion of the traversal algorithm for specific hardware (for ex-
ample, refer to a recent review article [HH11]).

As well as improving the temporal performance, the gen-
eration of space-efficient kd-tree structures is equally im-
portant because it facilitates effective memory management
during ray tracing. However, most attempts to reduce the
size of acceleration hierarchies and geometries have focused
on other structures such as the BVH and its variants. Ma-
hovsky and Wyvill proposed a hierarchical BVH encoding
scheme that reduces the memory requirements by storing
the six coordinates of the axis-aligned bounding box of a
node relative to its parent node using 4-bit or 8-bit unsigned
integers [MW06]. Cline et al. also used lower precision
numbers and reduced the size of the resulting BVH further
by employing a pointer-free heap-like data structure with
a high branching factor [CSE06]. Wächter and Keller also
generated compact hierarchies using a lazy building tech-
nique [WK06].

To render large models, Lauterbach et al. presented a two-
level hierarchy model where lower level hierarchies implic-
itly encoded those generated from carefully constructed tri-
angle strips [LYTM08]. This idea of a two-level structure
was also applied by Segovia and Ernst to the lossy encoding
of BVH nodes and their geometries on two levels [SE10].
Bauszat et al. further compressed the BVH using a modified
hierarchy known as the minimal bounding volume hierar-
chy [BEM10]. Kim et al. proposed a cluster-based layout-
preserving BVH compression technique, which gave effi-
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cient random access to the compressed BVHs [KMKY10].
On the other hand, Hou et al. proposed a construction
scheme that builds kd-trees/BVHs for large models effec-
tively on the GPU with limited memory [HSZ∗11].

Finally, Havran et al. allowed to link an extra tree struc-
ture, built for oversized geometries, as a ternary child of an
inner node of a hybrid tree blending a spatial kd-tree (SKD-
tree) with bounding volume primitives [HHS06]. While their
method mainly focused on fast construction of spatial hier-
archies, allowing to store ternary tree structures in the inner
nodes often degraded the ray-tracing performance signifi-
cantly. Our method differs in that only a carefully chosen tri-
angle is stored in an inner node of the standard kd-tree, effec-
tively suppressing the unavoidable frame-rate degradation
observed during ray tracing. In order to reduce the search
space quickly during ray tracing, Zuniga et al. isolated a
wide primitive in a voxel as a right child of the corresponding
inner node of another hybrid, dual extent tree [ZU06]. How-
ever, such strategy usually increased the tree size markedly
due to the resulting local unbalance in the tree structure.

3. Construction of space-efficient kd-trees

3.1. Two heuristic metrics for triangle selection

Figure 2 shows the key concept of our method for increas-
ing space efficiency by eliminating highly duplicated refer-
ences to the same triangles as much as possible. As men-
tioned in the Introduction, however, storing triangles (i.e.,
storing references to triangles) in inner nodes may degrade
the ray-tracing performance, mainly because it increases the
number of unnecessary early calculations of ray-triangle in-
tersections. Thus, the triangles must be selected carefully
to greatly reduce the memory requirements while avoiding
wasteful computations as much as possible.

Consider a kd-tree T , which is built using a standard
SAH-based method, and its subtree TN , which is rooted in
the node N, where the corresponding voxel region is denoted
as VN . The first necessary condition that selects a triangle as
a candidate for an inner node I is the likelihood that for a
given random ray the triangle will eventually be tested for a
ray-triangle intersection, irrespective of whether it is actually
hit by the ray or not, during the traversal of TI . This condi-
tion is obvious because a higher likelihood means there is a
lower probability that the early evaluation of the ray-triangle
intersection will turn out to be unnecessary.

Let T (TI) denote the set of all triangles stored in the leaf
nodes of TI . We also assume that, given a triangle t ∈ T (TI),
L(t,TI) represents the set of all leaf nodes of TI passed by
t, where L(·,TI) specifically denotes the set of all leaf nodes
of TI . We also define SA(V ) as the surface area of the voxel
V , so the first surface area-based occupancy measure of the
inner node I is defined as follows:

foccu(t,TI) =
∑L∈L(t,TI) SA(VL)

∑L∈L(·,TI) SA(VL)
,

I

L L L L

TI

(a) The standard represen-
tation

I

L L L L

TI

(b) Our representation

Figure 2: Augmented inner nodes. Given a subtree, we have
the option of storing a reference to a triangle with high re-
dundancy in the root of the subtree instead of leaving multi-
ple copies in the leaf nodes, which greatly reduces the space
needed to represent the subtree.

where the numerator, i.e., the sum of the geometric proba-
bility that each leaf node intersecting with the triangle t will
be hit by a random ray, is normalized between 0 and 1. Note
that, if a leaf intersecting with the triangle t is reached dur-
ing ray tracing, a ray-triangle intersection calculation is in-
curred with respect to t. Therefore, this occupancy measure
provides a good estimate of the chance that a ray-triangle
intersection computation for t occurs during the traversal of
TI . Only storing a triangle with a sufficiently high occupancy
measure in the inner node may reduce the timing penalty in-
curred by unnecessary ray-triangle intersection calculations
at inner nodes.

We apply a second requisite condition that a triangle is
culled from the leaf nodes of a subtree if its effect in terms
of data compression is sufficiently high. Placing a triangle
on an inner node inevitably leads to inefficiencies during
tree traversal. Thus, we require that a triangle is selected
on an inner node only if eliminating the triangle from the
leaves results in an adequate reduction in the data size. To
implement this condition, we define the following simple
frequency measure, which determines how frequently the tri-
angle t appears in the leaf nodes of TI :

f f req(t,TI) =
|L(t,TI) |
|L(·,TI) |

.

Based on these two metrics, we define an oracle function
pick_triangle(TI) as follows, which selects a triangle from
TI if an eligible one is available, whereas it returns a null
value if not. First, we enumerate the triangles in TI with an
occupancy measure foccu(t,TI) greater than a given occu-
pancy threshold τoccu in a nonincreasing order. We check
each triangle until we find one with a frequency measure
f f req(t,TI) greater than a preset frequency threshold τ f req.
A suitable triangle is returned only if one is available.
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3.2. The new kd-tree construction algorithm

Now, a new kd-tree can be constructed by a simple recursive
process using our rule for choosing a problematic triangle
from a subtree. Starting with a kd-tree T constructed for the
triangle set TS of an input scene S using a standard SAH-
based construction algorithm, we examine a given tree TI ,
whose root node I is not a leaf, to evaluate the oracle func-
tion pick_triangle(TI). If an eligible triangle is not found,
the tree building process stops. However, if a triangle t is
selected from T (TI) for culling, where T (TI) is the set of
triangles in the leaves of TI , a new SAH-based kd-tree T∗I is
built from T (TI)−{t}, replacing TI . After t is stored in the
root node of T∗I , the same process is applied recursively to
the subtree rooted in each child of the root node of T∗I .

Algorithm 1 describes an iterative version of this recursive
algorithm where direct stack manipulation provides higher
runtime performance. When implementing this algorithm,
we need to ensure that we do not generate kd-trees con-
taining excessive amounts of triangles placed on the inner
nodes. These trees are favorable for memory reduction, but
they may tend to slow down ray tracing markedly because
they incur a high frequency of, possibly unnecessary, early
ray-triangle intersection calculations on the inner nodes. In
our method, we allow a triangle t to be stored in an inner
node I only if the number of triangles including t, evalu-
ated by the function count_triangles(I) in Line 8, which are
placed on inner nodes on the path from the node I to the root
node, does not exceed a preset threshold maxt2rn (the sub-
script t2rn denotes the triangles to the root node). In general,
our preliminary experiments showed that setting maxt2rn to
4 generated effective kd-trees with a good balance between
size and speed.

Algorithm 1 Iterative kd-tree construction
1: Build an SAH-based kd-tree T for TS;
2: push(root_node(T ));
3: while (stack is not empty) do
4: I = pop();
5: if ((t = pick_triangle(TI)) != NULL) then
6: Build an SAH-based kd-tree T∗I for T (TI)−{t};
7: Replace TI with T∗I , and place t on I;
8: if (count_triangles(I) == maxt2rn) then
9: continue; {Skip the subtrees of T∗I .}

10: end if
11: end if
12: if (rchild_node(T∗I ) is not a leaf node) then
13: push(rchild_node(T∗I ));
14: end if
15: if (lchild_node(T∗I ) is not a leaf node) then
16: push(lchild_node(T∗I ));
17: end if
18: end while
19: return T ;

3.3. Kd-tree node layouts for effective storage

To maximize the benefits of our proposed kd-tree scheme,
it is important to design effective data layouts for specific
types of kd-tree nodes. Our data structure extends the idea of
a compact kd-tree representation with efficient caching and
prefetching, which was presented in Wald [Wal04], where
each inner or leaf node is stored in a unified data layout
with 8 bytes. However, our compact kd-tree representation
scheme requires that different types of information are ad-
ditionally stored in the inner and leaf nodes, so the actual
data structure is slightly more complicated than that used
in [Wal04].

In our framework, the three least significant bits, known
as the layout type indicator, are reserved for all data layouts
and this determines the type of a given 8-byte node (see Fig-
ure 3). If the indicator A has a value of 000, 001, or 010,
the layout represents the standard inner node with no ref-
erence to a triangle (this is known as a type I inner node).
In this case, similar to [Wal04], the two lower bits of A and
the most significant 32 bits of the layout, B, denote the di-
mension and the position of the splitting plane, respectively,
while the remaining 29-bit field, C, stores the offset of the
left child (note that the offset is always a multiple of eight,
while the right child always follows the left child).

If the layout type indicator has a flag of 100, 101, or
110, the layout represents the inner node where a triangle
reference is stored (type II inner node). The meaning of the
other bit fields is the same as the standard inner node, except
the 8 bytes indicated by the offset field C store information
for the reference, which are followed by the left and right
children. The reference to a triangle is specified in the T-
reference node with a layout type indicator value of 111,
where an unsigned integer type index in the upper 32 bits of
the layout, D, points to a triangle in the array of triangles (see
Figure 3(b)). The lower 32 bits including the indicator are
not used currently, but they are allocated for an 8-byte align-
ment (note that the 3-bit field of the indicator is reserved for
a consistent data structure, but it is not essential). They are
not used at present, but these bits could be explored in a fu-
ture extension. For example, if the storage of two triangles
was permitted per inner node, the index to the extra triangle
could be stored there.

Similar to inner nodes, our scheme supports two different
types of leaf nodes, which leads to a significant additional
reduction in the memory space required to store the indices
of the triangles found in the leaves. The leaf nodes share
the same layout type indicator, i.e., 011, but they are cate-
gorized based on the 2-bit leaf-mode indicator, E. If a leaf
node has the indicator value 00 (refer to Figure 3(c)), it is
found in the 4-byte mode, while information on the list of
triangles for a leaf node is found in a 4-byte triangle index
list: i.e., an array of 4-byte unsigned integers specifying the
indices in the array of triangles. This format is basically the
same as the data layout in [Wal04] where the 32 bits, F, and
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32 bits 29 bits

A

3 bits

B C

(a) An inner node:
A = 000/001/010 (type I), or
A = 100/101/110 (type II)

32 bits 29 bits

A

3 bits

D unused

(b) A T-reference node:
A = 111

32 bits 27 bits

E A

2 bits 3 bits

F G

(c) A leaf node (4-byte mode):
A = 011 and E = 00

32 bits 16 bits 11 bits

E A

2 bits 3 bits

F I H

(d) A leaf node (2-byte mode):
A = 011 and E = 01

Figure 3: Data layouts for kd-tree nodes. As in [Wal04], a unified layout based on 8 bytes is used for efficient memory access,
which represents various types of kd-tree nodes. In our scheme, the type of node is categorized based on the 3-bit layout
indicator A and the 2-bit leaf-mode indicator E.

the following 27 bits, G, indicate the first item in the array
and the number of triangles sorted in the leaf, respectively.

The final layout is the leaf node in the 2-byte mode, which
is indicated by the leaf-mode indicator value 01 (refer to
Figure 3(d)). A leaf node generally contains a few triangles
that are frequently stored in the array of triangles with high
spatial coherence. This implies that their 4-byte unsigned in-
teger type indices frequently share the same upper 16 bits
with only the lower 16 variable bits. To compress the mem-
ory space required by the indices, we allocate an extra trian-
gle index list where 2-byte elements store the lower 16 bits
of the indices.

Similar to the 4-byte mode, the 32-bit field F and the 11-
bit field H represent the pointer to the first item in the new
list and the corresponding number of triangles, respectively.
The actual index to the array of triangles is reconstructed
easily when combined with the higher 16 bits shared in the
bit field I. The effect of using the new leaf type on memory
space reduction is generally very encouraging. For example,
if the Conference scene was represented in our format, only
140,177 out of 1,705,325 triangle indices in the leaves of a
kd-tree would be stored in the 4-byte mode whereas the tri-
angle indices of the other 1,565,148 indices would be stored
in a compressed form in the 2-byte array (see the ours (f) row
in Table 3(a)).

4. Experimental results

We fully implemented our kd-tree representation scheme
and compared the new kd-trees with those produced using
the construction algorithm [WH06] and the compact data
layout [Wal04], which we refer to as standard kd-trees. In
our experiments, we used five scenes with low to high ge-
ometric complexity and tested three different camera views
per scene to facilitate a robust comparison between differ-
ent kd-tree techniques (see Figure 4). Unless stated other-
wise, all of the evaluations were performed using a PC with
dual 3.46 GHz Intel Xeon six-core CPUs and an NVIDIA
GeForce GTX 580 GPU. The rendering frame rate was mea-
sured while rendering a 1024× 1024 image using full ray
tracing with 1- or 12-threaded 4× 4 SIMD ray packets on
the CPU and CUDA blocks with 4×32 threads on the GPU.

As described in Section 3, three major parameters can af-

(a) Kitchen (101,015 triangles)

(b) Conference (190,947 triangles)

(c) Soda Hall (2,167,474 triangles)

(d) San Miguel (10,500,551 triangles)

(e) Power Plant (12,748,510 triangles)

Figure 4: Example scenes and the camera views tested.
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fect the construction of the new kd-trees: i.e., two thresh-
olds, τoccu and τ f req, control the selection of a triangle from a
given subtree, while an integer, maxt2rn, limits the maximum
number of inner nodes along a path to the root node that can
hold a triangle. The graphs shown in Figure 5 illustrate typi-
cal patterns of the performance variation found with our kd-
trees with different combinations of τoccu and τ f req. First,
for a given occupancy threshold (occupancy in the graph),
the effect of kd-tree-size reduction declined as the frequency
threshold increased (frequency in the graph). This was ob-
vious because a higher frequency threshold would make it
difficult to pick triangles for inner nodes. Second, the same
trend was observed when increasing the occupancy thresh-
old, although this was less obvious, which suggests that the
reduction of the kd-tree size relative to a standard kd-tree
was more sensitive to the frequency parameter than the oc-
cupancy parameter. Third, the frame-rate degradation when
an image was ray-traced using a new kd-tree also decreased
as the two threshold values increased. This phenomenon is
also easy to understand because the sparse distribution of tri-
angles on the inner nodes due to large threshold values min-
imizes the waste of computational resources caused by un-
necessary early ray-triangle intersection calculations. There-
fore, it is particularly important to set the occupancy thresh-
old at a sufficiently high value to maintain the frame-rate
degradation at a consistently low level.

Given these results, we tested two different combinations
of the two thresholds where maxt2rn was set to 4. In the first,
a higher priority was given to a reduction of the frame-rate
degradation: i.e., (τoccu,τ f req) = (0.9,0.7). In the second,
we aimed to achieve greater kd-tree-size reduction while
maintaining the frame-rate degradation at an acceptably low
level: i.e., (0.5,0.4). The two subtables in Table 3 show the
experimental results, where ours (f) and ours (s) correspond
to the kd-trees for the first and second combinations, respec-
tively. Table 3(a) shows that the number of kd-tree nodes de-
creased markedly because highly redundant triangles were
moved from leaf nodes to inner nodes so the kd-trees were
shorter in height, which is discussed later, and they also re-
quired less memory space for storage (the number of trian-
gles stored in the inner nodes are specified in the t-inner col-
umn). In addition, the use of less restrictive thresholds al-
lowed us to control the construction process effectively to
create a kd-tree with a smaller number of nodes.

As expected, culling redundant triangles from the leaf
nodes significantly increased spatial coherence in the trian-
gle list between the triangles intersecting with a common
leaf node, which facilitated the storage of a substantial pro-
portion of the triangle indices in the 2-byte mode (compare
the figures in the 4-byte mode and 2-byte mode columns).
The 2-byte mode technique could also be used for storing
a standard kd-tree, but its effect was less significant due to
worse locality of triangle reference (observe the decrease in
the number of triangle indices in the total column). Overall,
we achieved a kd-tree-size reduction of 26.4% to 46.1% dur-

ing the fast rendering-preferred kd-trees (ours (f)) and 32.2%
to 56.4% for the small size-preferred kd-trees (ours (s)).

By contrast, the second table (b) of Table 3 shows the tem-
poral performance of the new kd-trees in terms of frame-rate
variation when a 1024× 1024 image was rendered by full
ray tracing. The timing results showed that the application
of the fast rendering-preferred parameters (ours (f)) resulted
in less than 3.8% (the Soda Hall scene) to 6.9% (the Power
Plant scene) frame-rate degradation compared with the stan-
dard kd-trees, which was quite encouraging given that the
storage of triangles in the inner nodes may incur unneces-
sary ray-triangle intersection computations and it also de-
grades the parallel performance of kd-tree traversal on the
CPU and GPU because of the introduction of additional
branch tests in the inner nodes. When size reduction was pre-
ferred (ours (s)), the frame-rate drop increased due mainly to
the increased number of early ray-triangle intersection calcu-
lations, although it was usually below 9.8% (the Conference
scene) to 12.5% (the San Miguel scene), which may be ac-
ceptable in many situations given the reduced memory sizes.

Note that culling triangles from the leaf nodes also con-
tracted the kd-trees. The two example distributions shown
in Figure 6 illustrate the common patterns of changes in
the frequencies of leaf node depths when a different type
of kd-tree was employed. First, the maximum depth, i.e.,
the height of the kd-tree, decreased from 181 (the stan-
dard kd-tree) to 87 (the fast rendering-preferred kd-tree) and
71 (the small size-preferred kd-tree) for the Soda Hall scene,
and from 75 to 62 and 57, respectively, for the San Miguel
scene. Second, the peak of the distribution tended to move
slightly to the left, where significant frequency reductions
were made. Naturally, the shorter structures decreased the
kd-tree traversal cost during ray tracing. Frequently, we ob-
served that the frame-rate drops with the new kd-trees were
markedly smaller on the GPU than the CPU, particularly in
the Conference and Soda Hall scenes (see Table 3 again).
This may be because the kd-tree contraction had a more
positive impact on the GPU ray-tracer, probably because the
GPU is generally more vulnerable to frequent, costly diver-
gent branches during kd-tree traversal. However, this phe-
nomenon appeared to be quite complex.

Finally, we achieved very good performance when the
value of the maxt2rn parameter was set to 4, although it was
not always the best, but it provided a balance between the
ray-tracing speed and kd-tree-size reduction. If a larger value
was used, the additional compression effect was generally
insignificant, which was probably because the fixed τoccu
and τ f req values tended to restrict the selection of additional
triangles from subtrees at lower levels. The kd-trees usually
behaved rather unexpectedly if a value less than 4 was used.

5. Concluding remarks

The main aim of this work was to select triangles that were
duplicated in an excessive number of the leaf node voxels

c© 2013 The Author(s)
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Figure 5: The effects of varying the occupancy and frequency thresholds on the spatial and temporal performances of the new
kd-trees. The experimental results obtained for the Soda Hall scene where maxt2rn was set to 4 show the typical variations in
the performance patterns. The kd-tree size reduction represents the memory size reduction with the new kd-tree relative to the
standard form, while the frame-rate degradation indicates the corresponding slowdown rate for the ray-tracing frame rate.
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Figure 6: Contraction of kd-trees (maxt2rn = 4). We com-
pared the frequency distribution of the leaf node depths of
the three types of kd-trees and there was a clear reduction in
height when the new kd-tree representation was applied.

during kd-tree construction, and store them in appropriate
inner nodes to avoid redundancy. The experimental results

method Kitc. Conf. Soda H. San M. Pow. P.
std. 1.4 2.7 27.4 249.2 286.0

ours (f) 5.2 8.6 54.4 1,671.5 2,283.6
ours (s) 5.0 7.0 60.2 1,323.8 1,825.6

Table 4: Kd-tree construction times (sec.). The construc-
tion algorithms were run on a 3.1 GHz Intel Xeon eight-core
CPU, but the runtimes could be reduced greatly by using
GPU algorithms such as [ZHWG08, HSZ∗11, WZL11].

indicated that our method provided a significant kd-tree-size
reduction while avoiding any serious degradation of the tim-
ing performance by carefully selecting the triangles.

As implied in Table 4, our method is currently limited to
static scenes because the kd-tree construction algorithm re-
quires the repeated application of the standard SAH-based
construction process [WH06], which is needed for estimat-
ing the occupancy of triangles in a voxel. The occupancy
measure might also be approximated in terms of the area
of the triangle clipped to the current voxel (the theory of
geometric probability [San02] states that the probability of
a triangle being hit by a random ray is proportional to the
area of the triangle). If we could develop an effective oc-
cupancy measure that does not require the construction of
an SAH-based kd-tree, a simple modification of the stan-
dard kd-tree construction algorithm might generate space-
efficient kd-trees very quickly.

Dynamic scenes are used widely nowadays, but the con-
struction of space-efficient kd-trees is still important for
static scenes, particularly when large ones are ray-traced.
We tested a larger scene that was built by duplicating the
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Power Plant scene three times (38.2 million triangles), and,
similar to the results in the previous section, achieved a kd-
tree-size reduction of 35.2% and 36.9% (from 2,181.9 MB
to 1,414.1 MB and 1,377.2 MB) for two different threshold
pairs, while the respective frame-rate degradation was 2.9%
and 5.8% on average (the single-thread mode) for three dif-
ferent views, which indicates the potential of our method for
very complex scenes. Note that our method only encodes the
acceleration structure but the scene geometry also requires
a substantial amount of memory space. Therefore, combin-
ing our technique with proper quantization and/or geometry
compression techniques would have a great synergistic ef-
fect for the ray tracing of very large polygonal models.
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(a) Statistics related to the kd-tree size. In this table, t-inner indicates the new type of inner nodes that hold references to triangles, while the figures
in parentheses in the rightmost column represent the size reduction of the new kd-tree relative to the standard SAH-based kd-tree.

scene
tree
rep.

no. of kd-tree nodes no. of indices to triangles used
memory

(MB)inner t-inner leaf total
4-byte 2-byte

totalmode mode

Kitchen
(101,015)

std. 112,100 0 112,101 224,201 323,606 0 323,606 2.9
ours (f) 87,711 11,923 99,635 199,269 12,570 265,761 278,331 2.2 (26.4%)
ours (s) 50,616 32,859 83,476 166,951 10,369 227,220 237,589 2.0 (32.2%)

Conference
(190,947)

std. 692,332 0 692,333 1,384,665 2,752,009 0 2,752,009 21.1
ours (f) 356,436 104,548 460,985 921,969 140,177 1,565,148 1,705,325 11.4 (46.1%)
ours (s) 197,930 142,872 340,803 681,605 117,488 1,280,786 1,398,274 9.2 (56.4%)

Soda Hall
(2,167,474)

std. 4,514,974 0 4,514,975 9,029,949 16,539,116 0 16,539,116 132.0
ours (f) 2,765,685 600,247 3,365,933 6,731,865 427,739 11,026,989 11,454,728 78.6 (40.4%)
ours (s) 1,288,647 1,132,261 2,420,909 4,841,817 326,192 8,230,869 8,557,061 62.5 (52.6%)

San Miguel
(10,500,551)

std. 24,028,541 0 24,028,542 48,057,083 77,619,842 0 77,619,842 662.7
ours (f) 15,596,361 3,213,304 18,809,666 37,619,331 15,856,444 42,257,800 58,114,244 452.6 (31.7%)
ours (s) 7,915,317 6,186,060 14,101,378 28,202,755 13,472,086 33,806,033 47,278,119 378.2 (42.9%)

Power Plant
(12,748,510)

std. 21,992,127 0 21,992,128 43,984,255 78,550,737 0 78,550,737 635.2
ours (f) 13,770,505 3,030,957 16,801,463 33,602,925 8,984,545 46,722,160 55,706,705 402.9 (36.6%)
ours (s) 7,326,642 5,649,934 12,976,577 25,953,153 7,628,722 38,600,428 46,229,150 343.8 (45.9%)

(b) Statistics related to the ray-tracing time (fps). For the CPU, the timings were measured in a single-thread mode (CPU1) and a 12-thread
mode (CPU12) using dual 6-core CPUs. The figures in parentheses represent the increase in the ray-tracing time with the new kd-tree relative
to the standard SAH-based kd-tree. The frame rates marked with an asterisk were measured using an NVIDIA Quadro 6000 GPU because the
standard SAH trees and the geometry data would not fit into the memory of the NVIDIA GeForce GTX 580 GPU.

scene
tree
rep.

Camera view 1 Camera view 2 Camera view 3
CPU1 CPU12 GPU CPU1 CPU12 GPU CPU1 CPU12 GPU

Kitchen
(101,015)

std. 0.867 8.621 16.448 0.959 8.772 20.388 0.709 6.536 11.489

ours (f)
0.854
(1.6%)

8.403
(2.6%)

15.971
(3.0%)

0.949
(1.1%)

8.696
(0.9%)

19.396
(5.1%)

0.700
(1.3%)

6.410
(2.0%)

11.189
(2.7%)

ours (s)
0.794
(9.2%)

7.874
(9.5%)

15.009
(9.6%)

0.878
(9.2%)

8.000
(9.6%)

18.242
(11.8%)

0.657
(7.9%)

5.988
(9.2%)

10.545
(9.0%)

Conference
(190,947)

std. 1.852 18.868 24.131 1.689 16.393 22.933 2.024 19.608 26.332

ours (f)
1.828
(1.3%)

18.182
(3.8%)

23.895
(1.0%)

1.634
(3.4%)

15.625
(4.9%)

22.695
(1.0%)

1.961
(3.2%)

18.868
(3.9%)

26.044
(1.1%)

ours (s)
1.727
(7.2%)

17.241
(9.4%)

23.083
(4.5%)

1.555
(8.6%)

15.152
(8.2%)

22.054
(4.0%)

1.869
(8.3%)

17.857
(9.8%)

25.361
(3.8%)

Soda Hall
(2,167,474)

std. 1.248 11.364 14.638 1.395 12.658 19.975 0.454 4.132 5.123

ours (f)
1.209
(3.2%)

10.989
(3.4%)

14.397
(1.7%)

1.374
(1.5%)

12.195
(3.8%)

19.378
(3.1%)

0.442
(2.8%)

3.984
(3.7%)

5.496
(-6.8%)

ours (s)
1.135

(10.0%)
10.309
(10.2%)

13.687
(6.9%)

1.276
(9.3%)

11.364
(11.4%)

18.241
(9.5%)

0.430
(5.5%)

3.906
(5.8%)

5.471
(-6.4%)

San Miguel
(10,500,551)

std. 0.102 1.016 2.576∗ 0.153 1.406 3.321∗ 0.285 2.584 4.744∗

ours (f)
0.097
(5.1%)

0.965
(5.3%)

2.473∗

(4.2%)
0.149
(2.8%)

1.364
(3.1%)

3.166∗

(4.9%)
0.277
(3.1%)

2.519
(2.6%)

4.511∗

(5.2%)

ours (s)
0.091

(12.5%)
0.907

(12.1%)
2.307∗

(11.7%)
0.138

(11.0%)
1.297
(8.4%)

3.016∗

(10.1%)
0.255

(11.8%)
2.387
(8.3%)

4.330∗

(9.6%)

Power Plant
(12,748,510)

std. 0.421 3.497 11.458∗ 0.522 4.444 6.842∗ 1.229 11.111 16.092∗

ours (f)
0.424

(-0.7%)
3.401
(2.8%)

11.173∗

(2.6%)
0.506
(3.2%)

4.202
(5.8%)

6.630∗

(3.2%)
1.217
(1.0%)

10.753
(3.3%)

15.058∗

(6.9%)

ours (s)
0.399
(5.4%)

3.185
(9.8%)

10.460∗

(9.5%)
0.473

(10.4%)
3.953

(12.4%)
6.198∗

(10.4%)
1.171
(4.9%)

10.417
(6.7%)

14.376∗

(11.9%)

Table 3: Spatial and temporal performance of the new kd-trees. Several scenes with low to high geometric complexity were used
to compare the new kd-tree representation with the standard method (std.), which is based on the construction and representation
methods given in [WH06] and [Wal04], respectively. Two combinations of occupancy and frequency thresholds were tested to
produce a fast ray-tracing speed (ours (f)) and a small kd-tree size (ours (s)).
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