
Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

Diffuse Global Illumination in Particle Spaces

Byungjoon Chang · Sanghun Park ·
Insung Ihm

Received: date / Accepted: date

Abstract Despite substantial efforts in recent years to accelerate rendering meth-
ods, the traditional method, based on a combination of recursive ray tracing (RT),
photon mapping (PM), and final gathering (FG), is still regarded as computation-
ally intensive. In this paper, we propose a practical ray tracing model that can
be readily implemented on a graphics processing unit (GPU) to provide high-
speed generation of global illumination, whose quality is comparable to that gen-
erated through the traditional time-consuming RT/PM/FG rendering method.
Our method employs two particle spaces to generate computationally intensive
diffuse interreflection more efficiently. The complexity of light transport within a
scene is simulated in one particle space by using indirect light scattering and gath-
ering operations. The calculation that estimates the reflected radiance caused by
diffuse interreflection is optimized by using a second particle space, where only the
radiance required for final rendering can be rapidly approximated, based on the
simulated light flux in the first particle space. We present several example scenes
to demonstrate that our ray tracing scheme enables the use of a rendering pipeline
that fully exploits the computing architecture of current manycore processors to
reproduce effective high-quality global illumination.

Keywords global illumination · diffuse interreflection · particle space · ray
tracing · photon mapping and final gathering · multiple bounces

B. Chang
Graphics Laboratory, Digital Media and Communications R&D Center, Samsung Electronics,
Suwon 443-742, Republic of Korea
Tel.: +82-31-279-8158, Fax: +82-31-279-1295
E-mail: bj81.chang@samsung.com

S. Park
Department of Multimedia, Dongguk University, Seoul 100-715, Republic of Korea
Tel.: +82-2-2260-3765, Fax: +82-2-2260-3766
E-mail: mshpark@dongguk.edu

I. Ihm
Department of Computer Science and Engineering, Sogang University, Seoul 121-742, Republic
of Korea
Tel.: +82-2-705-8493, Fax: +82-2-704-8273
E-mail: ihm@sogang.ac.kr

2 Byungjoon Chang et al.

1 Introduction

1.1 Background

The faithful reproduction of light transport within a scene is an essential element
of physically based photorealistic rendering. One of the most important, but com-
putationally intensive, aspects of light transport rendering is diffuse interreflection,
which refers to the reflection of incident light arriving from diffuse surfaces after
one or more bounces from other diffuse surfaces. Since the path tracing method
was introduced to the computer graphics community by Kajiya [15], a number of
effective global illumination algorithms, such as radiosity and photon mapping,
have been developed over the years to generate indirect illumination effects. Re-
cent advances in massively parallel manycore processing technology have further
intensified the demand for interactive, or real-time, reproduction of global illumi-
nation in complex scenes. An essential requirement for achieving this elusive goal
is the development of an effective computational model for light transport that
can run efficiently on the computing architecture of current manycore processors
without significantly sacrificing the quality of the global illumination produced.

A challenging aspect of diffuse interreflection is the inherent light scattering
property of diffuse surfaces, which makes it difficult to follow transported light pre-
cisely. To produce an acceptable outcome, it is often necessary to trace a huge num-
ber of light paths of similar importance, without being able to focus on a smaller
subset. In addition, as in the difficult situations exemplified by Figure 1, it often
happens that a large number of indirect light bounces must be processed to pro-
duce adequate indirect illumination effects. Many of the recent interactive global
illumination algorithms rely on heuristic methods, such as hierarchical represen-
tations of indirect light or irradiance/radiance caching, and often limit themselves
to a few light bounces for efficiency in computation (see the survey paper [26] for a
summary of interactive global illumination techniques). In summary, despite sub-
stantial recent research efforts being directed toward the development of practical
algorithms, producing high-quality diffuse interreflection interactively for complex
scenes remains a challenge.

1.2 Our contribution

In this paper, we present an extended ray tracing model that aims to rapidly
produce global illumination effects, whose quality is comparable to that generated
using the computationally intensive final gathering technique. To develop a light
transport model that fully harnesses the massively parallel computing power of
current graphics processing units (GPUs), we discretize the light transport space
into a particle-based discrete system, where indirect illumination is simulated using
a simple three-stage GPU-friendly rendering algorithm (refer to Figure 4 for an
overview of our method).

In the geometry stage, the input scene is first discretized into a collection of
particles, called area particles, each of which represents a small area around its
center (see Figure 2(a)). Then, via directional stochastic sampling over the hemi-
sphere around each area particle, a small number of light paths, called area particle
links, are constructed in the area particle space, which allows efficient indirect light

Diffuse Global Illumination in Particle Spaces 3

(a) 2 bounces (45.5 ms) (b) 4 bounces (51.0 ms) (c) 6 bounces (56.2 ms)

(d) 8 bounces (60.6 ms) (e) 10 bounces (65.8 ms) (f) Reference (3.98 min)

(g) 4 bounces (h) 8 bounces (i) 10 bounces

Fig. 1 Effect of multiple bounces of diffuse interreflection. In a complex situation such as
this maze scene, which comprises 241,080 triangles and 2 lights, it is important to handle
diffuse interreflection carefully to show subtle changes in indirect illumination. The timings (in
milliseconds) are for an NVidia GeForce GTX 680 GPU to generate a 1, 024×1, 024 pixel image
by full ray tracing after 6.43 seconds of the geometric stage of a computation that allowed free
changes of viewpoint and lights. The reference image was generated by our GPU ray tracer
implementing photon mapping with final gathering.

scattering in the discrete system. In addition, to minimize the overhead caused by
repeated estimation of the reflected radiances at shading points in our photon-
mapping-style algorithm, we identify another kind of particle, called a radiance
particle. These particles are implicitly defined to exist at the vertices of the sub-
triangles obtained by tessellating each triangle in the geometric models for the
scene (Figure 2(b)). Each radiance particle is associated with a list of area parti-
cles, called a radiance estimation list, that includes the area particles whose fluxes
are used in the radiance estimation. In the next lighting stage of the indirect light

4 Byungjoon Chang et al.

(a) Area particles (b) Radiance particles (c) Diffuse interreflection

(d) Ours 1 (146.8 ms) (e) Ours 2 (293.0 ms) (f) Reference (9.76 min)

Fig. 2 Light transport in particle spaces. (a) The BATHROOM scene with 256,907 triangles
discretized into 200,000 area particles for the efficient simulation of light transport on a GPU.
(b) The reflected radiance from diffuse interreflection is based on the transported light flux in
the area-particle space and estimated only for necessary radiance particles. (c) The estimated
radiance at the radiance particles is then ray-traced to create diffuse interreflection on the
surfaces of objects effectively. (d) & (e) The method is easily combined with a Whitted-
style ray tracer with (d) single-pixel sampling and (e) adaptive supersampling [14] that allows
antialiased, high-quality rendering. (f) Our results show only slight visual differences compared
with the reference image, generated by our GPU ray tracer supporting photon mapping with
final gathering.

scattering, the radiant energy from light sources is efficiently propagated among
the area particles using the area particle links. In the final ray tracing stage, the
small set of radiance particles actually involved in shading are first extracted via
preliminary ray tracing. An additional light transport pass, called indirect light
gathering, is then conducted, only for the area particles in the radiance estimation
lists of the extracted radiance particles, to estimate the reflected radiance. This
enables the production of high-quality diffuse interreflection that compares favor-
ably to that achieved via the final gathering method (see Figure 2(c) for the diffuse
interreflection generated using our method). Finally, a recursive ray tracer is run,
whereby the diffuse interreflection at each ray-surface hit is calculated quickly by
simple linear interpolation using the radiance of three surrounding radiance par-
ticles. See Figure 2 for a comparison of our results ((d) and (e)) with a reference
image ((f)) generated by a GPU ray tracer that implements photon mapping with
final gathering.

Diffuse Global Illumination in Particle Spaces 5

The proposed method adopts a discrete light transport model that is suited
to straightforward and efficient implementation on a GPU. By using two particle
spaces, the light scattering and light gathering computations, which correspond to
the photon tracing and final gathering stages, respectively, are effectively combined
to produce an interactive global illumination algorithm. The area particle links
enable the efficient generation of the diffuse interreflection, which may often require
many indirect light bounces. The refined area particle model also facilitates the
removal of problematic visual artifacts such as the boundary bias. In addition, the
radiance particles enable the effective production of low-cost high-quality global
illumination on the fly during ray tracing.

Note that the idea of particle-based (or point-based) global illumination is not
new. For example, Christensen [2] discretized the scene geometry using a point
cloud of surface elements (surfels) with direct illumination values. The surfels were
organized into an octree on the fly during rendering, where, for each octree node,
a spherical harmonic representation of the radiant power emitted in the node was
computed. The diffuse indirect illumination was then approximated by traversing
the octree and rasterizing the color contribution from the visited nodes. Although
very effective, this method is not well suited to rendering scenes that need to
simulate many bounces of light propagation because the entire process must be
iterated for every light bounce to update the radiosity of the surfels in the point
cloud.

Lehtinen et al. [20] also simulated indirect illumination on point samples scat-
tered across a scene. However, their work focused more on efficient computation
of direct-to-indirect light transport for complex scenes based on a hierarchical
function, and required up to 30 minutes of precomputation on a CPU to allow
for changes in the dynamic viewpoint and lights. In contrast, our method aims
to provide a global illumination scheme, which is much simpler in computational
structure and is therefore better suited to GPUs. As a result, our method can
generate the indirect illumination from multiple bounces by simply following the
area particle links in parallel on the GPU. Furthermore, it usually takes less than
10 seconds to create a full set of area particles, area particle links, and radiance
estimation lists from an input scene comprising a few hundreds of thousands of
triangles, which then permit an interactive response to changes in the dynamic
viewpoint and lights.

Furthermore, like our method, Schmitz et al. represented discretely-sampled
explicit visibility using a similar link structure to accelerate radiance propagation
through the scene by carrying out repeated gathering operations at the vertices
of geometric models [30]. However, our light transport algorithm differs in that
it employs both scattering and gathering operations via geometry-decoupled area
particles for optimizing the higher-bounce light propagation process. The effective-
ness of performing both scattering and gathering operations on the fly to compute
diffuse global illumination is discussed with examples in Section 5.1.

2 Related work

There exists a vast body of research on computing global illumination, so we only
consider the most relevant work in this section. Jensen developed a two-pass algo-
rithm, known as photon mapping, as a practical method for solving the rendering

6 Byungjoon Chang et al.

equation [15], which effectively generates the full range of global illumination ef-
fects [12]. Final gathering stochastically samples the incident radiance at each
shading point; this method is easily combined with photon mapping to eliminate
any visually objectionable blotchiness that might result from directly visualiz-
ing insufficiently sampled photons [38]. The combination of recursive ray tracing,
photon mapping, and final gathering routinely generates high-quality global illu-
mination, but this method is usually computationally intensive, because of the
large amount of visibility computation required for photon tracing and radiance
gathering, the repetitive photon queries required for radiance estimation, and the
use of large numbers of photons and gathering rays during high-quality rendering.

Several caching and interpolation techniques have been proposed to reduce the
cost of performing final gathering for only a sparse set of surface points [38,37,32,
17,1]. These methods are very effective on the CPU, but they are not well suited
for efficient GPU implementation because of their inherent computing structures,
which usually demand sequential queries and cache updates. In contrast, the first
GPU implementation of photon mapping by Purcell et al. [25] and its variants
greatly accelerated photon mapping and final gathering on the GPU (refer to [19,
9,33] for some examples of early work). Zhou et al. developed a fast GPU-assisted
kd-tree algorithm for fast ray tracing and photon mapping [40]. Wang et al. ex-
tended this algorithm by adding several complex global illumination effects at
interactive speed, which reduced the rendering cost by performing the final gath-
ering operation only at cluster centers [36]. Fabianowski and Dingliana extended
the idea of photon differentials to interactively handle diffuse reflections for dy-
namic lights and cameras [8]. Ritschel et al. developed a micro-rendering technique
to accelerate final gathering on the GPU, which allowed efficient gathering of radi-
ance using tiny micro-buffers [27]. Image space photon mapping methods were also
presented by McGuire and Luebke [21] and Yao et al. [39] to achieve interactive
global illumination in the context of rasterization-based rendering pipelines.

Instant radiosity, presented by Keller [16], and its successors comprise an im-
portant class of interactive global illumination techniques, where indirect illumina-
tion within a given scene is approximated by a small set of stochastically sampled
particles that represent virtual point lights. Shadow maps are commonly exploited
on the GPU for interactive rendering to solve the key problem of determining the
visibility between particles and visible surface points. Ritschel et al. used precom-
puted shadow maps [28] for rigid objects, and Laine et al. progressively reused the
shadow maps for fast approximation of one-bounce indirect illumination, which
eliminated the need for recomputing after every frame [18]. Ritschel et al. approx-
imated visibility with indirect illumination by using low-resolution shadow maps
during interactive rendering of moderately complex and fully dynamic scenes [29].

Walter et al. presented a hierarchical, error-bounded solution for the many-light
problem, which is similar to the instant radiosity problem, where the visibility is
computed based on ray tracing [35,34]. Hašan et al. formulated this problem as a
large matrix of sample–light interactions, and applied a shadow mapping method
to approximately sample the rows and columns of the matrix [11].

Reflective shadow maps were used by Dachsbacher and Stamminger for fast ap-
proximation of one-bounce indirect illumination by ignoring indirect visibility [3,
4]. Multiresolution splatting techniques were applied by Nichols et al. to efficiently
compute one-bounce indirect illumination [23,22]. Dachsbacher et al. [5] and Dong
et al. [6] took a different approach to the visibility problem by treating visibility

Diffuse Global Illumination in Particle Spaces 7

in an implicit manner by transmitting negative radiance. Finally, there are sev-
eral precomputed radiance transfer methods that support interactive rendering of
several interesting global illumination effects at the cost of a nontrivial amount of
precomputation, but we omit referencing these here because they are less relevant
to our approach. Refer to the work of Sloan et al. [31] and variants.

3 Discretization of light transport space

In this section, we first describe the basic elements that comprise the discretized
light transport system, before providing a detailed description of our rendering
pipeline in the following section.

3.1 Area particles and particle links

The most fundamental element in discretization is identifying a set of locations
where light interacts with geometries. In our method, we use a collection of area
particles distributed on the surfaces of geometric models at a given density. Each
particle represents a small area around it, which is associated with a list of quanti-
ties to describe indirect illumination in the area. These area particles are prepared
in a preprocessing stage, to define a basic discrete space where the light trans-
port simulation is performed. They are decoupled from the actual geometries, so
light simulation can be conducted independently of the complexities of geometric
models.

The next elements of the discretized computational space are light paths be-
tween surfaces. One of the most time-consuming components of most global illu-
mination algorithms is the visibility computation, which finds the paths of light
propagation. A key motivation behind our work is to reduce the expense of visibil-
ity computing by simulating light transport using preselected discrete light paths.
Specifically, we construct light paths, called area particle links (or just particle links
for short), that discretize the directional space over the hemisphere around each
area particle. A given number of directions are sampled stochastically, based on
cosine-weighted hemisphere sampling in a stratified manner. Then, for every direc-
tion sample, the method finds the area particle closest to the visible surface point
along the direction and associates its ID with the direction. Once this sampling
process is completed for all directions and all area particles, we have a collection of
particle links of a given resolution to discretely represent the potential light paths
in the computational domain.

3.2 Radiance particles and estimation lists

In addition to the visibility computation, another time-consuming component of
photon-mapping-style global illumination algorithms is the estimation of the re-
flected radiances at shading points, which demands repetitive queries to locate
the nearest photons around arbitrary surface points during density estimation. To
avoid excessive on-the-fly searches (for neighboring area particles in our method)
during rendering, we separate the radiance estimation process into two phases.

8 Byungjoon Chang et al.

Projected area of sphere

for radiance estimation

(a) Implicitly defined radiance
particles

(b) A result of a simple photon
mapping based renderer

(c) Our result

Fig. 3 Estimation of reflected radiance at radiance particles. Using a preselected set of area
particles per radiance particle, a fast estimation of the reflected radiance is possible, which
also allows to eliminate the well-known boundary bias problem [13].

First, we estimate diffusively reflected radiance for only a small set of surface
points, called radiance particles, using preselected area particle lists, called radi-
ance estimation lists (or simply estimation lists for short). Then, during recur-
sive ray tracing, the indirect illumination at each ray-surface intersection point,
whether hit by a primary or secondary ray, is quickly approximated on the fly using
a simple linear interpolation of radiance estimates for three surrounding radiance
particles.

Decoupling the shading points (i.e., the ray-surface hit points) from the actual
locations of reflected radiance estimation makes it possible to avoid any unneces-
sary, computationally intensive estimation computation without seriously affecting
the quality of the global illumination effect. However, identifying the best set of
radiance particles is an intractable problem, so our current implementation simply
subdivides each triangle of geometric models into subtriangles, by tessellating the
three edges such that the resulting elements have sizes smaller than a user-specified
threshold value. The vertices of the subtriangles are enumerated in the order of
triangle strips to become radiance particles of their respective triangles. There is
no need to record the actual coordinates of radiance particles, because information
on a subtriangle containing a given shading point can be quickly extracted on the
fly during ray tracing.

Once the radiance particles are selected, a list of area particles is constructed for
every radiance particle, in the form of a radiance estimation list. Note that, when
an estimation list is created, only the area particles that exist within the sphere of
a given radius and have similar surface normals to the given radiance particle, are
added to the list. It enables to replace expensive searches for neighboring area par-
ticles with a low-cost scan of a list. In addition, the estimation list allows a more
precise estimation of the actual projected area, simply by adding those of area
particles in the list. As a result, we can easily eliminate the problem of bound-
ary biases, which are often produced by photon-mapping style algorithms (see
Figure 3).

Diffuse Global Illumination in Particle Spaces 9

Geometry Stage

Update geometries Update particle links
Generate radiance particles

from geometries
Build radiance estimation lists

Update lights
Radiate fluxes

from lights

Perform

indirect light scattering

Perform

indirect light gathering

Update camera

Mark subtriangles

via preliminary ray tracing

Estimate radiance

at radiance particles

Perform ray tracing

for final rendering

Lighting Stage

Ray Tracing Stage
To Update geometries

To Update lights

To Update camera

Fig. 4 Rendering pipeline overview.

4 Rendering pipeline

Figure 4 illustrates the system overview of our rendering algorithm, which is split
into three phases: geometry stage, lighting stage, and ray tracing stage.

4.1 Geometry stage

When rendering starts, a geometry stage is conducted when necessary; it updates
proper acceleration structures to reflect any changes in geometries. First, each link
of the area particles is checked for its validity, and is updated if found to be in-
valid. Next, radiance particles are generated from geometries and a corresponding
estimation list is created for each. Unlike the particle link update, this step may
be skipped if the geometries are rigid, or only a slight deformation has occurred.
Currently, most of the time used during the geometry stage (actually in the en-
tire rendering computation) is spent on the link update, as will be seen, because
computationally intensive visibility computation by ray shooting is performed.

4.2 Lighting stage

Responding to dynamic lights and camera, the following two rendering steps
rapidly generate global illumination. First, the lighting stage, which is performed
whenever there is a change in either geometries or lights, constructs a discrete field
of indirect illumination in the area particle space.

4.2.1 Emission from light sources

The first substep in this stage is to distribute light energy from light sources to
area particles, by setting their initial fluxes. Unlike the conventional photon map-
ping algorithm, where the same power of emitted photons is recorded at arbitrary
first-hit surface locations, our method distributes the initial energy to preselected
particle positions, which requires the use of a modified light emission technique.

In the discrete area particle space, the ith particle is associated with a descrip-
tor that consists of, among other attributes: position p(i), surface normal n(i), area

of influence ∆A(i), diffuse BRDF f
(i)
r,d (= ρ

(i)
d /π for a diffuse reflectance ρ

(i)
d at

10 Byungjoon Chang et al.

p(i)), flux φ(i), and reflected radiance L(i). To simulate the direct illumination from
the jth point light having a total power Φj , we first check the visibility between
the light and each area particle (for efficiency, only front-facing area particles are
examined). When the ith particle is visible, the solid angle of the particle’s area

of influence when seen from the light is computed as ∆A(i) cos θi
d2
i

, where di is the

distance to the light and θi is the angle between the surface normal n(i) and the

direction toward the light. The photon power
Φj

4π
∆A(i) cos θi

d2
i

corresponding to the

solid angle is then accumulated into the flux φ(i) of the area particle.

4.2.2 Indirect light scattering via area particles

After completion of the light emission process for each light source, the directly il-
luminated radiant energy is propagated among the area particles using the particle
links. Given a set of particle links for the ith particle with ns×ns cosine-weighted
directional samples, one bounce of diffuse reflection on the particle can be ap-

proximated by accumulating the evenly divided reflected flux
ρ
(i)

d
·φ(i)

n2
s

for all the

destination particles on the links. Iterating this light bounce for all the area par-
ticles would effectively simulate the light propagation process. However, the light
scattering operation may generate a considerable number of concurrent writes to
the same global memory location, thereby leading to the possibility of inefficiency
in the current CUDA computing architecture, as a consequence of repeated uses
of the read-modify-write atomic operation.

For efficient light propagation, we first enumerate the particles directly illumi-
nated by lights, and use their full ns × ns links for only the first bounce, which
creates the most significant indirect light. In subsequent bounces for each jth end
particle, the light is scattered in only one randomly selected link direction, thereby

accumulating the reflected energy ρ
(j)
d · φ

(j) into the end particle (see Figure 5).
Note that the one-direction scattering scheme may introduce subtle high-frequency
noises in the scattered indirect illumination. However, they disappear in the final
ray tracing stage thanks to the indirect light gathering computation performed at
the area particles that participate in shading.

Fig. 5 Indirect light scattering from two area particles. Each computing thread is responsible
for light propagation from each directly illuminated area particle, which is simulated by one
light bounce with ns × ns direction samples, followed by nb extra bounces each using a single
random direction sample.

Diffuse Global Illumination in Particle Spaces 11

When the scattering phase is over, the reflected radiance L(i) for the ith par-
ticle, due to both direct and indirect illumination, is estimated using the accumu-
lated flux:

L(i) =

∫
Ω

f
(i)
r,d dE(p(i),ω) = f

(i)
r,d

∫
Ω

dE(p(i),ω)

= f
(i)
r,d

∫
Ω

d2Φ(p(i),ω)

dA
≈ f (i)

r,d ·
∑
k∆Φ(xk,ωk)

∆A(i)
,

where
∑
k∆Φ(xk,ωk) represents the sum of fluxes that have arrived in the ith

particle’s area. Since this is exactly φ(i), L(i) ≈ f (i)
r,d ·

φ(i)

∆A(i) .

4.3 Ray tracing stage

The rendering computation is completed as follows. First, preliminary ray tracing
is performed without shading or shadow computations to mark the subtriangles hit
by primary and/or secondary rays, thereby extracting a list of radiance particles
to be used for shading. Once the area particles found in the estimation lists of
the extracted radiance particles are collected, the indirect light gathering process
is performed for only those area particles. Radiance is then estimated for the
extracted radiance particles using their estimation lists based on the indirect light
field in the area particle space. Finally, the radiance field in the radiance particle
space is used in the final recursive ray tracing stage, to add the indirect illumination
effect.

4.3.1 Indirect light gathering at area particles

The forward light scattering mechanism we describe here results from an effort
to find a balance between computational time and quality of light propagation
simulation. This method is efficient, but it may result in visual artifacts, such
as blotchiness, which is often caused by insufficient sampling of light paths. To
alleviate this problem, an additional pass of light transport, known as indirect light
gathering, is conducted only for the relevant area particles to refine the discrete
flux field by collecting incoming radiance from other particles. This extra step
results in improved quality of global illumination, which compares favorably to
that achieved with the final gathering method. More importantly, this additional
gathering step ensures that the area particles hold the correct indirect illumination
due to diffuse interreflection, whereas the accumulated flux from the indirect light
scattering step contains light energy from both direct and indirect illumination.

In our method, we again use the particle links, which are generated based on a
cosine-weighted hemisphere sampling with PDF P (ω) = cos θ

π to approximate the

refined irradiance Ẽ(i) at the ith particle using a Monte Carlo estimator:

Ẽ(i) =

∫
Ω

Lin(p(i),ω) cos θ dω

≈ 1

Ngather

Ngather∑
k=1

Lin(p(i),ωk) cos θk
P (ωk)

12 Byungjoon Chang et al.

=
π

Ngather

Ngather∑
k=1

Lin(p(i),ωk),

where Ngather is the number of direction samples of the particle links and θk
is the angle between the kth sample direction ωk and the normal at p(i). To
approximate the incoming radiance Lin(p(i),ωk) from the direction ωk, let p(k

∗)

be the end particle corresponding to the direction. Then, under the assumption
that the actual intersection point of the kth gather ray is close enough to p(k

∗),
we have an approximation Lin(p(i),ωk) ≈ L(p(k

∗),−ωk) ≈ L(k∗). Thus, using the
light flux accumulated in the indirect light scattering step, we obtain an improved
irradiance estimate at p(i):

Ẽ(i) ≈ π

Ngather

Ngather∑
k=1

f
(k∗)
r,d ·

φ(k∗)

∆A(k∗)
.

This expression is simplified when area particles are distributed uniformly with
constant area ∆A:

Ẽ(i) ≈
(π

Ngather∆A

)Ngather∑
k=1

f
(k∗)
r,d · φ

(k∗),

which leads to more efficient CUDA implementation. By approximating the new
flux at the ith particle as φ̃(i) ≈ Ẽ(i) ·∆A(i), we arrive at a well-smoothed indirect
light field in area particle space.

4.3.2 Radiance estimation at radiance particles

After the gathering computation, the radiance L̄(l) at the lth radiance particle,

q(l), located on a surface with diffuse BRDF f
(l)
r,d, is estimated using the area

particles in its estimation list, as follows:

L̄(l) = f
(l)
r,d ·

dΦ(q(l))

dA
≈ f (l)

r,d

∑
m φ̃(m)∑
m∆A(m)

.

Again, this becomes L̄(l) ≈
f

(l)

r,d

m∆A

∑
m φ̃(m) when the area particles are distributed

uniformly.

4.3.3 Final ray tracing with adaptive supersampling

In the final substep, a recursive ray tracer is run where, for every ray-surface hit
along each ray path, the linearly interpolated indirect color is combined with those
from direct illumination and specular reflection/refraction. In addition to a single
pixel sampling version, we implemented an augmented ray tracer for producing
high-quality rendering images, performing antialiasing based on the recent adap-
tive supersampling method [14], which is known to support high sampling rates
as effective as 9 to 16 per pixel. The experimental results for the two ray tracers
are given next.

Diffuse Global Illumination in Particle Spaces 13

5 Implementation results

To show the effectiveness of our method, we implemented the extended ray
tracer using the CUDA platform [24], and tested performance on an NVidia
GeForce GTX 680 GPU. Figure 2 (BATHROOM) and Figure 6 (CBOX, SPONZA,
KITCHEN, CONFERENCE, and MAZE) show six selected test scenes, which
were ray-traced at a resolution of 1024 × 1024 with shading, textures, reflec-
tion/refraction, and shadows using appropriate numbers of area and radiance par-
ticles.

5.1 Computation time and memory space

As shown in Table 1, most of the time allocated to the geometry stage was con-
sumed by the construction of the 16× 16 particle links required for indirect light
gathering, whereas building the radiance estimation lists cost relatively little time.
The memory space required for storing area particles was roughly proportional to
the number of distributed particles. In contrast, the size of the radiance estimation
lists depended on both the number of generated radiance particles and the radius
of the radiance estimation. Our current implementation builds a radiance estima-
tion list for every generated radiance particle, but the memory requirement would
decrease markedly if these were constructed only for the radiance particles that
are actually used, as detected in the ray tracing stage. Furthermore, the entire
area particle links are newly built by shooting rays from all area particles during
visibility computation. Thus, if only part of the geometries had changed, then con-
siderably fewer actual links would require updating. Application of an optimization
technique to link updating will be addressed in a future implementation.

(Time unit: second)
CBOX SPON KITC CONF BATH MAZE

Triangles 8,024 66,454 98,503 190,947 256,907 241,080

Area particles 50,000 150,000 150,000 200,000 200,000 150,000
4 × 4 scattering 0.08 0.26 0.38 1.15 0.6 0.4
link generation (3.2MB) (9.5MB) (9.5MB) (12.9MB) (12.9MB) (9.5MB)

16 × 16 gathering 1.10 3.24 4.75 15.09 7.79 4.92
link generation (48.8MB) (146.5MB) (146.5MB) (195.3MB) (195.3MB) (146.5MB)

Tessellation 0.04 0.39 0.40 0.53 1.09 0.72
[Gen. rad. particles] [51,348] [596,914] [597,362] [812,199] [1,713,813] [1,119,435]

Rad. estimation 0.02 0.15 0.19 0.50 0.58 0.39
list generation (10.3MB) (120.1MB) (135.7MB) (367.4MB) (215.7MB) (365.9MB)

Table 1 Analysis of the geometry stage.

The two tables shown in Tables 2(a) and (b) indicate the actual rendering
times with and without application of the adaptive supersampling technique [14].
In this experiment, we selected the number of light scattering bounces (nb) by
incrementally increasing it until using a higher bounce made hardly any visual
difference with our method (note that the actual light bounces handled in the
rendering is nb + 1 including the indirect light gathering step).

14 Byungjoon Chang et al.

(a) 52.3 ms (b) 89.7 ms (c) 3.35 min

(d) 37.4 ms (e) 116.9 ms (f) 3.85 min

(g) 68.7 ms (h) 246.1 ms (i) 4.61 min

(j) 146.5 ms (k) 299.2 ms (l) 7.34 min

(m) 76.5 ms (n) 115.3 ms (o) 3.98 min

Fig. 6 Rendering results. The first and second images in each triple show our ray-traced results
using single pixel sampling and the adaptive supersampling technique [14], respectively. These
are compared with the third image, generated using an optimized GPU ray tracer that fully
supports the traditional photon mapping/final gathering method.

Diffuse Global Illumination in Particle Spaces 15

(a) Rendering time with single pixel sampling (ours)

CBOX SPON. KITC. CONF. BATH. MAZE

Lights 1 1 1 4 2 2
Scattering bounces (nb) 8 8 4 3 7 13

Total time (ms) 52.2 37.4 68.7 146.5 146.8 76.5
[FPS] [19.14] [26.72] [14.56] [6.82] [6.81] [13.08]

Light emission 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%
nb-bounce scattering 1.5% 3.5% 2.4% 8.0% 4.3% 4.6%
Prelim. ray tracing 50.6% 30.5% 37.9% 33.8% 29.8% 46.6%

[Found rad. particles] [35,844] [76,362] [130,533] [56,979] [212,866] [142,661]
16 × 16 gathering 1.8% 4.0% 4.8% 2.4% 3.0% 4.7%

[Used area particles] [43,170] [23,232] [84,257] [96,645] [88,194] [73,297]
Radiance estimation 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Ray tracing 45.8% 61.7% 54.7% 55.6% 62.7% 43.9%

(b) Rendering time with adaptive supersampling [14] (ours)

CBOX SPON. KITC. CONF. BATH. MAZE

Total time (ms) 89.7 116.8 246.3 299.4 293.3 115.3
[FPS] [11.15] [8.56] [4.06] [3.34] [3.41] [8.67]

Steps in table (a) 58.3% 32.0% 27.9% 49.0% 50.1% 66.3%
Alias detection 8.3% 7.1% 3.8% 2.6% 2.7% 6.3%

Prelim. ray tracing† 9.5% 17.3% 18.9% 9.1% 10.4% 4.4%
[Add. rad. particles] [512] [21,366] [78,068] [17,155] [137,245] [50,547]

16 × 16 gathering† 3.2% 5.8% 5.3% 2.8% 4.0% 6.6%
[Add. area particles] [310] [726] [13,429] [3,296] [4,243] [421]

Radiance estimation† 0.3% 0.7% 1.0% 0.8% 1.6% 2.0%
Adaptive ray tracing 20.4% 37.1% 43.1% 35.7% 31.2% 14.4%

(c) Rendering time (Whitted style ray tracing)

CBOX SPON. KITC. CONF. BATH. MAZE

Single pixel sampling (FPS) 40.8 43.2 36.6 18.4 15.5 42.3
[Ours/Whitted] [0.469] [0.619] [0.398] [0.371] [0.439] [0.309]

Adaptive pixel sampling (FPS) 18.0 16.9 7.9 5.7 5.4 19.0
[Ours/Whitted] [0.619] [0.507] [0.514] [0.586] [0.631] [0.456]

Table 2 Analysis of the lighting and ray tracing stages.

The frame rates achieved for ray tracing 1024× 1024 images (6.81 to 26.72 fps
for single pixel sampling and 3.34 to 11.15 fps for adaptive supersampling) were
affected by several parameters, including the complexities of geometries, lighting
conditions, and material properties. In many cases, the time spent on the ray trac-
ing process usually ranged from 40% to 60% of the total rendering time, regardless
of whether adaptive sampling was applied; this suggests that the additional cost
of including global illumination is roughly the same on average as that found with
basic Whitted-style ray tracing. This fact was confirmed by the timings shown in
Table 2(c), which indicate the frame rates measured in the same environment for
a pure Whitted ray tracer.

Detailed analysis of the relative overheads in the single sampling case (Ta-
ble 2(a)) found that most of the global illumination time was usually consumed in
the processes of indirect light scattering, gathering, and preliminary ray tracing
for finding the radiance particles that participate in shading. As with other stages,

16 Byungjoon Chang et al.

the scattering step was affected to a high degree by the lighting condition. For
instance, the KITCHEN scene, rendered with 150,000 area particles, required 1.65
ms for four-bounce light scattering, whereas the SPONZA scene, rendered with
the same number of area particles, took only 1.31 ms for eight-bounce scattering.
The reason for this difference was that direct illumination from the sky in the
SPONZA scene illuminated a relatively lower number of area particles, thereby
generating fewer computing threads in the scattering stage. In such a situation,
this forward light transport is more efficient than repeated backward gathering
per light bounce. Previous researchers, such as [30], simulated light propagation
by iterating the gathering operation over all vertices. This works well in a situation
where scene geometries are directly well illuminated, but an exclusively backward
gathering approach might often result in inefficiency, because it requires memory
access to gather radiance from the locations that receive little or no radiance.
Furthermore, processing the gathering operation for all elements for every bounce
could generate a significant workload when multiple bounces of light propagation
are required for nontrivial scenes. In contrast, our method minimizes the expen-
sive light gathering operation in a view-dependent manner, by performing this
process only for area particles in the vicinity of recursively spawned ray paths. In
the SPONZA scene, this was conducted only for 23,232 area particles (only 15.5%
of the distributed particles), which took 1.50 ms, whereas 3.30 ms was required
for the light gathering for 84,257 area particles (56.2%) in the KITCHEN scene,
where a greater area was passed directly or indirectly by recursive rays (see also
Table 3).

(Time unit: millisecond)
CBOX SPON. KITC. CONF. BATH. MAZE

Gathering only 56.3 84.3 87.1 230.8 139.1 112.3
Scattering/gathering 24.6 3.6 13.1 29.5 21.4 27.4

Table 3 Comparison with a gathering-only method. To evaluate the efficiency of the proposed
light transport scheme, we measured on an NVidia GeForce GTX 580 GPU the timings for
repeating the gathering operation three times, as in [30], at all area particles with 256 links
each (Gathering only). The effectiveness of our two-way approach, through which higher-quality
global illumination is generated, is clearly observed in the Scattering/gathering row which
shows the timings for carrying out the nb-bounce scattering and 16 × 16 gathering.

On the other hand, applying the adaptive supersampling technique incurred
an extra cost for global illumination, marked by † in Table 2(b), which was mostly
spent in the preliminary ray tracing step, locating all the radiance particles, and
thus the area particles, along the additional ray paths required for adaptive su-
persampling. In contrast, the cost of additional light gathering and radiance esti-
mation was found to be very low.

5.2 Image quality

We analyzed the quality of the global illumination generated using our method by
implementing a full ray tracer supporting photon mapping and final gathering on
the GPU, where 4,096 gather rays were shot to produce ground truth images (see

Diffuse Global Illumination in Particle Spaces 17

Figures 2 and 6). The rendering results indicate that our method produced global
illumination that compared favorably to the reference images, which was often
difficult to find visual differences when rendered interactively. A side effect of
using preselected locations for light scattering and gathering in particle spaces
was that it created very few temporal aliases for dynamic lights and camera.

Like all numerical approximation methods, ours is not free of discretization
errors, particularly in the ‘high-frequency’ regions. The different images in Fig-
ure 7(a) and (b) show visual errors obtained when rendering the two example
scenes using 200,000 area particles, and illustrate a typical pattern of discrepancy
between the reference images and our results. The most prominent differences
are found in the surface regions, such as the corners, where indirect illumination
varies rapidly, which is mainly due to insufficient area particles. Moreover, our
light emission method, which differs from the standard photon mapping that was
applied to make the reference images, also produced a slight difference, especially
when lights were very close to surfaces, as shown in the ceiling of the CONFER-
ENCE scene and the upper right corners of the two images in Figures 6(a) to (c).
We suggest that the two light emission techniques created slightly different light
attenuation effects on the closest surfaces, but they hardly had a significant influ-
ence on the appearance of diffuse interreflection in general. To discern how a more
refined discretization reduces errors in the ‘high-frequency’ regions, we incremen-
tally increased the number of area particles. As shown in the two sets of examples
in Figure 7(c) to (f) and (g) to (j), the errors gradually decreased at the cost of
lower frame rates. In these tests, we distributed the area particles uniformly in
the entire scenes. A multilevel adaptive distribution of particles would efficiently
decrease visual errors.

6 Concluding remarks

As we have demonstrated, our method efficiently handles dynamic lights and view-
points to generate a global illumination effect that compares favorably to the tra-
ditional final gathering method. It can be used as a fast relighting tool for archi-
tectural and cinematic lighting. However, the current method is not interactive for
fully dynamic scenes, because geometric updating of the particle spaces in response
to a changed geometry requires several seconds. It remains for future research to
develop an efficient algorithm for area particle link updating, which would be op-
timized for specific animation requirements. In particular, for situations such as
the maze scene illustrated in Figure 1, where two people move around the maze,
only the area particle links that are adjacent to or intersected by a moving person
need to be modified. For example, we believe that an acceleration structure simi-
lar to that used in the line-space hierarchy method for radiosity [7,10] could allow
interactive updating in our discrete geometry system.

Note that the global illumination information obtained in the lighting stage
could also be exploited easily for shading by the pixel shader in a rendering pipeline
based on OpenGL/DirectX. As shown in the previous section, the ray tracing stage
that actually performs the final shading computation usually takes 40–60% of the
rendering time after the geometry stage (see Table 2(a)). By replacing this time-
consuming element with a computationally cheaper OpenGL/DirectX-based ren-
derer, we could develop a faster alternative rendering method that would support

18 Byungjoon Chang et al.

(a) CONF. (b) BATH.

(c) Cropped FG im-
age (BATH.)

(d) 200K area particles
at 6.5 fps

(e) 400K area particles
at 4.7 fps

(f) 600K area particles
at 2.8 fps

(g) Another FG im-
age (CONF.)

(h) 200K area particles
at 5.9 fps

(i) 400K area particles
at 3.9 fps

(j) 600K area particles
at 3.1 fps

(k) SPON. (FG) (l) 1 scattering
bounce at 12.410
fps (2x difference)

(m) 3 scattering
bounces at 12.361
fps (2x difference)

(n) 6 scattering
bounces at 12.338
fps (2x difference)

(o) 9 scattering
bounces at 12.285
fps (2x difference)

Fig. 7 Comparison with final gathered images. Here, the error images are displayed in neg-
ative colors to show the differences more clearly. The frame rates indicate the times taken in
the lighting and ray tracing stages to generate 1024 × 1024 adaptively supersampled images.
The error images in (a) and (b) obtained from the presented results indicate that most of
differences were usually concentrated in ‘high-frequency’ regions, where indirect illumination
changes relatively faster. In another view of the BATHROOM scene, we incrementally in-
creased the number of area particles in the scene and found that the differences in the corners
decreased gradually ((c) to (f)). The same phenomenon was observed in another view of the
CONFERENCE scene ((g) to (j)), which strongly suggests the use of a multilevel adaptive
particle distribution method. In a poor lighting condition, insufficient indirect light bounces
often generate too dark indirect illumination. In the example shown in (k), we had to increase
the number of scattering bounces up to 8 or 9, for which our light scattering/gathering scheme
did not cause a marked performance drop ((l) to (o)).

Diffuse Global Illumination in Particle Spaces 19

effective global illumination. Finally, we are currently exploring an effective multi-
level algorithm for detecting high-frequency surface regions rapidly and adaptively,
to which additional area particles could be distributed. This will require applying
some variant of a criterion such as the harmonic mean distance, which is used in
irradiance caching [38].

Acknowledgements This work was supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MOE) (No. 2012R1A1A2008958).

References

1. O. Arikan, D. Forsyth, and J. O’Brien. Fast and detailed approximate global illumination
by irradiance decomposition. ACM Transactions on Graphics, 24(3):1108–1114, 2005.

2. P. Christensen. Point-based approximate color bleeding. Pixar Technical Memo 08–01,
2008.

3. C. Dachsbacher and M. Stamminger. Reflective shadow maps. In Proc. of the Symposium
on Interactive 3D Graphics and Games, pages 203–231, 2005.

4. C. Dachsbacher and M. Stamminger. Splatting indirect illumination. In Proc. of the
Symposium on Interactive 3D Graphics and Games, pages 93–100, 2006.

5. C. Dachsbacher, M. Stamminger, G. Drettakis, and F. Durand. Implicit visibility and
antiradiance for interactive global illumination. ACM Transactions on Graphics, 26, 2007.
Article No. 61.

6. Z. Dong, J. Kautz, C. Theobalt, and H.-P. Seidel. Interactive global illumination using
implicit visibility. In Proc. of Pacific Graphics, pages 77–86, 2007.

7. G. Drettakis and F. Sillion. Interactive update of global illumination using a line-space
hierarchy. In Proc. of the SIGGRAPH ’97, pages 57–64, 1997.

8. B. Fabianowski and J. Dingliana. Interactive global photon mapping. Computer Graphics
Forum, 28(4):1151–1159, 2009.

9. P. Gautron, J. Křivánek, K. Bouatouch, and S. Pattanaik. Radiance cache splatting: a
GPU-friendly global illumination algorithm. In Proc. of the Eurographics Symposium on
Rendering, pages 55–64, 2005.

10. X. Granier and G. Drettakis. Incremental updates for rapid glossy global illumination.
Computer Graphics Forum, 20(3):268–277, 2001.

11. M. Hašan, F. Pellacini, and K. Bala. Matrix row-column sampling for the many-light
problem. ACM Transactions on Graphics, 26, 2007. Article No. 26.

12. H. W. Jensen. Global illumination using photon maps. In Proc. of the Eurographics
Workshop on Rendering Techniques, pages 21–30, 1996.

13. H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. A K Peters, Ltd., ISBN
1-56881-147-0, 2001.

14. B. Jin, I. Ihm, B. Chang, C. Park, W. Lee, and S. Jung. Selective and adaptive supersam-
pling for real-time ray tracing. In Proc. of High Performance Graphics, pages 117–125,
2009.

15. J. Kajiya. The rendering equation. In Proc. of ACM SIGGRAPH, volume 20, pages
143–150, 1986.

16. A. Keller. Instant radiosity. In Proc. of ACM SIGGRAPH, pages 49–56, 1997.
17. J. Křivánek, P. Gautron, S. Pattanaik, and K. Bouatouch. Radiance caching for efficient

global illumination computation. IEEE Transactions on Visualization and Computer
Graphics, 11(5):550–561, 2005.

18. S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila. Incremental instant
radiosity for real-time indirect illumination. In Proc. of the Eurographics Symposium on
Rendering, pages 277–286, 2007.

19. B. Larsen and N. Christensen. Simulating photon mapping for real-time applications. In
Proc. of the Eurographics Symposium on Rendering, pages 123–131, 2004.

20. J. Lehtinen, M. Zwicker, E. Turquin, J. Kontkanen, F. Durand, F. Sillion, and T. Aila.
A meshless hierarchical representation for light transport. ACM Transactions on Graph-
ics (Proc. of ACM SIGGRAPH 2008), 27, 2008. Article No. 37.

21. M. McGuire and David D. Luebke. Hardware-accelerated global illumination by image
space photon mapping. In Proc. of High Performance Graphics, pages 77–89, 2009.

20 Byungjoon Chang et al.

22. G. Nichols, J. Shopf, and C. Wyman. Hierarchical image-space radiosity for interactive
global illumination. Computer Graphics Forum, 28(4):1141–1149, 2009.

23. G. Nichols and C. Wyman. Multiresolution splatting for indirect illumination. In Proc.
of the Symposium on Interactive 3D Graphics and Games, pages 83–90, 2009.

24. NVIDIA. NVIDIA CUDA: NVIDIA CUDA C Programming Guide (Version 5.0), 2012.
25. T. Purcell, C. Donner, M. Cammarano, H. Jensen, and P. Hanrahan. Photon mapping on

programmable graphics hardware. In Proc. of Graphics Hardware, pages 41–50, 2003.
26. T. Ritschel, C. Dachsbacher, T. Grosch, and J. Kautz. The state of the art in interactive

global illumination. Computer Graphics Forum, 31(1):160–188, 2012.
27. T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and C. Dachsbacher. Micro-

rendering for scalable, parallel final gathering. ACM Transactions on Graphics, 28(5),
2009. Article No. 132.

28. T. Ritschel, T. Grosch, J. Kautz, and H.-P. Seidel. Interactive global illumination based
on coherent surface shadow maps. In Proc. of Graphics Interface, pages 185–192, 2008.

29. T. Ritschel, T. Grosch, M. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. Imperfect
shadow maps for efficient computation of indirect illumination. ACM Transactions on
Graphics, 27, 2008. Article No. 129.

30. A. Schmitz, M. Tavenrath, and L. Kobbelt. Interactive global illumination for deformable
geometry in CUDA. Computer Graphics Forum, 27(7):1979–1986, 2008.

31. P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for real-time rendering
in dynamic, low-frequency lighting environments. ACM Transactions on Graphics, 21:527–
536, 2002.

32. E. Tabellion and A. Lamorlette. An approximate global illumination system for computer
generated films. ACM Transactions on Graphics, 23(3):469–476, 2004.

33. T. Umenhoffer and L. Szirmay-Kalos. Robust diffuse final gathering on the GPU. In Proc.
of WSCG, 2007.

34. B. Walter, A. Arbree, K. Bala, and D. Greenberg. Multidimensional lightcuts. ACM
Transactions on Graphics, 25(3):1081–1088, 2006.

35. B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. Greenberg. Lightcuts:
a scalable approach to illumination. ACM Transactions on Graphics, 24(3):1098–1107,
2005.

36. R. Wang, R. Wang, K. Zhou, M. Pan, and H. Bao. An efficient GPU-based approach for
interactive global illumination. ACM Transactions on Graphics, 28, 2009. Article No. 91.

37. G. Ward and P. Heckbert. Irradiance gradients. In Proc. of the Eurographics Workshop
on Rendering, pages 85–98, 1992.

38. G. Ward, F. Rubinstein, and R. Clear. A ray tracing solution for diffuse interreflection.
In Proc. of ACM SIGGRAPH, pages 85–92, 1988.

39. C. Yao, B. Wang, B. Chan, J. Yong, and J.-C. Paul. Multi-image based photon tracing for
interactive global illumination of dynamic scenes. Computer Graphics Forum, 29:1315–
1324, 2010.

40. K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-tree construction on graphics
hardware. ACM Transactions on Graphics, 27(5):1–11, 2008.

