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Abstract Despite great efforts in recent years to accelerate global illumination
computation, the real-time ray tracing of fully dynamic scenes to support photo-
realistic indirect illumination effects has yet to be achieved in computer graphics.
In this paper, we propose an extended ray tracing model that can be readily im-
plemented on a GPU to facilitate the interactive generation of diffuse indirect
illumination, the quality of which is comparable to that generated by the tradi-
tional, time-consuming photon mapping method and final gathering. Our method
employs three types of (multilevel) grids to represent the indirect light in a scene
using a form that facilitates the efficient estimation of the reflected radiance caused
by diffuse interreflection. This method includes the mathematical tool of spherical
harmonics and a rendering scheme that performs the final gathering step with a
minimal cost during ray tracing, which guarantees the interactive frame rates. We
evaluated our technique using several dynamic scenes with nontrivial complexity,
which demonstrated its effectiveness.
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1 Introduction

1.1 Background

Classical ray tracing was introduced to the graphics community by Whitted [33]
and it has been used frequently for the high-quality rendering of virtual scenes.
Whitted-style ray tracing is particularly well suited to the generation of specu-
lar shading effects such as reflection and refraction, for which the rasterization
method does not provide an exact solution. Like other rendering methods, how-
ever, the application of ray tracing to the precise real-time reproduction of the
optical phenomenon of diffuse indirect illumination remains a major challenge,
because it involves the reflection of incident light from diffuse surfaces, possibly
after multiple reflections from other diffuse surfaces.

Stochastic path tracing is effective for producing such diffusive reflection ef-
fects, but its computational overheads are too high for interactive rendering in
practice. A practical approach to diffuse indirect illumination in the classical ray
tracing scheme is photon mapping [8], where the diffusive phenomenon is simu-
lated by tracing global photons in the scene and estimating the reflected radiances
using photons stored in the vicinity of shading points. The rendering quality of
photon mapping is improved greatly by final gathering [32], which samples the in-
cident radiance at each shading point in a stochastic manner before removing any
visually objectionable blotchiness that might be caused by the direct visualization
of insufficient photon samples.

A combination of Whitted-style ray tracing, photon mapping, and final gath-
ering has been used routinely by the special effects industry to synthesize high-
quality images. However, this hybrid method barely achieves an interactive frame
rate in nontrivial scenes when implemented according to the original design be-
cause of the large amounts of visibility computation required for photon tracing
and radiance gathering, as well as the repetitive photon queries needed for ra-
diance estimation. Although there has been substantial recent research into the
development of practical algorithms, the reproduction of high-quality diffuse inter-
reflection in an interactive manner in complex scenes remains a difficult problem
using this combined rendering scheme.

1.2 Our contribution

In this study, we propose a novel interactive method, which can be integrated
readily into the conventional Whitted-style ray tracer to simulate diffuse indi-
rect illumination in an effective manner. Our rendering algorithm aims to create a
global illumination effect rapidly for fully dynamic scenes, and to achieve a quality
comparable to that generated using the computationally intensive photon map-
ping and final gathering techniques. To develop a GPU-friendly light transport
model, we discretize the scene domain using three grids, as follows. A voxelization
grid provides accuracy and efficiency during the visibility computation required to
sample reflected radiance. A multilevel radiance grid represents the reflected radi-
ance attributable to indirect light in a multi-resolution form, thereby facilitating
effective radiance filtering. Finally, a spherical harmonics grid provides a compu-
tational domain where a spherical harmonics field is constructed for the indirect
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light in the vicinity of the surfaces of geometric models, which allows efficient final
gathering during the ray tracing stage.

Our method extends the Whitted-style ray tracing model so it naturally in-
herits the advantage of recursive ray tracing, which is inherently lacking in the
rasterization method. It implements photon mapping in a basic manner. There-
fore, as well as rendering effects such as caustics, the presented method allows the
efficient generation of diffuse interreflection that often requires many indirect light
reflections, which many previous interactive techniques cannot handle. Finally,
our computational scheme effectively simulates final gathering to synthesize high-
quality images, which also creates very few temporal aliases for dynamic scene
changes despite using only a small number of gather rays. The comparable inter-
active global illumination method by Wang et al. [30] employs the illumination-cut
and shading-cluster techniques to reduce the excessive computational cost of the
conventional photon mapping and final gathering. On the other hand, our method
attempts to achieve the rendering performance both in terms of computation speed
and global illumination quality by implementing these advanced global illumina-
tion methods in the grid spaces that effectively approximate both geometry and
light transport.

2 Previous work

There is a vast body of research on interactive global illumination, so we only
consider the most relevant work in this section (for an extensive survey of this
topic, refer to [19]). During the development of an interactive ray tracer based
on photon mapping and final gathering, there is a bottleneck when large num-
bers of rays are sent out to gather the incoming radiances. Several caching and
interpolation techniques have been proposed to reduce the cost of this process by
performing the final gathering at a sparse set of surface points only [32,31,26,11,
1]. These methods are very effective on a CPU, but they are not well suited to effi-
cient GPU implementation because of their inherent computing structures, which
usually require sequential queries and cache updates. By contrast, the first GPU
implementation of photon mapping by Purcell et al. [18] and its variants greatly
accelerated photon mapping and final gathering on the GPU (for some examples
of early work, refer to [12,5,28]).

Zhou et al. developed a GPU-assisted kd-tree algorithm and used it to imple-
ment a fast photon mapping-based ray tracer [35]. Wang et al. extended this algo-
rithm by adding several complex global illumination effects at interactive speed,
which reduced the rendering cost by performing the final gathering operation only
at the centers of carefully selected surface point clusters [30]. Fabianowski and
Dingliana extended the concept of photon differentials to the interactive handling
of diffuse reflections for dynamic lights and cameras [4]. The micro-rendering ap-
proach proposed by Ritschel et al. [20] is a surfel-based global illumination method
that performs final gathering by rasterizing a point-based representation of the
scene using a multi-resolution scheme, which is similar to the tree structures used
in [29]. Image space photon mapping methods were also proposed by McGuire and
Luebke [15] and Yao et al. [34], which facilitate interactive global illumination in
the context of rasterization-based rendering pipelines. Maletz and Wang proposed
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a method for GPU-based final gathering, which uses importance point projection
instead of traversing a point hierarchy [13].

Spherical harmonics are an efficient means of approximating low-frequency
functions and they may provide an effective tool for representing slowly varying
global illumination (in the context of computer graphics, refer to introductory arti-
cles [6,22]). Several successful techniques for approximating indirect light in static
scenes using precomputed spherical harmonics functions have been introduced [25,
24,10,11]. To overcome the limitation of precomputed radiance transfer support
only in static scenes, Iwasaki et al. proposed a method that is suitable for objects
with restricted movement [7]. Sloan et al. developed a technique that reduced the
number of spherical harmonics samples required for real-time global illumination
computation [23].

Grid-based techniques were also utilized for faster computation of global illu-
mination mostly within the rasterization scheme. Nijasure et al. rendered the cube
map on the GPU to build an incoming radiance field using spherical harmonics
in a low-resolution grid, and shaded surface points via interpolation of spherical
functions from neighboring grid points [16]. Kaplanyan and Dachsbacher produced
real-time indirect illumination with a light propagation volume obtained through
simple successive local iterations [9]. Mavridis and Papaioannou utilized the ra-
terization pipeline to approximate indirect light using a volume grid initialized
from a directly lit point cloud [14]. In stead of the cube map, Papaioannou used
the reflective shadow map [3] for faster sampling of indirect light at grid points,
and applied a radiance hint technique to evaluate surface irradiance on nearby
surfaces and approximate secondary diffuse interreflections [17]. Thiedemann et
al. developed an atlas-based voxelization method and an enhanced ray-voxel in-
tersection technique that allowed real-time near-field illumination and interactive
global illumination computations [27]. Crassin et al. presented a hierarchical rep-
resentation of incoming radiance in a grid space where a cone tracing technique
enabled efficient computation of indirect illumination [2].

3 Rendering algorithm: the preparation stage

Our rendering algorithm proceeds in two stages. In the preparation stage, a spatial
data structure that accelerates ray–object intersections is rebuilt or updated to re-
flect the changes in geometry between frames. Next, an additional data structure
called a spherical harmonics field is constructed in the vicinity of the geometry
to model the problematic diffuse indirect illumination, which results from diffu-
sive interreflection between objects. In the subsequent ray tracing stage, a slightly
extended Whitted-style ray tracer is executed to produce a final rendering image
with the prepared data structures. This section begins with a step-by-step expla-
nation of how the indirect light is captured in the form of a spherical harmonics
field.

3.1 Construction of two-level volumetric grids

The first step when building the spherical harmonics field is the definition of a two-
level volumetric grid structure, which comprises a spherical harmonics grid (SH-
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(a) Voxelization grid (b) Spherical harmonics grid

Fig. 1 Two-level three-dimensional volume grids. The SH-grid defines where the diffuse
indirect illumination is approximated using spherical harmonics. The finer, V-grid provides
detailed geometry information for voxelized objects.

grid) and a voxelization grid (V-grid), where the SH-grid aims to represent the
diffuse indirect illumination in a basic manner whereas the finer, V-grid provides
information on voxelized objects in the scene, thereby facilitating a more precise
estimation of global illumination in the later stage. For frames that require geom-
etry updates, a GPU-assisted surface voxelization method is applied on the fly to
rebuild the V-grid, which marks the boundary cells that intersect with triangles.
During this process, the triangle indices are not sorted into these cells, but the
average normals of the intersecting triangles are retained in the memory (see Fig-
ure 1(a)). The SH-grid is produced simply by merging every set of 4×4×4 V-grid
cells into a single cell, which is classified as a boundary cell only if at least one of
the corresponding V-grid cells is on the boundary (see Figure 1(b)). The centers of
the new boundary cells and their 26 neighbors are then treated as special locations,
for which the spherical functions of incoming indirect light are approximated later.
Note that the normal information of the V-grid is not inherited by the SH-grid.

3.2 Construction of a global photon list

After the two-level grid structure has been prepared, photon tracing is performed
with some slight modifications to the traditional photon mapping technique [8].
First, a global photon that hits a diffusive surface is stored in a global photon list
only if it is determined to be reflected in a stochastic manner. Second, in contrast
to the conventional method where the incoming direction of the photon is usually
stored, the reflected, outgoing direction, which is also selected stochastically, is
recorded with the photon’s RGB-valued radiant flux. Third, the index of the cell
in the SH-grid that contains the hit location is also stored with the photon so the
list of global photons can be sorted in an appropriate manner to facilitate efficient
GPU computation (in our implementation, a cell is referred to based on the index
(p, q, r) of its corner voxel with the smallest coordinate values). The array marked
[A] in Figure 3 shows part of the global photon list, where the indices of the stored
photons are shown coupled with triples that indicate their cell indices.
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3.3 Construction of multilevel radiance grids

The next step involves the construction of an intermediate multilevel grid structure
from the global photon list, referred to as a radiance grid (R-grid), where the base
grid has the same configuration as the SH-grid. During this process, the diffuse
indirect illumination, which is captured in terms of the radiant fluxes of global
photons, is transformed into the radiance and stored on the faces of the cells in
the base grid.

Consider an ith global photon in a cell

Fig. 2 Distribution of photon
fluxes on the ‘visible’ cell faces.

with a photon power Φi and an outgoing direc-
tion (dix , diy , diz ) (see Figure 2). Multiplied with
the bidirectional reflectance distribution function
(BRDF) fr,di and the respective weight δi (=
|dxi |2, |dyi |2, or |dzi |2), the photon power is dis-
tributed to each of up to three faces of the cell
pointed to by the outgoing direction (note that
the weights correspond to the squares of the in-
ner product between the outgoing direction and
the respective face normals, for which the sum is
one). After iterating this calculation for all the
global photons, accumulating their weighted radi-

ant fluxes for the appropriate faces, and dividing the outcomes by the face area A,
we obtain an indirect light field where the quantity associated with each directional
face of a cell, i.e.,

∑
i fr,di

δiΦi

A =
∑
i fr,di∆Ei for the differential irradiance ∆Ei,

approximates the reflected radiance attributable to diffuse indirect illumination,
which emanates from the surface inside the cell through the face.

A simple method for implementing the accumulation process on the GPU would
be to map each global photon to a GPU thread, which then performs the respective
accumulation calculation. This is easy to code but such a scheme would be highly
reliant on expensive atomic add operations if parallel threads are used to accumu-
late the photon powers to identical faces simultaneously. In our implementation,
we use the more complex, but experimentally more efficient GPU algorithm, shown
in Figure 3, the computational steps of which are as follows. First, the aforemen-
tioned index array (marked as [A]) is sorted in parallel based on the cell indices,
which places photons in the same boundary cell in a contiguous region (the array
marked [B]). Next, a GPU thread is generated for each sorted array element to
check whether the assigned photon is the first in the same photon group based on
a comparison with the preceding photon in the array, before marking the result
in an additional array, which is indicated by [C] in the figure. This binary array
and the array produced by an exclusive scan of the array (marked [D]) together
generate the offset information (marked [E]), which allow the locations of the first
photons and the photon numbers of the enumerated nonempty boundary cells
to be determined easily. Next, each GPU thread, where one is spawned for each
element of the offset array, i.e., one per nonempty boundary cell, computes the
radiance values of all six faces by processing all of the photons in the cell without
using any atomic operations.

After the radiance field is produced on the R-grid, we iteratively construct
averaged down versions until a field with a suitably coarse level of detail is ob-
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Fig. 3 GPU-assisted photon sorting. A more complicated, but faster, GPU algorithm is used
to build the radiance grid, which avoids expensive atomic add operations.

tained. This mipmap-style, multilevel R-grid allows the effective estimation of the
reflected radiance in the later rendering stage.

3.4 Construction of a spherical harmonics field

3.4.1 Spherical harmonics for global illumination

Spherical harmonics are an orthogonal basis for functions defined over a sphere,
or over a direction, which have proved effective in computer graphics applications,
particularly for representing slowly varying indirect illumination. Given a position
x in three-dimensional space, we consider an incoming radiance function for indi-
rect diffuse illumination I(x, θ, φ) where ω = (θ, φ), or I(θ, φ) if the position is evi-
dent, which is defined using a spherical coordinate system. For real-valued spherical
harmonics Yml (θ, φ) of degree l and order m (l ∈ {0, 1, 2 · · ·}, −l ≤ m ≤ l), I(θ, φ)

can be expanded as their linear combination: I(θ, φ) =
∑∞
l=0

∑l
m=−l I

m
l Y

m
l (θ, φ)

with spherical harmonics coefficients Iml , which can be evaluated using the pro-
jection operation:

Iml =

∫ 2π

0

∫ 2π

0

I(θ, φ)Yml (θ, φ) sin θ dθ dφ.

In practice, the function I(θ, φ) is approximated by Ī(θ, φ) using a finite number
of coefficients up to a given degree l∗:

Ī(θ, φ) =

l∗∑
l=0

l∑
m=−l

Iml Y
m
l (θ, φ).

In this case, the (l∗+ 1)2 coefficients Iml can be approximated by Monte Carlo
simulation:

Iml ≈
4π

Nsh

Nsh−1∑
i=0

I(θi, φi)Y
m
l (θi, φi), (1)
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d
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(a) Adaptive ray traversal using SH-grid and V-grid
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(b) Radiance interpolation in R-
grid

Fig. 4 Estimation of the incoming radiance for a sample ray. The reflected radiance at-
tributable to diffuse indirect illumination is stored in the directional faces of an R-grid. After a
cell in the R-grid that contains an intersection point is identified using the SH-grid and V-grid,
the incoming radiance for the ray is interpolated based on the radiance of the visible faces.

where the incoming radiance I(θi, φi) needs to be estimated for Nsh uniformly
sampled directions (θi, φi).

3.4.2 Estimation of incoming radiance at the centers of cells

When the approximate function Ī(x, θ, φ) is defined numerically at a surface point
x, the expensive final gathering operation around x can be performed efficiently
during rendering simply by evaluating the function at stochastically sampled
gather ray directions. In contrast to previous methods, e.g., [32,30], where the
incoming radiance function is cached at surface points that are selected dynam-
ically during rendering, our method represents the incoming light discretely at
the centers of the boundary cells and their 26 neighbors in the SH-grid, which
facilitates simpler and faster computation on the GPU.

When the spherical harmonics coefficients Iml are evaluated at the center xpqr
of a cell with index (p, q, r), the efficient estimation of I(xpqr, θi, φi) for each
sample direction is critical for the rendering performance (see Eq. (1)). For effective
computation, we employ a simple two-level grid-based ray traversal algorithm. A
sample ray from xpqr (see Figure 4(a)) is first traced in the SH-grid space until a
boundary cell is hit, other than that containing xpqr (the cell marked [A]). Next,
the finer V-grid is used to determine more precise ray–object intersections, where
the ray continues until a boundary cell (the cell marked [B]) is found in the V-grid
space. If the identified cell’s averaged normal is front-facing, the surface region of
the cell is regarded as visible from xpqr and I(xpqr, θi, φi) is interpolated using the
radiance values Lj of up to three visible faces of the R-grid cell that contains the
hit point (the cell marked [C]) as follows:

I(xpqr, θi, φi) ≈
∑
j

g(αj)∑
k g(αk)

Lj cosβj ,

where αj is the angle between the sample direction (θi, φi) and the direction to
the center of the jth face, βj is the angle between the corresponding face normal
and the direction to xpqr from the center, and g(·) is a Gaussian filter function
defined on angle αj (refer to Figure 4(b)).
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(a) Without radiance filtering (b) With radiance filtering

Fig. 5 Radiance filtering of incoming indirect light.

3.4.3 Radiance filtering using the multilevel R-grids

Assume that the distance from xpqr to the intersection, which is estimated during
ray traversal, is d, as shown in Figure 4(a). Then, each sample ray represents an

approximate area of 4πd2

Nsh cos βj
along the jth face of the intersected R-grid cell. If

this area is greater than that of a zero-level R-grid face and the reflected radiance
changes rapidly in the vicinity of the sampled R-grid face, there may be aliasing
artifacts during the estimation of the incoming radiance I(xpqr, θj , φj) (recall the
situation where the mipmapping technique was applied to texture filtering). In
our method for radiance estimation, we select two consecutive levels of the mul-
tilevel R-grid where the face areas bound the estimated area and we interpolate
I(xpqr, θj , φj) for the area using the radiance values extracted from the two lev-
els. Figure 5 compares the rendering results produced without and with radiance
filtering, where the noisy artifacts on the wall caused by inappropriate radiance
sampling from an overly detailed R-grid are smoothed out well.

3.4.4 Spherical harmonics for distance function estimation

As a by-product of the adaptive grid traversal algorithm, we also obtain an ap-
proximate distance d(xpqr, θj , φj) from xpqr to the first hit in the sample direction
(θj , φj). This allows us to build a numerical distance function d̄(xpqr, θ, φ), which
is also based on the spherical harmonics. Note that the scalar coefficient dml forms
a four-component vector with the RGB-valued Iml , which is well suited to GPU
computation. The distance information produced in this stage is then used to cre-
ate an ambient occlusion-like effect during the rendering stage, which incurs no
extra cost because the four-component coefficients are hard-coded in our renderer.
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4 Rendering algorithm: the ray tracing stage

4.1 Estimation of incoming radiance at surface points

The method used to construct a spherical harmonics field represents indirect light
in the scene, where the numerical functions Ī(xpqr, θ, φ) are built at the centers
xpqr of the SH-grid cells in the neighborhood of surfaces. During rendering, the
radiance function needs to be evaluated at an arbitrary surface point x. To achieve
this effectively, we construct the function Ī(x, θ, φ) on the fly by computing its
spherical harmonics coefficients Iml (x) via their interpolation from the approximate
radiance functions near x:

Iml (x) =
∑
pqr

wsh(dpqr)I
m
l (xpqr)/

∑
pqr

wsh(dpqr),

where Iml (xpqr) is the corresponding coefficient at the grid center xpqr of 27 neigh-
boring cells around x, dpqr if the distance from x to xpqr, and wsh(d) is a weight
function that is defined based on the distance (we find that a simple weight func-
tion wsh(d) = (2/r3max)d3− (3/r2max)d2 + 1 with an appropriate maximum extent
rmax works well). Then the incoming light at x that is attributable to diffuse indi-
rect illumination can be estimated efficiently by evaluating Ī(x, θ, φ) for each ray
direction sampled over the hemisphere around x. Figure 6 shows an example.

4.2 Diffuse reflection caused by diffuse indirect illumination

After the preparation stage is complete, the actual rendering process starts by
running a Whitted-style ray tracer, which is extended slightly to include the reflec-
tion effect attributable to diffuse indirect illumination. We consider a ray–object
intersection point x on a diffuse surface with BRDF fr,d(x). The diffuse reflec-
tion Lind,d(x) is computed by gathering Nd incoming radiances I(x,ω), which are
sampled over the hemisphere around x with a probability density function (PDF)
P (ω), and approximated using the spherical harmonics field:

Lind,d(x) ≈ 1

Nd

Nd−1∑
i=0

fr,d(x)Ī(x,ωi) cos θi
P (ωi)

.

When uniform sampling is applied with P (ω) = 1
2π , the formula becomes a simple

summation:

Lind,d(x) ≈ 2πfr,d(x)

Nd

Nd−1∑
i=0

cos θi
{ l∗∑
l=0

l∑
m=−l

Iml (x)Yml (ωi)
}
.

To ensure the efficiency of calculation in our implementation, we generate 2Nd
directions initially by sampling the unit sphere uniformly. During rendering, half
of those that point upwards with respect to x are then used to approximate the
formula.
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(a) A rendering image (b) Indirect illumination only

(c) The constructed SH field

Fig. 6 Reconstruction of diffuse indirect illumination using spherical harmonics. For the
Sponza scene in (a), a spherical harmonics field was built to represent indirect light as given in
(c), where the RGB-valued radiance Ī(xpqr, θ, φ) was converted to grayscale, which is shown
only at the cell centers located immediately above the ground. As shown in (b), the shadows
around the pillars caused by indirect light were generated naturally by the spherical harmonics
field.

4.3 Glossy reflection caused by diffuse indirect illumination

The Monte Carlo technique can also be applied to approximate a glossy re-
flection Lind,g(x,ω) caused by diffuse indirect illumination. Given a BRDF
fr,g(x,ωi,ω) = ks

e+1
2π (ri · ωi)e that simulates a glossy reflection, Ng direc-

tions can be importance-sampled around the specular reflection direction ri us-
ing the PDF P (ωi) = e+1

2π (ri · ωi)e, through which we obtain a similar formula

Lind,g(x,ω) ≈ ks

Ng

∑Ng−1
i=0 Ī(x,ωi) cos θi (see Figure 7).

4.4 Creation of an ambient occlusion-like effect

Although it is not physically correct, ambient occlusion provides an interesting
rendering effect that adds shadowing to diffuse objects [36]. The approximate
distance function allows us to estimate the obscurance O(x) of surface point x,
which is defined and estimated as follows: O(x) = 1

π

∫
2π
ρ(d(x,ω′)) cos θ′ dω′ ≈

2
Nd

∑Nd−1
i=0 ρ(d̄(x,ωi)) cos θi, where a control parameter woc is introduced into



12 Byungjoon Chang et al.

(a) On diffuse surfaces (178.1) (b) On glossier surfaces (188.9)

(c) On diffuse surfaces (212.7) (d) On glossier surfaces (244.1)

Fig. 7 Interactive reproduction of reflection effects caused by indirect diffuse illumination. In
(a), all of the objects in the CBOX scene (76,571 triangles) were set as Lambertian, whereas
all but the checker-textured walls were made glossier in (b), where the glossy effect can be
observed clearly, particularly on the surface of the statue of Venus. In the kitchen scene (181,141
triangles) in (c) and (d), the reflectances of the elephant, drawers, table, and objects on the
table were made glossier. The figures in parentheses show the rendering time in milliseconds
for obtaining a 1024× 1024 image on an NVIDIA GeForce GTX TITAN GPU.

the definition of ρ(d) = max{ woc·d
Rmax

, 1 } for a given maximum distance Rmax,

while d̄(x,ωi) is again estimated using the precomputed spherical harmonics field.
The approximated obscurance value is then multiplied by Lind,d(x) to obtain the
wanted effect (see Figure 8).

5 Experimental results

5.1 Rendering cost

To simulate the proposed method and demonstrate its effectiveness, we extended
a Whitted-style ray tracer in the CUDA platform by including diffuse indirect
illumination and tested its performance using several dynamic scenes with non-
trivial complexity. Table 1 summarizes the statistics collected on a desktop PC
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(a) With woc =∞ (b) With woc = 0.1

(c) With woc =∞ (d) With woc = 0.3

Fig. 8 Easily controllable ambient occlusion-like effect. We can generate a visually pleasing
rendering effect by using an extra set of spherical harmonics coefficients to approximate the
distance function.

with an NVIDIA GeForce GTX TITAN GPU for the four example scenes shown
in Figure 9, where the timings were measured while ray tracing a 1, 024 × 1, 024
image using CUDA blocks with 4 × 32 threads. In this experiment, to ensure ef-
ficient ray–object intersections were obtained during ray tracing, we employed a
two-tree scheme where a kd-tree was built only once for a static geometry, while a
bounding volume hierarchy was updated for each frame for dynamic objects. We
also used the voxelization technique proposed by Schwarz and Seidel [21] to build
the V-grid interactively.

To simulate indirect light transport, 262,144 photons were emitted initially
from the light sources in each test scene, where the conventional Russian roulette
technique was applied during photon tracing. However, we processed a maximum
of four photon reflections, which actually provided five reflections including the
final gathering step, because a higher number of reflections generally produced
no visual differences. The incoming radiance I(x, θ, φ) was modeled using third-
degree spherical harmonics, the nine coefficients of which were estimated by Monte
Carlo simulation using 400 direction samples (Nsh = 400). The diffuse and glossy
reflections, i.e., Lind,d(x) and Lind,g(x,ω), caused by indirect light were also sim-
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(a) Kitchen (181,141) (b) Bathroom (273,750)

(c) Sponza (300,541) (d) Conference (425,024)

Fig. 9 Rendering results for four test scenes. To experiment with dynamic scenes of nontriv-
ial complexity, we synthesized these scenes from commonly used examples: the kitchen and
bathroom scenes were augmented with an elephant and a horse model, respectively. Three
copies of Ben models were added to the Sponza and conference room scenes. The figures in
parentheses represent the final number of triangles in the scenes.

ulated using 32 and 64 direction samples, respectively (Nd = 32 and Ng = 64).
When combined with the spherical harmonics tool, this small number of stochastic
samples was sufficient to generate the global illumination effect, which compared
favorably with that obtained using the computationally intensive final gathering
method that often requires several thousand gather rays. For the parameter rmax
in the weight function wsh(d), we observed that a SH-grid interval of 1.75 times
usually worked well.

Overall, our extended ray tracer achieved a frame rate of 3 to 6 frames per sec-
ond when rendering the example scenes, and it was particularly successful at repro-
ducing intractable diffuse indirect illumination. Note that the interactive global
illumination method [30] rendered images at 1.5 frames per second on the old
NVIDIA GeForce GTX 280 GPU (933.12 GFLOPS) for a rather small Kitchen
scene with 21K triangles. While it is not easy to directly compare the method to
ours, we believe that a significant improvement has been made by the presented
method considering that ours achieves over 5 frames per second on the tested
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Fig. 10 Reflection caused by diffuse indirect illumination.

GPU (4,500 GFLOPS (single precision) and 1,500 GFLOPS (double precision)) for
the scenes with over 10 times more triangles and produces higher-quality rendering
effects.

On the other hand, the step-by-step analysis of the rendering times shown in
Table 1 demonstrates that the rendering performance depended on several param-
eters. First, the voxelization cost in the Voxelization row of the table was affected
greatly by the relative sizes of triangles and their variances relative to the V-grid
cell size because one GPU thread was wholly responsible for voxelizing an assigned
triangle in the algorithm we used [21]. The voxelization performance was relatively
poor for the Sponza scene, which contained very large (walls) and small (running
men) triangles, and this suggests that the use of well-tessellated triangles may
give greater efficiency. Second, the photon tracing time in the Photon tracing row
generally increased as more photons were stored on surfaces. However, the behav-
ior was rather complex because the parallel traversal of the spatial acceleration
structure on the GPU when tracing incoherent photon rays was also affected by
the scene geometry.

Third, as expected, the final two steps of the preparation stage used to convert
the diffuse indirect illumination into a computationally efficient form required a
significant amount of computational time, as shown in the two rows for multilevel
R-grid construction and spherical harmonics field construction. Interestingly, the
lighting condition and the GPU computing architecture were reflected in the par-
allel performance of R-grid construction. For example, in the dark room in the
Conference scene, the global photons were sorted highly heterogeneously in the
R-grid cells (see Figure 10 for the rendering of indirect illumination only), so the
few parallel threads assigned to the highly lit R-grid cells incurred high overheads,
which created a bottleneck that degraded the GPU performance.

Finally, as shown in the extended ray tracing row, the burden of the ray tracing
stage varied according to the scene geometry and the rendering parameters, in the
same way as conventional ray tracing. Our ray tracer performs basic Whitted-
style ray tracing, but with the addition of a global illumination computation using
the spherical harmonics field. The ray tracing times required for pure Whitted-
style ray tracing calculations are given in the [Pure Whitted-style ray tracing] row,
which indicates that the additional cost of interpolating the spherical harmonics
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Kitchen Bathroom Sponza Conference

# of triangles 181,141 273,750 300,541 425,024
SH-grid resolution 323 323 643 643

V-grid resolution 1283 1283 2563 2563

Total rend. time (ms / fps) 212.7 / 4.70 207.3 / 4.82 182.8 / 5.47 339.3 / 2.95

Voxelization 1.8% 4.5% 14.0% 3.5%
[# of boundary cells] [5,960] [13,197] [26,479] [26,543]

BVH update 0.1% 0.1% 0.4% 0.3%
Photon tracing 8.1% 9.0% 6.1% 2.4%

[# of stored photons] [528,936] [657,580] [259,550] [325,082]
Multi-level R-grid const. 31.0% 34.5% 13.8% 56.0%

SH field construction 13.1% 23.0% 45.5% 23.4%
Extended ray tracing 45.9% 28.9% 20.2% 14.4%
[Pure Whitted-style] [76.9%] [61.9%] [68.6%] [73.8%]

Table 1 Rendering statistics. The total rendering time is broken down into the separate steps
and their relative overheads are provided for in-depth analysis.

coefficients and gathering the incoming radiances comprised 23.1% to 38.1% of
the entire ray tracing computation, which was affected mainly by the amount of
indirect illumination in the scenes.

5.2 Image quality

The main focus of our proposed method was the effective depiction of the reflection
of incoming indirect light, which is difficult to trace, particularly because of light-
scattering diffuse interreflection. To compare our results with reference images
produced by an offline renderer, we produced a full implementation of a GPU-
assisted path tracer where the photon mapping and final gathering techniques
were used for efficient rendering. We used 4,096 gather rays per shading point to
create the final ground truth images (see Figure 11). A thorough analysis showed
that our method produced satisfactory global illumination results, which compared
favorably with the reference images, and it was often difficult to detect visual
differences when they were rendered interactively. In particular, the interpolation
of spherical harmonics in the three-dimensional space around the shading points
produced very few temporal aliases during dynamic scene changes, although we
only used 32 gather rays. Like all numerical discretization techniques, however, our
rendering algorithm had approximation errors because of spatial discretization and
the low-order spherical harmonics. The most obvious visual error usually occurred
around the corners or highly curved objects, where the applied grid resolution was
not sufficient to discretize the rapid geometry and light changes faithfully (refer
to Figure 11 (i) and (j) to see the difference between our result and the reference
image). A possible solution to this problem may be the use of a higher resolution
grid, although this would increase the rendering cost, which strongly suggests that
it would be beneficial to apply the multilevel adaptive grid technique to the grids,
in addition to the R-grid.
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(a) Ours (269.6 ms) (b) Ref. (266.3 sec) (c) Ours (diff. indir.
ill. only)

(d) Ref. (diff. indir. ill.
only)

(e) Ours (195.5 ms) (f) Ref. (204.4 sec) (g) Ours (diff. indir.
ill. only)

(h) Ref. (diff. indir. ill.
only)

(i) Difference: (a) & (b) (j) Difference: (e) & (f))

Fig. 11 Comparison of our proposed method with reference images produced by an offline
GPU-assisted path tracer that supported photon mapping and final gathering. The path tracer
used a pixel sampling and shading strategy that was inherently different from our interactive
ray tracer. Therefore, there were slight differences in the appearance of the rendering images,
although the visual differences were often difficult to detect when rendered interactively.

6 Concluding remarks

The key to the interactive global illumination of fully dynamic scenes with an image
quality similar to final gathering is the efficient representation of the incoming
radiance caused by indirect light in the vicinity of surfaces and performing the final
gathering step with a minimal cost during rendering. Using a multilevel grid-based
scheme and the mathematical tool of spherical harmonics, our rendering method
extended the Whitted-style ray tracer successfully to handle interactive intractable
diffuse indirect illumination. The straightforward computational structure of our
system meant that it was easy to implement on the GPU without relying on
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complex global illumination techniques such as irradiance caching, which is often
vulnerable to temporal flickering artifacts. At present, our rendering algorithm is
limited by the memory required to store various volume grids and the spherical
harmonics coefficients. Thus, we are developing an effective multilevel algorithm to
represent the V-grid and SH-grid adaptively, which will increase the effective grid
resolution, as well as using higher-order spherical harmonics to further enhance
the rendering quality without degrading the level of interactivity.
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