Enhancing Time and Space Efficiency of Kd-tree for Ray-tracing Static Scenes

Byeongjun Choi, Woong Seo, Insung Ihm
Department of Computer Science and Engineering
Sogang University, Seoul, Korea

Abstract

In the ray-tracing community, the surface-area heuristic (SAH) has
been employed as a de facto standard strategy for building a high-
quality kd-tree. Aiming to improve both time and space efficiency
of the conventional SAH-based kd-tree in ray tracing, we propose to
use an extended kd-tree representation for which an effective tree-
construction algorithm is provided. Our experiments with several
test scenes revealed that the presented kd-tree scheme significantly
reduced the memory requirement for representing the tree structure,
while also increasing the overall frame rate for rendering.

Keywords: Ray tracing, kd-tree construction, surface area heuris-
tic, voxel visibility, space reduction.

1 Backgrounds

The kd-tree, routinely used for efficient ray tracing, has a problem
that a large number of triangles intersecting with splitting planes are
repeatedly duplicated during the recursive space-subdivision pro-
cess, which often leads to inefficient, large and tall binary trees with
high triangle redundancy. It was reported in [Choi et al. 2013] that
for the well-known Conference scene, the total number of triangles
in the leaf nodes increased more than 14 times that of the original
triangles. To ease the problem, they proposed a new space-efficient
kd-tree representation where an inner node is permitted to option-
ally store a triangle that would otherwise be duplicated in an exces-
sive number of the leaf nodes in the standard representation. Com-
bined with the new heuristic measures for deciding when and how
to select triangles for inner nodes, their kd-tree scheme markedly
reduced the memory demands for storing the tree structure, while
avoiding any serious degradation of the timing performance.

On the other hands, the SAH, which is used as a de facto stan-
dard strategy for building a good kd-tree, is based on rather simple
assumptions that may not always hold for complicated ray-tracing
situations, thus often leading to inaccurate cost metrics. In another
work, Choi et al. presented the concept of “voxel-visibility heuris-
tic” for defining improved cost metrics, allowing more sophisticated
estimation of the chance of a voxel being hit by rays [Choi et al.
2012]. With these advanced cost metrics, they were able to build
kd-trees that reduced markedly the cost of ray-object intersection
computation, increasing significantly the frame rate for ray tracing.

2 Our approach and results

Interestingly enough, the aforementioned two previous works, one
for alleviating the memory space requirement and the other for

itial kd-tree using the
visibility-based cost metric.

Generate a visibility dataset.

NI/

Reduction : Move highly redundant triangles
from leaves to inner nodes.

Y A )

Leaf node

" boo-0
T e

Figure 1: Hybrid kd-tree construction algorithm.

speeding up the ray tracing computation, can effectively be com-
bined to enhance both time and space efficiency of the kd-tree in
ray-tracing various scenes with nontrivial complexities. Figure 1 il-
lustrates the proposed kd-tree construction algorithm that exploits
the advantages of both methods. In the pre-processing stage, an
initial kd-tree is constructed using the cost metric based on the
voxel visibility as described in [Choi et al. 2012]. For this, we dis-
cretize an input scene domain using a rectangular grid of resolution
256 x 256 x 256, and sample 4,096 directions uniformly around
each cell to evaluate the voxel visibility, i.e., to estimate the inci-
dent ray density for each of the six directions (Generate a visibility
dataset). Then, the grid dataset is exploited to build a kd-tree using
the cost metric defined in terms of the estimated voxel visibility val-
ues (Build an initial kd-tree using the visibility-based cost metric).

Once a time efficient kd-tree is obtained, it is converted into space
more efficient one as described in [Choi et al. 2013]. First, a simple
recursive process is carried out using the occupancy and frequency
measures for removing excessively duplicate triangles from the leaf
nodes of the kd-tree (Reduction I). After the culled triangles are
stored in proper inner nodes, the triangle index list associated with
the leaf nodes of the resulting tree is compressed further using a
compact data layout (Reduction II).

For several scenes with about 100K to 13M triangles, we have
tested the new kd-trees and evaluated both memory space require-
ments and frame rates. When images were rendered at 1024 x 1024
pixels on a PC with dual 3.1 GHz Intel Xeon 8-Core CPUs, the
new kd-tree scheme was able to achieve not only 33.36% of kd-
tree-size reduction on average but also up to 7.8% of frame-rate
increase, compared to the renderings with the kd-trees built by
the routinely used construction technique [Wald and Havran 2006].
In particular, when the hybrid construction algorithm was applied
to large scenes like San Miguel (10,500,551 triangles) and Power
Plant (12,748,510 triangles), we were able to achieve 33.4% and
45.1% of memory reduction, respectively, whereas the frame rate
generally increased up to 7.8%.

References

CHol, B., CHANG, B., AND IHM, I. 2012. Construction of efficient kd-trees for static
scenes using voxel-visibility heuristic. Computers & Graphics 36, 1, 38—48.

CHoI, B., CHANG, B., AND IHM, I. 2013. Improving memory space efficiency of
kd-tree for real-time ray tracing. Computer Graphics Forum 32,7, 335-344.

WALD, I., AND HAVRAN, V. 2006. On building fast kd-trees for ray tracing, and on

doing that in O(Nlog N). In Proceedings of the IEEE Symposium on Interactive
Ray Tracing, 61-69.



