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Adaptive Undersampling for Efficient Mobile Ray Tracing
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Abstract Aiming to develop an efficient ray tracer for

a mobile platform, we present an adaptive undersam-

pling method that enhances the rendering speed by

effectively replacing expensive ray-tracing operations

with cheap interpolation whenever possible. Our method

explores both object- and image-space information gath-

ered during ray tracing to detect possibly problematic

pixels. Rays are fired only for these pixels. We also

present a postcorrection algorithm that minimizes an-

noying artifacts inevitably caused by undersampling.

Our implementation on a mobile GPU demonstrates

that this method can speed up the rendering computa-

tion significantly, while retaining almost the same visual

quality of the rendering.

Keywords ray tracing · mobile platform · adaptive

undersampling · postcorrection · GPU algorithm

1 Introduction

Despite recent successes in building efficient ray trac-

ers, optimizing the rendering computation remains de-

sirable and even essential when the computing load for a

required rendering task is beyond the processing power

of available processors. For instance, the QHD resolu-

tion (2, 560×1, 440) has nowadays become common for

mobile phones whose processors are often not powerful

enough for full ray tracing in real time. An effective way
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of accelerating the ray-tracing computation is adap-

tive undersampling, which aims to fire fewer than one

ray per pixel, thereby minimizing the total number of

ray shootings that incur costly ray–object intersections,

while introducing only a small reduction in ray-tracing

quality. In fact, the idea of adaptive pixel sampling has

long been explored in the ray tracing community, usu-

ally in the context of adaptive supersampling, which

aims at reducing aliasing artifacts caused by insuffi-

cient point sampling. Whether undersampling or su-

persampling, the major concern is identical in that the

goal is to efficiently detect image-space pixels and/or

object-space surface regions that may create aliasing,

then adaptively dispatching rays only where necessary,

and applying cheaper interpolation whenever possible.

In this paper, we present an adaptive undersam-
pling technique that is well suited to effective imple-

mentation of a mobile GPU ray tracer. Our method

collects various pixel attributes on the fly during ren-

dering, which are then used to decide, through simi-

larity checks, whether the expensive ray-tracing oper-

ations may be replaced by much cheaper linear inter-

polation for computing geometric attributes at the first

hit points (see Figure 1). Compared to previous adap-

tive sampling techniques that exploit both image- and

object-space information [5,1,13,4], our method is more

“geometric” in that it also examines the higher-order lo-

cal geometry of object surfaces, such as convexity. This

reduces the likelihood of subtle visual artifacts that are

hard to eliminate using previous methods. In addition,

we propose a low-cost postcorrection method that ef-

fectively reduces the occurrence of aliases such as the

“missing objects” caused by incomplete ray sampling

in undersampled images.

The proposed method is simple in structure and eas-

ily mapped to the mobile GPU architecture, offering an
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(a) Kitchen (b) Test G1 (c) Test G2 (d) Test G3 (e) Test G4 (f) Test TX (g) Test SH (h) Test GC

Fig. 1 Problematic adaptive pixels found by our adaptive undersampling method. To render the images (a), our mobile GPU
ray tracer performed costly ray-tracing operations only for those problematic pixels that were detected through the seven
similarity checks defined in Table 1, as respectively depicted in (b) to (h). Only 34.5 % of the image pixels, including both base
and adaptive pixels, were ray traced to create the 1024× 1024 image, which were very difficult to distinguish visually from the
fully ray-traced image. In general, the ratios of adaptive pixels that fail the respective similarity checks vary in a complicated
manner, depending on the scene complexity and rendering parameters.

efficient parallel undersampling computation. In partic-

ular, while most of the existing adaptive methods recur-

sively subdivide pixels for further sampling based on the

attributes of four reference corner pixels, our adaptive

undersampling algorithm shades a pixel, through ray

shooting or interpolation, with reference to only two

neighboring pixels. This simple, two-level pixel sam-

pling technique is computationally simpler and requires

less memory bandwidth. Therefore, compared with re-

cent adaptive sampling methods such as [8] that are

optimized for high performance GPUs, our method will

allow more efficient implementation on mobile GPUs,

which are more vulnerable to control-path complexity

and heavy memory accesses than PC-based GPUs.

2 Previous work on adaptive ray sampling

Adaptive sampling in spatial and temporal spaces has

been an important research topic in the ray tracing

community. In his seminal paper, Whitted proposed us-

ing hierarchical adaptive supersampling to reduce aliases

resulting from the undersampling of high-frequency sig-

nals, where pixels were recursively subdivided for fur-

ther sampling only if colors sampled at their four cor-

ners vary significantly [20]. For optimal supersampling

in multidimensional space, Lee et al. derived a relation-

ship between the number of ray samples and the quality

of the rendering image [10]. Also, for optimal stochastic

sampling, Dippé and Wold adaptively determined the

sampling rate and filter width based on their error esti-

mates [3]. As a variance reduction technique for solving

the rendering equation, Kajiya proposed applying an

adaptive hierarchical sampling method so that samples

were concentrated in interesting parts of the rendering

domain [9].

In his distributed ray tracing paper, Cook gave an

example of using two levels of sampling densities in

which a higher-density pattern was applied for trouble-

some areas [2]. Mitchell also presented a two-level sam-

pling method by subdividing pixels into small squares

and finding those that need high-density sampling [12].

Painter and Sloan applied hierarchical adaptive stochas-

tic sampling that worked in a progressive manner [15].

Levoy proposed an adaptive sampling method for vol-

ume rendering that also determined the sample rate

progressively [11]. Rigau et al. exploited a family of dis-

crimination measures, called the f-divergences, to de-

termine the adaptive sampling rate [16]. Hachisuka et

al. proposed a kd-tree-based adaptive refinement and

anisotropic integration algorithm for multidimensional

sampling in ray tracing [6].

In addition to the color measure, object space in-

formation has also been exploited by Thomas et al. [18]

and Ohta and Maekawa [14]. Whitted’s adaptive sam-

pling scheme [20] was also extended by Genetti et al.

so that decisions regarding extra sampling were made

based on object-space information obtained during the

ray–object intersection computation [5]. Akimoto et al.

proposed a four-level undersampling technique, called

pixel-selected ray tracing, to speed up the rendering

computation [1], in which both image-space and object-

space measures were utilized for adaptive ray tracing.

Their idea was then extended by Murakami and Hi-

rota [13] and Formella et al. [4]. Jin et al. also presented

a selective and adaptive supersampling method, opti-

mized for today’s many-core processors [8].

In the context of the rasterization-based rendering

pipeline, He et al. [7] and Vaidyanathan et al. [19] in-

dependently proposed rendering architectures support-

ing varying shading rates, where different levels of pixel

sampling were adopted to reduce the fragment shading

cost. These multi-rate shading methods are similar to

ours in that GPU-oriented, simple structured mecha-

nisms are employed to perform expensive shading op-

erations, ray tracing in our case, only where needed,

eventually leading to effective undersampling. However,

the rasterization-based approaches are not extendable

for developing a GPU ray tracer.
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3 Adaptive undersampling algorithm

3.1 Partition of image pixels

Figure 2 shows an example
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Fig. 2 Image pixel
partitioning through 2×
2 base blocks. The pix-
els marked as B, A1,
and A2 represent base
pixels, vertical and hor-
izontal adaptive pixels,
respectively.

of pixel partitioning, where a

set of regularly distributed pix-

els, marked as B, forms a group

of base pixels. The other pixels,

called adaptive pixels, are clas-

sified as either A1 or A2 de-

pending on whether they are in

the same row as the base pixels

or not. Previous related meth-

ods [1] often traverse pixels in

a recursive, multilevel fashion

for adaptive sampling. To pro-

duce a simpler control struc-

ture and permit efficient implementation on a mo-

bile GPU platform, however, our adaptive undersam-

pling algorithm adopts a simple traversal mechanism,

whereby the pixels are processed in a fixed order: base

pixels, type-A1 adaptive pixels, and type-A2 adaptive

pixels. In this paper, we describe our algorithm in terms

of the 2 × 2 pixel partitioning shown in Figure 2. It re-

quires only a simple modification to handle a base block

of larger size.

3.2 Stage I: Regular sampling of base pixels

In the first stage of our algorithm, a ray is traced recur-

sively through each of B pixels. Whereas the eventual

goal of firing a primary ray for each pixel is to compute

the final shaded color (COL), our method collects var-

ious ray attributes at the first hit of the ray, which are

exploited later to enable efficient rendering computa-

tions. These include a set of geometry attributes of the

surface at the first hit, comprising an object identifica-

tion number (OID), a position vector (POS), a normal

vector (NORM), shadow bits (SHDBIT), and texture

coordinates (TCOORD), where the SHDBIT attribute

stores a set of shadow bits such that a bit is set if and

only if a shadow is cast at the surface point with re-

spect to the corresponding light source. In addition, a

global shaded color (GCOL) attribute is collected. In

our current implementation, this stores the radiance

from specular reflection and refraction, although any

other radiance caused by a different kind of global illu-

mination may be associated with GCOL. In this work,

the vector (OID, POS, NORM, SHDBIT, TCOORD,

GCOL) is called the ray-attribute vector (or simply at-

tribute vector) for a pixel.

3.3 Stages II & III: Adaptive sampling of adaptive

pixels

The actual adaptive ray-sampling computation pro-

ceeds in two separate steps using the ray-attribute vec-

tors of the B pixels as the initial data. Each elementary

sampling operation in Stages II & III takes the attribute

vectors of two reference pixels as inputs and computes

an attribute vector for an adaptive pixel, called the

current pixel, that exists horizontally (in Stage II) or

vertically (in Stage III) between the reference pixels.

In Stage II, an attribute vector of each A1 pixel (the

current adaptive pixel) is calculated via interpolation

or ray tracing based on the attribute vectors of the

two neighboring B pixels (the reference pixels) in the

same row. In Stage III, the same computation is then

repeated vertically, taking each A2 pixel as the cur-

rent pixel and then calculating its attribute vector us-

ing those of the corresponding B or A1 pixels in the

same column as the reference pixels. Note that, when

the attribute vector of a pixel is ready, the final color

can easily be produced from it.

3.4 Similarity checks

The key aim of our method is to seek to compute

the attribute vectors of adaptive pixels through cheap

interpolation, in which the linear interpolation for each

ray attribute is clearly defined, as much as possible,

instead of through expensive ray tracing. To check if

simple linear interpolation may safely be applicable, a

series of seven elementary tests called similarity checks
are performed (refer to Table 1 for a summary of these

tests). In our method, the interpolation is applied only

if all the tests succeed.

Four local geometry tests The aim of these four

tests is to examine if the four geometry attributes OID,

POS, NORM, and TCOORD can be interpolated from

those of the reference pixels. First, different objects be-

tween two pixels are often the most serious source of

annoying aliases. Therefore, the first test compares the

OIDs of two reference pixels, and is considered to fail

if the objects are different from each other (G1 in Ta-

ble 1). Second, the next test checks if the distance be-

tween the first hits of the reference pixels is less than a

given distance threshold (G2). Third, the normal direc-

tion at the first hit is particularly useful for detecting

an edge formed by polygons of an object that meet at

an acute angle. Therefore, this third test investigates if

the dot product of the normal directions of the reference

pixels is less than a preset threshold (G3).
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Test conditions

G1 OID0 = OID1

G2 ||POS0 − POS1|| ≤ Tpos
G3 NORM0 ◦NORM1 ≥ Tnorm

G4
{(POS1 − POS0) ◦NORM0} ·
{(POS0 − POS1) ◦NORM1} ≥ 0

TX
TCOORDα.β ≥ Ttex or

TCOORD1−α.β ≤ 1.0− Ttex
SH SHDBIT0 = SHDBIT1

GC ||GCOL0 −GCOL1 || ≤ Tgcol

Table 1 Similarity checks. The subscripts 0 and 1 respec-
tively denote two reference pixels. Here, ◦ denotes the inner
product of two vectors, α can be either 0 or 1, and β refers
to either the s or t texture coordinate.

Ref. ray 0

Cur. ray

Ref. 

ray 1

Fig. 3 Convexity check. The local concave geometry around
the current ray’s first hit may result in annoying alias artifact
when the geometry data interpolated from those of the two
adjacent reference rays are used for ray tracing.

Although these three similarity tests have often

been used in previous methods, they can introduce

aliasing when the real intersection point exists on a

complex surface. Figure 3 shows a common adverse sit-

uation in which the local surface fluctuates between the

first hits POS0 and POS1 of the reference pixels. In this

case, a linear interpolation of the two normal vectors

may give an inaccurate normal at the current ray’s po-

sition POS, even though the previous three tests may

have succeeded. An incorrect normal can result in a se-

vere error when the surface point is locally shaded or

the reflection/refraction direction is generated.

To minimize these problems with normals, we

perform a fourth elementary test, called the convexity

check, in which the signs of the first hit point in 3D

space with respect to the tangent plane defined by

the position and normal at the second first hit, and

vice versa, are examined (G4 in Table 1). If the two

signs are different, the local surface between POS0 and

POS1 is not smooth, possibly causing a troublesome

fluctuation. Although the success of the convexity

check does not guarantee surface convexity, because

the surface can have multiple inflections, we have found

the convexity check to be quite effective for removing

normal-related aliasing.

A shadow test Next, our method performs a

shadow test that succeeds only if all the corresponding

shadow bits in SHDBITs of the two reference pixels

are identical (SH in Table 1). If the test succeeds,

the current pixel simply inherits the light visibility

from the reference pixels without shooting shadow

rays. Otherwise, if at least one bit field disagrees,

the shadow rays are fired towards each light. This

all-or-nothing strategy may appear excessive because

the light visibility could be checked only for lights with

different visibility. However, this strategy produces

a simple control structure that results eventually in

more efficient SIMD processing on the mobile GPU

platform, particularly for scenes with few lights.

A texture test Often, the same texture image is

repeatedly applied to surfaces during texture mapping.

If the image is not continuous along its boundaries,

a careless linear interpolation of texture coordinates

from the two reference pixels could cause annoying

aliases. To avoid such problematic situations, we

perform a texture test that checks whether, for each

component of the texture-coordinate vector, at least

one of the corresponding coordinates exists in the

interval [Ttex, 1.0 − Ttex] for some small Ttex > 0

(TX in Table 1). See Figure 1(f) to notice how a

single texture image was repeatedly mapped onto the

floor surface, where simple interpolation of texture

coordinates around the boundaries would easily cause

wrong texture fetches.

A global color test The last, but not least, element

of classic ray tracing is the effect of indirect illumination

caused by specular reflection and refraction, for which

costly secondary rays must be traced recursively. In the

same way as for primary rays, we may investigate the

geometry of these secondary rays via similarity checks,

at both the origins and the destinations. However, our

preliminary implementation revealed that such a de-

tailed adaptive technique often worsened the runtime

performance markedly, at least on the current mobile

GPU platform. Therefore, we conduct a simple global

color test in which the reflection/refraction colors of the

reference pixels are compared with each other (GC in

Table 1).

4 Postcorrection of undersampled images

Due to insufficient sampling, our method may introduce

the problem that objects, or parts of objects, can fall

between ray-traced samples and be missed. Figures 4(a)
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and (b) illustrate a typical situation where the vanish-

ing part in Figure 4(b) falls between pixels that are

classified, through either ray tracing or interpolation,

as being outside the thin object. If those pixels have

similar geometry attributes, an incorrect OID is inter-

polated into the intervening adaptive pixels, making the

middle part disappear.

An important observation is that the missing ob-

ject problem always occurs in the interpolated adaptive

pixels that can be traced from ray-traced adaptive pix-

els. Such troublesome adaptive pixels are marked with

an asterisk in Figure 4(b). An effective way of remov-

ing such aliasing is to revisit the ray-traced adaptive

pixels, marked in thicker lines in Figure 4(b), propa-

gating their correct ray–object intersection information

into their interpolated neighbors. Given a ray-traced

adaptive pixel x, consider a neighboring pixel y of x,

whose geometry attributes have been interpolated. If

the OIDs of x and y are different, y becomes a candi-

date for the problematic pixel, marked with white dots

in Figure 4(c). To investigate whether it actually is a

candidate, a primary ray is additionally shot through y,

thereby performing the regular ray-tracing operation. If

the new OID differs from the old one, then a missing

part of the object has been found and can be recon-

structed. The adaptive pixel y then becomes classified

as ray traced, and its interpolated neighbors are re-

peatedly investigated, as illustrated in Figure 4(c). In

this propagation process, an eight-neighbor examina-

tion would give a more robust result. However, we find

that a more efficient four-neighbor examination pro-

duces sufficiently good rendering results for the 2 × 2

base block.

BB B B

BB B B

(a) Thin object

BB B B

BB B B

(b) Without correction

BB B B

BB B B

(c) Corrected

Fig. 4 Correction of missing parts. Here, the black dots
and the squares indicate pixels whose geometry attributes
were obtained through regular ray tracing and interpolation,
respectively. The base pixels are marked with B.

Kernel Operations

Step-I
– Trace a ray for each B pixel, and shade it.

– Store the ray attribute vectors of the B pix-
els in global memory.

Step-II-a

– Perform the similarity checks for each A1
pixel.

– If they pass, interpolate the attribute vector,
and shade the pixel.

– If not, store the address of the current pixel
in global memory.

Step-II-b
– Pack the A1 pixels to be ray-traced through
parallel scans.

Step-II-c
Same as Step-I except that the packed A1 pix-
els are processed.

Step-III-a
Same as Step-II-a except that the A2 pixels are
processed.

Step-III-b
Same as Step-II-b except that the A2 pixels are
processed.

Step-III-c
– Trace a ray for each packed A2 pixel, and
shade it.

Table 2 Seven-kernel implementation of adaptive under-
sampling.

Notice that our correction algorithm involves post-

processing after the entire pass of adaptive rendering is

complete. It differs from a previous approach to pixel-

selected ray tracing [1], which aims to detect pixels of

vanishing objects by referring to the color attributes

of pixels during adaptive ray tracing. By separating

the adaptive-sampling and error-correction stages, we

can achieve a simpler, GPU-friendly algorithm. Note

also that our antialiasing mechanism is selective in that

other aliases, such as “missing shadow,” can selectively

be reduced by checking the corresponding attribute

(e.g., SHDBIT for shadow antialiasing).

5 Efficient implementation on mobile GPUs

Because runtime performance is usually more vulnera-

ble to careless GPU implementation on a current mo-

bile platform than on a PC platform, the GPU program

must be carefully tuned for maximum efficiency. First,

consider the similarity checks in our seven elementary

tests. If all the local geometry tests succeed but the

shadow test fails, for instance, we may interpolate the

local geometry but shoot shadow rays for light visibil-

ity. However, to avoid the branch divergences that have

a significant negative impact on the GPU performance,

our implementation adopts the strategy of full ray trac-

ing for the current pixel if there is any failure in the

similarity checks.

Second, as a result of the similarity checks in Stage I

and Stage II, a set of usually sparse problematic pixels
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are detected, for which expensive ray tracing is to be

carried out in the next stage. Again, to minimize the

branch divergence between concurrent threads, our im-

plementation runs a separate kernel for packing those

pixels into a contiguous region before initiating the ray-

tracing computation. Despite this extra kernel requir-

ing a series of parallel scan operations [17] on the GPU,

our test results exhibit a significant enhancement in

the rendering performance because the pack operation

also reduces global memory bandwidth significantly.

Table 2 summarizes our seven-kernel implementation of

the proposed algorithm, which shows the highest ren-

dering performance. Note that splitting the GPU pro-

gram into kernels of smaller granularity might improve

the GPU efficiency further. However, we observe that

the increasing numbers of global memory accesses can-

cels out the benefit from the reduced divergence, ulti-

mately reducing the GPU efficiency.

Third, while the optional postcorrection technique

in Section 4 can easily be implemented using a stack on

a CPU, a different implementation scheme is needed for

effective many-core processing. In our method, a con-

current thread, associated with each row of the image,

first scans its row from left to right, detecting and cor-

recting problematic pixels progressively. The same op-

eration is then carried out repeatedly from right to left,

from top to bottom, and finally from bottom to top.

This requires four applications of the scanning process,

but our experiments have also shown that scanning in

just two orthogonal directions, e.g., from left to right

and from top to bottom, usually produces sufficiently

good correction outcomes.

6 Experimental results

To test our method, we first implemented a kd-tree-

based full ray tracer using the OpenCL 1.2 API on an

LG G3 Cat.6 mobile phone that uses the Qualcomm

Snapdragon 805 chipset equipped with an Adreno 420

GPU. The proposed adaptive undersampling technique

was then applied to optimize the rendering computation

on the mobile platform. All the timings were measured

using OpenCL workgroups of 8× 8 work items and de-

fault thresholds Tpos = 0.03, Tnorm = 0.9, Ttex = 0.3,

and Tgcol = 0.15, which generally produced good re-

sults.

6.1 Computation time

Table 5 at the end of this article compares our method

to full ray tracing, which shoots one ray through every

pixel (see the Sampling – 1×1 rows). The timing results

(a) Café (b) Ben (c) Kitchen

(d) Conference (e) Bathroom (f) San Miguel

Fig. 5 Example scenes and the camera views tested. To
achieve fair evaluation of our method on a mobile phone, we
selected six scenes with low to high geometric and rendering
complexity, whose triangle numbers ranged from 29,359 to
588,402. Because of the limited memory space of the tested
mobile phone, some part of the original dataset for San Miguel
was omitted. Note that, because the distance threshold Tpos
for the local geometry test G2 is dependent on the dimension
of the scene, each scene was normalized such that the longest
side of the axis aligned bounding box has length 1.

in the Time and Speedup columns indicate that the pro-

posed adaptive sampling method (Ours) compares quite

favorably to the nonadaptive method (Full RT), being

1.48 to 2.21 times faster when the 2× 2 base block was

used to render 1, 024 × 1, 024 images for the six exam-

ple scenes shown in Figure 5. This efficiency gain was

achieved primarily by the decrease in the costly ray-

tracing computation despite the extra overhead for the

adaptive undersampling, where the figures in the RT

ratio column show that only 27.0% to 34.5% of image

pixels, including both base and adaptive pixels, were ac-

tually ray traced in our method. Figure 1 shows those

adaptive pixels that were found to be problematic in

the respective similarity checks.

Despite our efforts towards lowering the ray-tracing

cost, it still accounts for a major portion of the render-

ing computation, which paradoxically shows the impor-

tance of adaptive undersampling on the mobile GPU.

As implied by the timing results in Table 3(a), which

reports the breakdown of runtimes for the test scenes

measured for 1, 024 × 1, 024 images, the kernel Step-
I, Step-II-c, and Step-III-c spent 64.4% (Conference) to

78.3% (Kitchen) of the rendering time to ray trace

around 30% of 10242 pixels, whereas the other kernels,

including the optional postcorrection (Step-IV) and the

overhead of initiating the GPU program and transfer-

ring data (Step-ETC), used the remaining time to shade

the other pixels.
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Note that the base pixels comprising one quarter of

the entire image pixels are always ray traced when the

2 × 2 base block is employed, implying that the low-

est possible ray-tracing ratio is 25%. With increasing

scene and rendering complexity, the ratio will increase

to maintain the rendering quality, in turn lowering the

speedup number. Otherwise, there would be an incor-

rect reliance on heavy interpolation. When the com-

plexity is beyond the capability of a given ray-sampling

density, spatial aliasing artifacts occur even for full ray

tracing (the case when the ratio is 100%), to which su-

persampling has been an inevitable solution. The statis-

tics in the Sampling – 2× 2/4× 4 rows in Table 5 show

that the ray-tracing pixel ratio decreases, thereby im-

proving efficiency in the supersampling settings.

6.2 Image quality

Figure 6 (a) to (c) depicts an example of how effectively

the postcorrection algorithm reconstructs the vanishing

parts of thin objects and the shadow cast by them in

the Bathroom scene, where our basic adaptive under-

sampling method suffered from the “missing object”

problem. At the extra cost of postcorrection through

the OID and SHDBIT attributes, our method was able

to reconstruct these missing parts, resulting in an im-

age that appeared very similar to that produced via full

ray tracing. Note that, for the tested scenes, the correc-

tion stage required 7.7% (Ben) to 17.1% (Conference) of

the entire rendering time, resulting in a slight decrease

in frame rate. Although the timings in Table 5 include

that for the postcorrection computation, this feature

can often be turned off for such scenes as Café, Ben, and

Conference that do not contain very thin objects, which

would produce an additional performance enhancement

without significant harm to the rendering quality.

However, the postcorrection algorithm could not ef-

fectively remove the other kind of aliasing artifact, such

as that appearing on the sink surface where the floor

surface, represented as a single object, is reflected (see

Figure 6(d) and (e)). These artifacts are caused mainly

by the small details on the reflected floor surface being

simply beyond the capability of the applied sampling

density of one sample per pixel (Sampling - 1×1). They

also appear in the full ray-traced image. Although the

adaptive undersampling technique worsens the situa-

tion somewhat for temporal-efficiency reasons, the ap-

propriate solution is again supersampling, where the 16

ray samplings per pixel (Sampling - 4 × 4) reduces the

visual difference between the results for our method and

for full ray tracing (see Figure 6(f) and (g)).

Overall, our experiments show that good image

quality is maintained despite the reduced numbers of

(a) Without post-
correction

(b) With postcor-
rection

(c) Full ray trac-
ing

(d) Ours (1× 1) (e) Full RT (1× 1)

(f) Ours (4× 4) (g) Full RT (4× 4)

(h) Café (i) Bathroom

Fig. 6 Comparison of rendering results. Parts of the images,
which were rendered at 1, 024×1, 024 pixels, are shown to aid
analysis of the rendering quality. See the text for detail.

ray shots, as given in the PSNR column in Table 5. Fig-

ure 6(h) and (i) also compares the results from the full

ray tracing (top) and our adaptive undersampling (mid-

dle) for two example scenes. The most obvious visual er-

rors, as displayed in the difference image (bottom), usu-

ally occur around corners or for highly curved objects,

which are often hard to detect using similarity checks.

Furthermore, when textures are applied, the shaded col-

ors of interpolated adaptive pixels differ slightly from

those of the ray-traced pixels. However, these visual dif-

ferences are often difficult to detect, particularly when

rendered interactively.
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6.3 Further analysis

Our method is usually more effective when more

shadow and/or reflection/refraction rays are to be

traced. If full ray tracing is employed, the extra render-

ing cost increases linearly with the additional number

of these rays. As clearly indicated in the experiment

where the ratio of pixels for which reflective objects are

visible (i.e., reflection rays are being fired), is varied (see

Table 3(b)), the rendering cost for handling the extra

secondary rays increased slowly in our method because

the ray-tracing computation was suppressed effectively.

In summary, the timing performance of our method

was primarily affected by the ratio of pixels, including

base pixels, for which ray tracing should be performed.

This is clearly confirmed in the experiment where the

ratio was varied in the interval that usually contains

those observed in the tested example scenes (refer to

Table 3(c)). Note that our method is selectively control-

lable in that the performance drop can be suppressed by

lowering this ratio through relaxed tolerances in the rel-

evant similarity checks. Developing an effective way to

find an optimal set of tolerance values for input scenes

remains an open problem.

7 Concluding remarks

As noted earlier, many-core processing driven with a

parallel programming tool such as the OpenCL API

is more vulnerable to the complexity of parallel al-

gorithms on mobile GPUs than on PC-based GPUs.

Therefore, it was critical to design a mobile GPU algo-

rithm with a simple control structure, which explains

why we had to compromise between simplicity and flex-

ibility in developing our algorithm. As a result, our

adaptive sampling scheme is orthogonal to the acceler-

ation structures and traversal algorithms that are rou-

tinely used in ray tracing. We expect that it will be

combined effectively with a mobile ray–tracing hard-

ware architecture for even higher ray tracing through-

put in the future.

In the future, it will be worthwhile to investigate the

possibility of our method in a PC GPU ray tracer. Our

preliminary experiments show that the simple porting

of the OpenCL-based ray tracer also allows effective

adaptive ray sampling on a PC platform when high

quality, high resolution images are to be ray traced

for complicated scenes. Table 4 summarizes the statis-

tics collected when a reflective Hairball model made of

2,880,000 triangles was rendered at the 4K UHD reso-

lution of 3, 840× 2, 160 pixels on a desktop PC with an

AMD Radeon R9 Fury X GPU. Here, because of the

complexity of the model, high rates of sampling was

needed to ensure the rendering quality. As in the mo-

bile ray tracing, we observe that our method achieves

marked speedups while retaining good image quality

compared to the full ray tracing. Tailoring our adap-

tive undersampling algorithm to best fit the PC GPU

remains as a future research topic.

Acknowledgements The test scenes are courtesy of I.
Wald (Ben), J. Helenklaken (Kitchen), A. Grynberg and
G. Ward (Conference), G. M. Leal Llaguno (San Miguel),
and S. Laine and T. Karras (Hairball). This work was sup-
ported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP) (No. NRF-
2015R1A2A2A01006590).

References

1. Akimoto, T., Mase, K., Suenaga, Y.: Improved pixel se-
lected ray tracing. Systems and Computers in Japan
22(4), 57–67 (1991)

2. Cook, R.: Stochastic sampling in computer graphics.
ACM Transactions on Graphics 5(1), 51–72 (1986)
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Sampling
FRT Ours (Time: sec., PSNR: dB)

Time Time Speedup RT ratio PSNR

1× 1 5.2 2.6 2.00x 0.390 31.72

2× 2 18.9 9.4 2.01x 0.378 37.73

4× 4 66.6 32.6 2.04x 0.360 42.21

8× 8 232.1 110.3 2.10x 0.343 45.62

16× 16 803.8 369.6 2.17x 0.329 48.16

Tested view

Table 4 Preliminary performance test on a PC platform.
Three lights were lit to ray trace the reflective hairball model
where the floor and the right wall were also reflective.
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Scene Resolution Sampling
Full RT Ours

Time (ms) Time (ms) Speedup RT ratio PSNR (dB)

Café

(29,359)

5122

1× 1 314.0 199.3 1.57x 0.327 43.44

2× 2 1,203.1 637.3 1.88x 0.294 41.72

4× 4 4,620.6 2,130.1 2.16x 0.274 41.68

10242

1× 1 1,211.7 591.2 2.04x 0.294 43.99

2× 2 4,396.7 2,079.5 2.11x 0.274 44.03

4× 4 16,663.8 7,382.3 2.25x 0.263 44.26

20482

1× 1 4,332.0 1,928.5 2.24x 0.274 44.58

2× 2 16,593.7 6,991.6 2.37x 0.263 46.23

4× 4 83,840.8 25,808.9 3.24x 0.257 46.58

Ben

(78,039)

5122

1× 1 345.2 191.7 1.79x 0.288 44.25

2× 2 1,314.3 619.3 2.12x 0.270 47.81

4× 4 4,802.3 2,086.2 2.30x 0.260 50.92

10242

1× 1 1,275.8 575.2 2.21x 0.270 45.46

2× 2 4,586.9 1,946.6 2.35x 0.260 49.55

4× 4 18,007.2 7,230.0 2.49x 0.255 51.66

20482

1× 1 4,654.1 1,927.7 2.41x 0.260 47.23

2× 2 17,789.7 6,868.0 2.59x 0.255 51.00

4× 4 78,791.9 26,620.5 2.95x 0.253 52.14

Kitchen

(101,015)

5122

1× 1 356.0 278.8 1.27x 0.394 37.89

2× 2 1,319.8 834.0 1.58x 0.345 43.99

4× 4 4,870.8 2,866.7 1.69x 0.312 48.40

10242

1× 1 1,296.9 828.0 1.56x 0.345 39.14

2× 2 4,796.9 2,656.5 1.80x 0.312 45.22

4× 4 18,244.1 8,978.5 2.03x 0.291 48.83

20482

1× 1 4,777.8 2,634.1 1.81x 0.312 39.79

2× 2 17,738.9 8,620.8 2.05x 0.291 46.04

4× 4 68,734.2 29,885.4 2.29x 0.276 49.14

Conference

(190,947)

5122

1× 1 230.6 173.1 1.33x 0.336 47.44

2× 2 842.5 549.0 1.53x 0.300 50.56

4× 4 3,414.4 1,958.2 1.74x 0.277 51.11

10242

1× 1 841.6 508.1 1.65x 0.300 48.92

2× 2 3,284.0 1,803.9 1.82x 0.277 50.35

4× 4 12,700.4 6,729.4 1.88x 0.265 51.58

20482

1× 1 3,216.5 1,666.2 1.93x 0.277 50.89

2× 2 12,640.0 6,157.8 2.05x 0.265 51.41

4× 4 49,223.0 23,200.3 2.12x 0.258 51.61

Bathroom

(268,725)

5122

1× 1 319.4 240.6 1.32x 0.355 36.63

2× 2 1,223.8 857.0 1.42x 0.318 44.31

4× 4 4,384.2 2,805.8 1.56x 0.294 48.60

10242

1× 1 1,169.5 733.6 1.59x 0.318 40.54

2× 2 4,331.8 2,561.0 1.69x 0.294 46.41

4× 4 16,759.8 8,480.6 1.97x 0.280 49.12

20482

1× 1 4,293.7 2,456.2 1.74x 0.294 41.85

2× 2 16,555.3 8,183.9 2.02x 0.280 47.25

4× 4 64,030.8 28,831.4 2.22x 0.270 49.85

San Miguel

(588,402)

5122

1× 1 382.5 324.2 1.17x 0.395 36.87

2× 2 1,357.0 978.4 1.38x 0.340 43.10

4× 4 4,910.6 3,375.9 1.45x 0.300 46.47

10242

1× 1 1,344.3 905.4 1.48x 0.340 39.16

2× 2 4,833.8 2,923.6 1.65x 0.300 43.18

4× 4 17,917.2 9,987.0 1.79x 0.278 48.08

20482

1× 1 4,814.2 2,838.4 1.69x 0.300 38.06

2× 2 17,845.4 8,774.0 2.03x 0.278 45.89

4× 4 67,949.8 31,442.0 2.16x 0.265 49.51

Table 5 Performance comparison with full ray tracing (2 × 2 base block). Six scenes of low to high geometric complexity
were tested, with triangle numbers given in parentheses. The figures in the RT ratio column indicate the ratios of the number
of ray samples used by our renderer (“Ours”) to that for the full ray tracer (“Full RT”). The PSNR values were measured by
comparing the respective rendering images produced by the two methods.
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