
Adaptive Undersampling

for Efficient Mobile Ray Tracing

Youngwook Kim𝟏 Woong Seo𝟏 Yongho Kim𝟐

Yeongkyu Lim𝟑 Jae−ho Nah𝟑 Insung Ihm𝟏

1 Sogang University, Korea 2 NCSOFT, Korea 3 LG Electronics, Korea

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016

Motivation

• Interactive ray tracing on the mobile GPU

– A high screen resolution such as QHD (2,560x1,440) is nowadays

common for mobile devices.

– Without a specialized mobile accelerator, interactive ray tracing is still

beyond the processing power of available processors.

– Optimizing the mobile ray tracing computation remains essential

when images of nontrivial pixels are to be ray-traced interactively.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 2

Kitchen (101K triangles) Bathroom (269K triangles)

Kitchen Bathroom

512x512 356.0 319.4

1,024x1,024 1,296.9 1,169.5

2,048x2,048 4,777.8 4,293.7

Full ray tracing time using kd-tree
on an Adreno 420 GPU (ms)

• Adaptive undersampling

– Aim to minimize the total number of ray shootings while introducing

only a small reduction in ray-tracing quality.

– Fire fewer than one ray per pixel adaptively.

• Shoot rays through problematic pixels while applying cheaper interpolation

for the remaining pixels.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 3

Full ray tracing (1,024x1,024) Adaptive ray tracing
(1.56x faster, PSNR 39.14)

Ray-traced pixels (34.5%)

Our Contributions

• Present an adaptive undersampling technique well-suited to effective im

plementation of a mobile GPU ray tracer.

– Similarity checks to decide problematic pixels based upon various pixel attrib

utes collected during rendering

• Explore both image-space color measures and object-space geometry attributes.

• Enable users to focus ray tracing efforts on specific rendering features.

– A seven-kernel GPU implementation of the undersampling algorithm with a si

mple control structure

• Allow an efficient computation on the mobile GPU that is more vulnerable to the com

plexity of parallel algorithm.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 4

Problematic pixels found through seven similarity check measures

• Present a low-cost postcorrection method to reduce the occurrence of

aliases due to insufficient pixel sampling.

– An optional postprocessing algorithm to correct missing parts

• Effectively handle the missing object problem occurring in the interpolated adaptive

pixels.

– A GPU efficient implementation of the correction algorithm

• Propose a multi-step pixel scanning technique designed for the GPU’s many-core

processing.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 5

Before correction After correction Full ray tracing

Two-level Pixel Partitioning for Efficient Undersampling

• Three types of pixels in the 2x2 base blocks

– Base pixels (B): always ray-traced

– Adaptive pixels: ray-traced or interpolated

• Vertical (A1)

• Horizontal (A2)

• Fixed-order pixel traversal for a simple control structure

– Process pixels in parallel in the order of B pixels A1 pixels A2 pixels.

– Permit efficient implementation on a mobile GPU platform.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 6

2x2 base block

Three-step Adaptive Undersampling Algorithm

• Stage I : Regular sampling of base pixels

– Trace a ray in parallel through each of regularly distributed B pixels.

– During processing each pixel, collects various ray attributes at the first hit of

the ray.

• Object identification number (OID)

• Position vector (POS)

• Normal vector (NORM)

• Shadow bits (SHDBIT)

• Texture coordinates (TCOORD)

• Global shaded color (GCOL)

 The final shaded color of a pixel can always be produced from its ray attributes.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 7

Stage I

• Stage II: Adaptive sampling of vertical adaptive pixels

– Process each A1 pixel in parallel.

• Take the attribute vectors of two horizontally adjacent B pixels as input.

• Compute the attribute vector of the current A1 pixel

– via expensive ray tracing or cheap linear interpolation.

 A set of elementary tests called similarity checks will provide an answer on

which operation to be selected.

• Stage III: Adaptive sampling of horizontal adaptive pixels

– Process each A2 pixel in parallel.

• Take the attribute vectors of two vertically adjacent B or

A1 pixels as input.

• Compute the attribute vector of the current A2 pixel

– via expensive ray tracing or cheap linear interpolation.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 8

Stage II & III

Similarity Checks

• A series of elementary tests made with the ray attributes of two

reference pixels

– Tell if the ray attributes of the current pixel may safely be interpolated linearly

from those of the reference pixels.

– Perform a linear interpolation only if all the tests succeed.

– Must be simple and effective to pursue high efficiency on the mobile GPU.

• Four kinds of tests

– Four local geometry tests

(G1, G2, G3, G4)

– A texture test (TX)

– A shadow test (SH)

– A global color test (GC)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 9

The subscripts 0 and 1 respectively denote two reference pixels.

• Four local geometry tests

– G1: check if the two object IDs are identical.

– G2: check if the two first hits are sufficiently close.

– G3: check if the two normal directions at the first hits are sufficiently similar.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 10

Problematic adaptive pixels detected by each similarity check

G1 G2 G3

– G4 (convexity check): check if there possibly is a surface fluctuation

between the two reference pixels.

• Effective for removing normal-related aliasing caused during local shading and

secondary ray generation.

• A texture test

– TX: check if the two texture coordinates exist across a texture boundary.

• Effective particularly when a texture is repeatedly applied.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 11

Ref. ray 0

Cur. ray

Ref.

ray 1

A troublesome situation
detected by G4

G4 TX

• A shadow test

– SH: check if all the corresponding shadow flags at the two hit points are identical.

• A global color test

– GC: check if the two reflection/refraction colors are sufficiently similar.

• Any kind of global color could be compared in the extended work.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 12

SH GC

Postcorrection of Undersampled Images

• Missing object problem

– Due to insufficient sampling, objects, or parts of objects, can fall between ray-

traced samples and be missed.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 13

Adaptive undersampling Rendering result

Interpolated adaptive pixel Ray-traced adaptive pixel

Base pixel (ray-traced)

A part of object missing

An incorrect object ID is interpolated into the intervening adaptive pixels!

• Observation

– The problem always occurs in the interpolated adaptive pixels that can be

traced from ray-traced adaptive pixels.

• Solution

– Starting from each ray-traced adaptive pixel (), propagate its correct ray-

object intersection information into its interpolated neighbors.

• When a neighboring pixel has a different object ID, fire a ray through the pixel.

• If the new object ID differs from the old one, repeat the propagation process from

that pixel.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 14

Before correction Propagation of the object ID information

• Implementation

– An 8-neighbor propagation versus a 4-neighbor propagation

 For the 2x2 base block, the 4-neighbor propagation is sufficiently effective.

– GPU-friendly propagation

• Each concurrent thread scans an associated row from left to right, and then right to

left, correcting problematic pixels progressively.

• Then, each concurrent thread scans an associated column from top to bottom, and

then bottom to top, correcting problematic pixels progressively.

 Scanning in just two orthogonal directions produces sufficiently good results.

• Note

– Our correction method is selective.

• For instance, “missing shadow” can be reduced by checking the shadow flags.

– The separation of error correction from adaptive sampling allows a simpler,

GPU-friendly implementation.

• Different from the previous approach such as pixel selected ray tracing (Akimoto et al.

1991)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 15

GPU Implementation of Adaptive Undersampling

• Seven-kernel Implementation

– To avoid the branch divergences between concurrent threads,

• Fire a ray through the adaptive pixel if there is at least a failure in the similarity checks.

• Pack the pixels to be ray-traced into a contiguous region through a parallel scan

operation.
Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 16

Kernel Operations

Step-I • Trace a ray for each B pixel, and shade it.
• Store the ray attribute vectors of the B pixels in global memory.

Step-II-a • Perform the similarity checks for each A1 pixel.
• If they pass, interpolate the attribute vector, and shade the pixel.
• If not, store the address of the current pixel in global memory.

Step-II-b • Pack the A1 pixels to be ray-traced through parallel scans.

Step-II-c • Same as Step-I except that the packed A1 pixels are processed.

Step-III-a • Same as Step-II-a except that the A2 pixels are processed.

Step-III-b • Same as Step-II-b except that the A2 pixels are processed.

Step-III-c • Trace a ray for each packed A2 pixel, and shade it.

Experiments

• Compared ray tracing algorithms

– Full ray tracing: a kd-tree-based full Whitted-style ray tracing

– Ours: a kd-tree-based adaptive undersampling

• Applied tolerance values: 𝑇𝑝𝑜𝑠= 0.03, 𝑇𝑛𝑜𝑟𝑚= 0.9, 𝑇𝑡𝑒𝑥= 0.3, 𝑇𝑔𝑐𝑜𝑙= 0.15

 Based on OpenCL 1.2 (workgroup size = 8x8)

• Tested mobile platform: an LG G3 Cat.6 mobile phone

– A Qualcomm Snapdragon 805 chipset with an Adreno 420 GPU

• Tested scenes and camera views

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 17

Café (29,359) Ben (78,039) Kitchen (101,015) Bathroom (268,725) San Miguel (588,402)Conference (190,947)

Performance on Rendering 1,024x1,024 Images

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 18

Scene
Full RT Ours

Time (ms) Time (ms) Speedup (x) RT ratio PSNR (dB)

Café 1,211.7 591.2 2.04 0.294 43.99

Ben 1,275.8 575.2 2.21 0.270 45.46

Kitchen 1,296.9 828.0 1.56 0.345 39.14

Conference 841.6 508.1 1.65 0.300 48.92

Bathroom 1,169.5 733.6 1.59 0.318 40.54

San Miguel 1,344.3 905.4 1.48 0.340 39.16

Ours is 1.48 to 2.21 times faster
when the 2x2 base block was used.

Only 27.0% to 34.5% of image pixels including base pixels
were actually ray-traced.

Good image quality is maintained despite the reduced numbers of ray shots.

Detected Problematic Adaptive Pixels

• Café (4.4% + 25.0%)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 19

• Ben (2.0% + 25.0%)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 20

• Kitchen (9.5% + 25.0%)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 21

• Conference (5.0% + 25.0%)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 22

• Bathroom (6.8% + 25.0%)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 23

• San Miguel (9.0% + 25.0%)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 24

Dissection of Kernel Execution Time (ms)

Scene I II-a II-b II-c III-a III-b III-c IV ETC

Café 284.3 25.9 10.4 53.7 38.5 11.1 94.6 60.8 11.8

Ben 329.8 25.4 11.5 40.2 36.8 10.7 66.7 44.3 9.8

Kitchen 341.7 26.3 10.2 99.4 37.5 10.7 207.1 81.9 13.2

Conference 206.4 23.8 10.0 38.7 37.3 11.6 81.8 86.7 11.6

Bathroom 300.7 27.0 10.0 84.9 37.1 11.1 185.2 66.5 11.0

San Miguel 362.7 24.0 10.7 126.0 34.3 11.0 198.1 130.0 8.7

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 25

Postcorrection: IV

Ray tracing: I, II-c, III-c Similarity checks & Interpolation: II-a, III-a

Pixel packing (parallel scan): II-b, III-b

Data transfer & Kernel Launch: ETC

Ray tracing still accounts for a large portion of rendering time. (Conference: 64.3%, Kitchen: 78.3%)
This fact paradoxically shows the importance of adaptive undersampling on the mobile GPU.

Postcorrection is optional, which can often be turned off
for such scenes as Café, Ben, and Conference.

Performance on Supersampling 1,024x1,024 Images

Sampling Scene
Full RT Ours

Time (ms) Time (ms) Speedup (x) RT ratio PSNR (dB)

2x2

Café 4,396.7 2,079.5 2.11 0.274 44.03

Ben 4,586.9 1,946.6 2.35 0.260 49.55

Kitchen 4,796.9 2,656.5 1.80 0.312 45.22

Conference 3,284.0 1,803.9 1.82 0.277 50.35

Bathroom 4,331.8 2,561.0 1.69 0.294 46.41

San Miguel 4,833.8 2,923.6 1.65 0.300 43.18

4x4

Café 16,663.8 7,382.3 2.25 0.263 44.26

Ben 18,007.2 7,230.0 2.49 0.255 51.66

Kitchen 18,244.1 8,978.5 2.03 0.291 48.83

Conference 12,700.4 6,729.4 1.88 0.265 51.58

Bathroom 16,759.8 8,480.6 1.97 0.280 49.12

San Miguel 17,917.2 9,987.0 1.79 0.278 48.08

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 26

Given a fixed scene complexity,
more samples per pixel decreases the ray-tracing pixel ratio,
thereby improving rendering efficiency.

Supersampling is often essential for producing high-quality images.

Postcorrection Using Object ID and Shadow Flags

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 27

Before correction After correction Full ray tracing

• Effectively reconstructed the vanishing parts of thin objects and the shadow cast by them.
• Required 7.7%(Ben) to 17.1%(Conference) of the entire rendering time.
• Can often be turned off for the scene that do not contain very thin objects such as Café, Ben,

and Conference.

Small Details beyond Sampling Density

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 28

Ours (1x1 sampling) Full ray tracing (1x1 sampling)

Ours (4x4 sampling) Full ray tracing (4x4 sampling)

• To handle the small details beyond the capability of the applied sampling density, the
appropriate solution is supersampling rather than postcorrection.

Image Quality (1,024x1,024 Pixels/1x1 Sampling)

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 29

Ours

Full ray tracing

Difference (10x)

Café (2.04x/43.99dB) Bathroom (1.59x/40.54dB)

The most obvious visual errors usually occur
around corners or for highly curved objects,
which are hard to detect using similarity checks. Good image quality is maintained

despite the reduced numbers of ray shots.

Ray-traced pixels 25.9% 26.6% 28.0% 29.1% 32.1%

Full ray tracing (ms) 944.6 884.7 866.4 859.8 904.7

Ours (ms) 362.1 (2.60x) 414.4 (2.13x) 460.4 (1.88x) 521.7 (1.64x) 606.1 (1.49x)

Camera view

Further Analysis

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 30

Reflective pixels 19.9% 41.1% 60.9% 82.0% 99.9%

Full ray tracing (ms) 813.3 870.2 992.8 1,054.4 1,077.3

Ours (ms) 454.0 (1.79x) 451.8 (1.92x) 495.1 (2.00x) 493.5 (2.13x) 437.0 (2.46x)

Camera view

• Ours is usually more effective when more shadow and/or secondary rays are to be ray-traced.
• The rendering cost for handling the increasing reflection rays increases sublinearly.

• The ratio of ray-traced pixels primarily affects the timing performance of our method.

Conclusion

• Presented an adaptive undersampling method for efficient mobile GPU

ray tracing.

– Attempt to replace expensive ray-tracing operations by much cheaper linear

interpolation as much as possible.

– Selectively controllable in that the quality of respective rendering effects can be

adjusted through the corresponding tolerance values.

• Presented a low-cost postcorrection method for effectively reducing the

aliases due to incomplete undersampling.

• Tailoring our adaptive undersampling algorithm to best fit the PC GPU

remains as a future research topic.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 31

demo

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 32

demo

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 33

 Thank you.

Adaptive Undersampling for Efficient Mobile Ray Tracing (Y. Kim et al.) / Computer Graphics International 2016 34

http://grmanet.sogang.ac.kr
kimyu7@sogang.ac.kr

