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Abstract

For a connected graph G = (V (G), E(G)) and two disjoint subsets of V (G)
A = {α1, . . . , αk} and B = {β1, . . . , βk}, a paired (many-to-many) k-disjoint
path cover of G joining A and B is a vertex-disjoint path cover {P1, . . . , Pk}
such that Pi is a path from αi to βi for 1 ≤ i ≤ k. In the recent paper [Dis-
joint Path Covers in Cubes of Connected Graphs, Discrete Mathematics 325
(2014) 65–73], Park and Ihm presented a necessary and sufficient condition
for a paired 2-disjoint path cover joining two vertex sets to exist in the cube
of a connected graph. In this paper, we propose an O(|V (G)| + |E(G)|)-
time algorithm that actually finds such a paired 2-disjoint path cover. In
particular, we show that, in order to build a desired disjoint path cover, it
is sufficient to consider only the edges of a carefully selected spanning tree
of the graph and at most one additional edge not in the tree, which allows
an efficient linear-time algorithm.

Keywords: Disjoint path cover, cube of graph, Hamiltonian path,
spanning tree, unicyclic graph, linear-time algorithm.

1. Introduction

Given two vertices v and w of a finite simple undirected graph G =
(V (G), E(G)), a path P in G from v to w is a sequence 〈u0, u1, . . . , un〉 of
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distinct vertices of G such that u0 = v, un = w, and (ui, ui+1) ∈ E(G) for i =
0, . . . , n− 1. If n ≥ 2 and (u0, un) ∈ E(G), the sequence 〈u0, u1, . . . , un, u0〉
is called a cycle. A path cover of G is a set of paths in G such that
every vertex of G is contained in at least one path. A vertex-disjoint path
cover, or simply a disjoint path cover, of G is a special kind of path cover in
which every vertex of G is covered by exactly one path. For a given positive
integer k, let A = {α1, . . . , αk} and B = {β1, . . . , βk} be two disjoint subsets
of V (G). Then, a disjoint path cover {P1, . . . , Pk} of G is said to be a paired
(many-to-many) k-disjoint path cover (a paired k-DPC in short) joining A
and B if Pi is a path from αi to βi for i = 1, . . . , k [34]. In addition, the
k-disjoint path cover is regarded as unpaired if Pi is allowed to be a path
from αi to βσ(i) for some permutation σ on {1, . . . , k}. Here, the vertices
in A and B are often called sources and sinks respectively, and terminal
vertices (or simply terminals) collectively. Simpler variants of these disjoint
path covers have also been investigated in the graph theory community, and
readers are recommended to refer to related literature such as [18, 31, 34]
for more details.

Clearly, the paired k-DPC is more restrictive than the unpaired k-DPC
in the sense that the paired one is just one of up to exponentially many
unpaired one joining A and B. Therefore, a solution of a problem for the
paired k-DPC often easily leads to an unpaired k-DPC solution for the same
problem. An interesting question regarding the paired k-DPC is how to
determine whether a desired disjoint path cover exists for a given connected
graph G and two terminal sets A and B. In the recent paper [32], Park and
Ihm answered this question partially for a specific class of graphs where the
exact condition on the terminal sets A and B that allow a paired 2-DPC
in the cube of G was presented where the cube of G, denoted by G3, is the
graph with the same vertex set V (G), having an edge between two vertices
if and only if there exists a path of length at most 3 in G joining them.

Naturally, the next question is how efficiently such a disjoint path cover
can be found when it exists. In this paper, we propose a linear-time algo-
rithm that finds a paired 2-DPC in the cube of a connected graph joining
two terminal sets. In particular, we prove an interesting fact that it suffices
to examine only the edges of a carefully selected spanning tree of the graph
and possibly one more edge not in the tree, to find a desired paired 2-DPC
efficiently. Trivially, this linear-time algorithm is also effective to building
an unpaired 2-DPC if exists because a solution can be found by applying
the algorithm at most twice over the two permutations on the two-element
terminal sets.

This paper is organized as follows. In the rest of this section, we
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briefly discuss related concepts and review relevant previous work. Sec-
tion 2 presents preliminaries that will be referred to frequently throughout
the paper. Then, Section 3 describes a linear-time algorithm that finds a
paired 2-DPC in the cube of a tree joining two terminal sets, which will then
be used effectively in Section 4 to build our main algorithm that finds the
disjoint path cover in the cube of an arbitrary connected graph. Finally, the
paper is concluded in Section 5.

1.1. Vertex connectivity

The existence of a disjoint path cover in a graph is closely related to the
concept of vertex connectivity: Menger’s theorem states the connectivity of
a graph in terms of the number of disjoint paths joining two distinct vertices,
whereas the Fan Lemma states the connectivity of a graph in terms of the
number of disjoint paths joining a vertex to a set of vertices [1]. Moreover,
it can be shown that a graph is k-connected if and only if it has k disjoint
paths joining two arbitrary vertex sets of size k each, in which a vertex that
belongs to both sets is counted as a valid path.

When a graph does not have a disjoint path cover of desired kind, it is
natural to consider an augmented graph with higher connectivity. A simple
way of increasing the connectivity is to raise a graph to a power: Given a
positive integer d, the d-th power Gd of G is defined as a graph with the
same vertex set V (G) and the edge set that is augmented in such a way that
two vertices of Gd are adjacent if and only if there exists a path of length at
most d in G joining them. In particular, the graph G2 is called the square
of G, while G3 is said to be the cube of G.

1.2. Disjoint path covers

The paired/unpaired (many-to-many) k-disjoint path cover has two sim-
pler variants: The one-to-many k-DPC for A = {α} and B = {β1, . . . , βk}
is a disjoint path cover made of k paths, each joining a pair of source α and
sink βi for i ∈ {1, . . . , k}; The one-to-one k-DPC for A = {α} and B = {β}
is a disjoint path cover each of whose paths joins an identical pair of source
α and sink β. The paths in the one-to-many k-DPC or in the one-to-one
k-DPC may share a source and/or a sink and thus are pairwise internally
disjoint.

The disjoint path cover problem has been studied for several classes
of graphs: hypercubes [6, 9, 13, 15], recursive circulants [18, 19, 34, 35],
hypercube-like graphs [34, 35], and grid graphs [33]. The structure of the
cubes of connected graphs was investigated with respect to single-source
3-disjoint path covers [31]. The problem was also investigated in view of
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a full utilization of nodes in interconnection networks [34]. It was shown
that deciding the existence of a one-to-one, one-to-many, or many-to-many
k-DPC in a general graph, joining given sets of sources and sinks, is NP-
complete for any fixed k ≥ 1 [34, 35].

1.3. Strong Hamiltonian properties

The method for finding a disjoint path cover can easily be used for finding
a Hamiltonian path (or cycle) due to its natural relation to the Hamiltonic-
ity of graph. For instance, a Hamiltonian path between two distinct vertices
in a graph G is in fact a 1-DPC of G joining the vertices. An Hamilto-
nian s–t path that passes a prescribed edge (x, y) with {s, t} ∩ {x, y} = ∅
can also be found by solving the corresponding unpaired or paired 2-DPC
problem [35]. While the unpaired version would be easier to tackle than the
paired one, the difference is that the direction between x and y in the path
may not be enforced through the unpaired 2-DPC. For more discussion on
the Hamiltonian paths (or cycles) passing through prescribed edges, refer
to, for example, [2, 8].

The cube of a connected graph with at least four vertices is 1-
Hamiltonian, i.e., it is Hamiltonian and remains so after the removal of
any one vertex, as Chartrand and Kapoor showed [5]. Sekanina [37] and
Karaganis [16] independently proved that the cube of a connected graph
is Hamiltonian-connected. Whether the cube is 1-Hamiltonian-connected,
i.e. it still remains Hamiltonian-connected after the removal of any one ver-
tex, was characterized for trees by Lesniak [23] and for connected graphs
by Schaar [36]. Characterizations of connected graphs whose cubes are p-
Hamiltonian for p ≤ 3 were also made in [20, 36], and strong Hamiltonian
properties of the cube of a 2-edge connected graph were studied in [30].
For discussion on the Hamiltonicity of the square of a graph, refer to, for
example, [4, 7, 11, 12, 29].

1.4. Paired 2-disjoint path covers of a connected graph

While this paper is about a paired 2-DPC in the cube of a connected
graph, it deserves to mention a relation between the presented algorithm
and the more challenging problem of finding a paired 2-DPC of the graph
itself. If a graph G is the d-th power of another graph H, i.e. G = Hd, then
H is said to be a d-th root of G. In particular, we call such a graph H a
square root of G if d = 2, and a cube root of G if d = 3. Mukhopadhyay
characterized graphs that have a square root [28], and Escalante et al. then
characterized graphs with a d-th root [10]. In general, deciding if a given
graph has a d-th root is difficult, and it has been proven that recognizing

4



squares of general graphs [27]/chordal graphs [22] and the d-th powers of
bipartite graphs for d ≥ 3 [21] are all NP-complete.

On the other hand, some classes of graphs for which the root finding
problem is polynomially solvable have been investigated in the literature.
Lin and Skiena presented a linear-time algorithm for recognizing squares of
trees [24]. The general root finding problem for an arbitrary degree (d ≥ 3)
was solved over the trees in polynomial time [17] and then in linear time [3].
Lau and Corneil [22] gave a polynomial-time algorithm to recognize the d-th
powers of proper interval graphs for d ≥ 2. (For more information on the
root finding problem, refer to the related work including [21, 25, 26].)

Note that if a graph G has a cube root H and, moreover, H could be
found in time polynomial to the size of G, then the paired 2-DPC problem on
G (= H3) would be polynomially solvable through our algorithm developed
in this paper.

2. Preliminaries

2.1. The condition for a paired 2-DPC to exist in the cube of a graph

A cut vertex and bridge of a graph are respectively a vertex and an edge
whose removal increases the number of connected components. A bridge,
also known as a cut-edge, is said to be nontrivial if none of its two end-
vertices is of degree one. A vertex of the graph is then called a pure bridge
vertex if each of its incident edges is a nontrivial bridge. In addition, a pair
of two adjacent vertices is called a pure bridge pair if both vertices are pure
bridge vertices (refer to Figure 1 for a pictorial description of the pure bride
vertex and pure bridge pair).
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Figure 1: In this connected graph, the seven nontrivial bridges are marked in dotted lines.
There are three pure bridge vertices v7, v8, and v15, and one pure bridge pair {v7, v8} [32].

Based on this notion, Park and Ihm presented a necessary and sufficient
condition for the cube of a connected graph to have a paired 2-DPC joining
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two arbitrary terminal sets [32]. Interestingly, it was shown that two specific
kinds of configurations between the four terminal vertices must be avoided
to have a desired paired 2-DPC, as stated in the following theorem:

Theorem 1 (Park and Ihm [32]). Let A = {α1, α2} and B = {β1, β2}
be terminal sets of a connected graph G with at least four vertices. The cube
G3 has a paired 2-DPC joining A and B if and only if

• C1: {α1, α2, β1, β2} 6⊆ NG[v] for any pure bridge vertex v of G, and

• C2: {αi, βi} is not a pure bridge pair of G such that {α3−i, β3−i} ⊆
NG({αi, βi}) for each i = 1, 2.

Here, NG(v) and NG[v] for a vertex v of a graph G respectively repre-
sents the open and closed neighborhoods of v, i.e. NG(v) = {u ∈ V (G) :
(u, v) ∈ E(G)} and NG[v] = NG(v) ∪ {v}. These definitions are also natu-
rally extended to a vertex set X ⊆ V (G) in which NG(X) =

⋃
v∈X NG(v)\X

and NG[X] = NG(X) ∪X. Note that the validity of the two conditions, C1
and C2, can be checked basically by identifying (nontrivial) bridges of the
graph, which can easily be done in O(|V (G)| + |E(G)|) time based on the
well-known biconnected component algorithm [14].

2.2. Finding a Hamiltonian path in the cube of a tree

The fact that a Hamiltonian cycle can always be found in the cube of a
connected graph in linear time is due to the theorem by Lin and Skiena [24].

Theorem 2 (Lin and Skiena [24]). Given a connected graph G with
n (≥ 3) vertices and m edges and an integer k ≥ 3, we can find a Hamilto-
nian cycle in Gk in O(n+m) time.

In the proof of the theorem, a Hamiltonian cycle in Gk is in fact built by
first finding a spanning tree T of G and then finding a Hamiltonian path in
T 3 between the two end-vertices of an arbitrary edge of T through a simple
recursive algorithm. Thus, the proof leads to the following corollary:

Corollary 1. Given a rooted tree T with n (≥ 2) vertices, we can find a
Hamiltonian path in T 3 from the root vertex to an arbitrary descendant of
the root vertex in O(n) time.

The function Hamiltonian Path in TREE CUBE(T, v, w) in Figure 2
describes an algorithmic proof of this corollary, which recursively divides
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a given problem by breaking the connection between the vertex w and its
parent. (Throughout this paper, T(u) for a rooted tree T and a vertex
u of T denotes the subtree of T rooted at u.) Notice that, as discussed
in the proof of Theorem 2, a careless representation of the graph with a
conventional adjacency list structure would easily lead to an O(n2)-time
algorithm because the elementary operation of deleting an edge from the
graph would require O(n) time. Therefore, we also adopt a variant of the
adjacency list structure based on doubly-link lists similar to one proposed in
the proof, which allows an edge-deletion operation in constant time (please
refer to the proof of Theorem 2 for details [24]).

Algorithm 1: Finding a Hamiltonian path in the cube of a tree

1 Function Hamiltonian Path in TREE CUBE(T , v, w)
input : A tree T rooted at v and a vertex w s.t. w 6= v if

|V (T )| > 1;
output: A Hamiltonian path P in T 3 joining v and w;

2 if V (T ) = {v} then P ← 〈v〉; return;

/* Now w 6= v, and deleting the edge (w, parent[w]) from

T results in two subtrees, T \ T(w) and T(w). */

3 if parent[w] 6= v then x← parent[w];
4 else if V (T \ T(w)) = {v} then x← v;

5 else x← a child of v in T \ T(w);

6 Pv ← Hamiltonian Path in TREE CUBE(T \ T(w), v, x);

7 if V (T(w)) = {w} then y ← w;

8 else y ← a child of w in T(w);

9 Pw ← Hamiltonian Path in TREE CUBE(T(w), w, y);

10 P ← the concatenation of Pv and Pw via the edge (x, y) of T 3;

11 end

Figure 2: The algorithm for finding a Hamiltonian path in the cube of a tree

While Algorithm 1 is a direct consequence of the proof of Theorem 2, we
present it here because finding a Hamiltonian path in the cube of a rooted
tree between the root vertex and an arbitrary vertex (other than the root
vertex if the tree has two or more vertices) plays a key role in finding a
paired 2-DPC in the cube of a connected graph.
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3. Finding a paired 2-DPC in the cube of a tree

In this section, we first present a linear-time algorithm for finding a
paired 2-DPC in the cube of a tree. Then, in the next section, it is combined
with the linear-time algorithm for finding a Hamiltonian path in the cube
of a tree to build an algorithm for finding a paired 2-DPC in the cube of
a connected graph. Although every tree we are dealing with hereafter in
this paper is a rooted tree, the degree of a vertex refers not to the number
of its children but to the number of its neighbors (children and/or parent).
Notice that every edge of a tree is a bridge; an edge incident with a leaf
node or incident with the root vertex having a single child is trivial, and all
the other edges are nontrivial.

3.1. Iterative reduction of a paired 2-DPC problem

We have a paired 2-DPC problem (T,A,B), in which, for a given tree T
and two terminal sets A = {α1, α2} and B = {β1, β2} made of four distinct
vertices, a paired 2-DPC of T 3 joining A and B is to be found. For the
time being, we only consider a feasible problem for which a paired 2-DPC
exists, implying that A and B satisfy the two conditions of Theorem 1 in
T . The fundamental idea of our algorithm for finding a desired 2-DPC
is to repeatedly reduce the problem with respect to the graph size until
we arrive at a simple problem that allows direct construction of a proper
solution. That is, given T0 = T , A0 = A, and B0 = B, our algorithm
iteratively derives a feasible problem (Tk+1, Ak+1, Bk+1) from a feasible one
(Tk, Ak, Bk) for k ≥ 0 such that (i) |V (Tk)| > |V (Tk+1)| ≥ 4, (ii) exactly one

terminal γk in Ak∪Bk
def
= {α1k , α2k , β1k , β2k} is replaced with a new terminal

γk+1 for the resulting problem so that (Ak∪Bk)\γk = (Ak+1∪Bk+1)\γk+1,
and (iii) a solution for (Tk, Ak, Bk) can be trivially constructed from that for
(Tk+1, Ak+1, Bk+1). When the reduction process stops, we directly construct
a paired 2-DPC from the last problem, and then repeatedly expand it by
following the reduction chain in reverse order, from which a paired 2-DPC
of T 3 joining A and B is completed.

In our algorithm, we assume that the input tree T0 is rooted at some
terminal vertex (otherwise, it can be transformed to such a tree in linear time
with respect to the tree size), and so are the succeeding trees Tk. Given a
k-th feasible problem (Tk, Ak, Bk), the reduction step (i) chooses a vertex p
of the tree, called a pivot vertex, and a terminal vertex γk accordingly, (ii)
finds a path spanning all vertices of some partial tree, defined with respect
to p and γk, (iii) replacing the partial tree with a new terminal vertex γk+1,
and (iv) updates the terminal sets, thus resulting in a contracted tree Tk+1
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along with new terminal sets Ak+1 and Bk+1, where a part of path in the
solution for (Tk, Ak, Bk) is compacted into the new terminal vertex γk+1 in
Ak+1 ∪Bk+1.

In this iteration step, a key process is which vertex to select from Tk
for effective computation. In our algorithm, the pivot vertex is chosen by
examining the following three cases in the increasing order of j = 1, 2, 3 until
a proper one is found:

• Case j : Tk has a pivot vertex p that is the parent of a terminal vertex
γk ∈ Ak ∪Bk such that there exist j terminal vertices that are proper
descendants of p in Tk.

Notice that p itself could also be a terminal vertex. When there are mul-
tiple candidates for p in Case 1, the higher priority is given to a nonterminal
vertex if any. Before delving into details for our algorithm in this section,
we should again emphasize that Tk is rooted at a terminal vertex, and the
specific algorithm is based on the linear-time Hamiltonian path construction
algorithm described in Subsection 2.2.

3.2. Manipulation of Case 1

The first case is further divided into the following three subcases accord-
ing to the kinds of the pivot vertex p and its parent:

• Case 1-1: p is a nonterminal vertex.

• Case 1-2: p is a terminal vertex, but the parent of p is a nonterminal
vertex.

• Case 1-3: Both p and its parent are terminal vertices.

3.2.1. Details for Case 1-1 and Case 1-2

Figure 3(a) illustrates an example situation of Case 1-1, where the pivot
vertex p has c children pl, l = 1, 2, . . . , c (c ≥ 1), and, without loss of gen-
erality, p1 is assumed to be the terminal vertex γk. Then, for each subtree
Tk(pl) (recall that Tk(pl) is the subtree of Tk rooted at pl), our algorithm finds
a Hamiltonian path Pl of T 3

k(pl)
that starts from pl and ends at some child

p′l of pl (if |V (Tk(pl))| ≥ 2) or a one-vertex path Pl = 〈pl〉 (if |V (Tk(pl))| = 1).
Then, it is clear to see that P1 ◦ P2 ◦ · · · ◦ Pc ◦ 〈p〉, the concatenation of the
paths extended to p, becomes a legitimate Hamiltonian path of T 3

k(p) from

γk (= p1) to p since the distance from the last vertex of Pc and p in Tk is at
most 2. Once the Hamiltonian path is constructed, all the subtrees Tk(pl) are
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(a) Case 1-1 (b) Case 1-3-a

(c) Case 1-3-b (distance
1)

(d) Case 1-3-b (distance 2) (e) Case 1-3-b (distance 3)

Figure 3: Illustrations for Case 1

eliminated from Tk, and p is replaced by a new terminal γk+1 that functions
the same as γk and remembers the found Hamiltonian path from γk to p.

Once this iteration step is over, we end up in a new problem
(Tk+1, Ak+1, Bk+1) with a contracted tree and updated terminal sets. Note
that a solution for (Tk, Ak, Bk) can easily be constructed from a paired 2-
DPC for (Tk+1, Ak+1, Bk+1) simply by replacing γk+1 in the path cover with
the Hamiltonian path stored in γk+1. Also, the new terminal γk+1 is a leaf
node in Tk+1. Thus, the feasibility of the problem (Tk+1, Ak+1, Bk+1) is
guaranteed since γk+1 may even not be in a neighborhood of a pure bridge
vertex in Tk+1 (recall the conditions of Theorem 1 again).

In addition, the parent of p can also be reached in T 3
k from the last vertex

of the Hamiltonian path of the last subtree Tk(pc). Thus, the same iteration
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step can be applied to Case 1-2 except that the parent of p, instead of p, is
replaced with γk+1. Again, the feasibility of the paired 2-DPC problem is
preserved since the terminal vertex p now becomes a leaf node in Tk+1.

3.2.2. Details for Case 1-3

The situation in Case 1-3 is somewhat more complicated than those in
the previous two subcases. Our algorithm subdivides this subcase further
as follows, in which the grandparent of the pivot vertex p is additionally
examined:

• Case 1-3-a: The grandparent of p is a nonterminal vertex.

• Case 1-3-b: The grandparent of p is a terminal vertex, which should
then be the root vertex.

• Case 1-3-c: p has no grandparent, implying that its parent is the
root vertex.

When both p and the parent of p are terminal vertices, but the grandparent
of p is not as in Case 1-3-a, the reduction process is simple (refer to Fig-
ure 3(b)). Let q be the parent of p and, instead of the original γk which is
a child of p, choose the root vertex as γk. Also, consider the tree Tk \ Tk(q),
induced by V (Tk) \ V (Tk(q)), which has at least two vertices. Then, our al-
gorithm finds a Hamiltonian path in the cube of this partial tree connecting
γk and the parent of q, and replaces the tree with a new terminal vertex
γk+1, storing the found Hamiltonian path with it. Again, the degree of γk+1

is one in Tk+1, thus the feasibility keeps effective in the reduced problem.
Now, consider Case 1-3-b. Then, the four terminal vertices line up in the

tree along a path from the root vertex where, among the 24 (= 4!) possible
orders of them, three distinct classes of combinations exist as illustrated in
Figures 3(c) to 3(e). (Without loss of generality, assume that α1k is the
root vertex. Then, the 24 combinations can be classified according to the
distance in the tree between α1k and β1k , which may be 1, 2, or 3.) In either
case, the current problem (Tk, Ak, Bk) is not reduced to a smaller problem,
but its solution is constructed directly.

First, when the distance between them is one as shown in Figure 3(c),
we consider the two partitioning trees of Tk obtained by disconnecting the
edge (β1k , α2k). Then, any Hamiltonian paths in the cubes of the respective
partial trees connecting α1k and β1k , and α2k and β2k constitute an appro-
priate paired 2-DPC of T 3

k . Second, take a look at the case of distance two
shown in Figure 3(d). It is not difficult to see that, similar to Case 1-1, the
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Hamiltonian paths in the cubes of Tk(α1k
) \ Tk(α2k

) and the subtrees, if any,

rooted at the children of α2k except β1k can be stitched through edges of T 3
k

to form an α1k–β1k path in T 3
k . Then, this path constitutes a proper 2-DPC

of T 3
k along with an α2k–β2k path that is constructed similarly (recall that

each subtree might be a one-vertex tree).
Third, a special treatment is necessary for the case of distance three

shown in Figure 3(e). Note that the second condition of Theorem 1 requires
that the two vertices α2k and β2k should not form a pure bridge pair in Tk,
meaning at least one of them is not a pure bridge vertex. When β2k is not,
it has at least one child of degree one, as marked with a black solid circle,
because it must be incident to at least one trivial bridge. (Of course, β1k
may be of degree one.) Consider a set of Hamiltonian paths in the cubes
of the subtrees rooted at the children of β2k , in which each Hamiltonian
path connects the respective root to its child (if the subtree has two or more
vertices) or to itself (if the subtree has a single vertex). Note that at least
one of these Hamiltonian paths is a one-vertex path including that rooted
at the degree-one child of β2k . Then, the degree-one child allows to connect
these Hamiltonian paths to form an α1k–β1k path in T 3

k , and moreover, an
α2k–β2k path can be constructed similarly. If β2k is a pure bridge vertex but
α2k is not, we restructure Tk in time linear to |V (Tk)| in such a way that
β1k becomes the root vertex, and proceed in the same way.

Finally, take a look at Case 1-3-c where the three terminal vertices lines
up in the tree starting from the root vertex, i.e. the parent of p. Then the
fourth terminal vertex must be a child of the root vertex because otherwise
the nonterminal parent of the terminal vertex should have been chosen as
p as in Case 1-1. In this case, we again restructure Tk in time proportional
to |V (Tk)| such that this fourth terminal vertex becomes the root vertex,
whose case in turn becomes identical to Case 1-3-b.

3.3. Manipulation of Case 3

Next, in this subsection, we investigate Case 3 first for a simpler descrip-
tion of our algorithm. When a pivot vertex p has three terminal vertices
as proper descendants, these three terminal vertices must be children of p
because, otherwise, other vertex would have been chosen as p for Case 1 or
Case 2. In Case 3, we consider two major subcases as follows:

• Case 3-1: p is a nonterminal vertex.

• Case 3-2: p is a terminal vertex.
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(a) Case 3-1

(b) Case 3-2-a (c) Case 3-2-b

Figure 4: Illustrations for Case 3

When Case 3-1 occurs, a reduction process proceeds as implied in Fig-
ure 4(a), where one of the three terminal vertex is selected as γk, and a
Hamiltonian path in the cube of Tk(γk) from γk to a child of γk is extended
to p (recall that the Hamiltonian path could be a one-vertex path if Tk(γk)
has only one vertex). Then, the partial tree made of p and Tk(γk) is con-
tracted into the new terminal vertex γk+1. A critical factor in this reduction
process is to guarantee the feasibility in the resulting problem. In particular,
when q, the parent of p, is a terminal vertex, and thus q is the root vertex,
the first condition of Theorem 1 would be broken in the new problem if the
new terminal vertex γk+1 becomes a pure bridge vertex. Observe that, when
q is a terminal vertex, p has at least one adjacent vertex in Tk, whether a
child or the parent, whose degree is one because otherwise the four terminals
in Ak ∪ Bk belong to a closed neighborhood of the pure bridge vertex p in
Tk, violating the first condition of Theorem 1 with respect to the current
problem (Tk, Ak, Bk). Thus, when choosing γk from the three terminal ver-
tices, we choose one, if any, that has a child, which will always guarantee
the feasibility in the reduced problem.

13



When Case 3-2 happens, that is, if p is a terminal vertex, and thus is
the root vertex of Tk, a proper solution is constructed directly. Without loss
of generality, assume that the root vertex is α1k . Then, the construction
procedure differs according to whether β1k , the matching terminal vertex,
has a child or not.

• Case 3-2-a: β1k has a child.

• Case 3-2-b: β1k does not have a child.

In Case 3-2-a when β1k has a child, the one-vertex path 〈α1k〉 is concate-
nated with a Hamiltonian path in the cube of Tk(β1k ) from a child of β1k to

β1k to form an α1k–β1k path in T 3
k . On the other hand, consider the subtrees

rooted at the children of α1k except β1k , and the corresponding Hamiltonian
paths found in the cubes of those subtrees traversing from the their roots to
the respective children, if any. Observe that the root vertex α1k has as least
one child whose degree is one (drawn using a black solid circle in Figure 4(b))
so that it would not be a pure bridge vertex holding the other three terminal
vertices in the closed neighborhood in Tk. This means that there exists at
least one one-vertex path in the found Hamiltonian paths which allows to
stitch the Hamiltonian paths to form an α2k–β2k path in T 3

k , completing a
paired 2-DPC solution. In Case 3-2-b when β1k has no child, we consider
two groups of subtrees, if any, in Tk (refer to Figure 4(c)). The first one is
those rooted at the children of α2k , and the other one is those rooted at
the children of α1k excluding β1k and α2k . A Hamiltonian path is found in
the cube of each subtree from a child, if any, of the root vertex to the root
vertex. Then, the paths corresponding to the first group are assembled to
form an α1k–β1k path in T 3

k , while those for the second group to form an
α2k–β2k path, which is now possible because α2k has no descendants to take
care of.

3.4. Manipulation of Case 2

Finally, when Case 2 is selected, the two terminal vertices counted in the
selection process should be children of the pivot vertex p because otherwise
Case 1 would have been chosen. We consider the following three subcases:

• Case 2-1: p is a terminal vertex, but its parent is not.

• Case 2-2: Both p and its parent are terminal vertices.

• Case 2-3: p is a nonterminal vertex.

14



(a) Case 2-1 (b) Case 2-3

Figure 5: Illustrations for Case 2

First in Case 2-1, the root vertex is chosen as γk, and a reduction process
proceeds where a Hamiltonian path in the cube of Tk \Tk(p) from γk to q, the
parent of p, is contracted to the new terminal vertex γk+1 (see Figure 5(a)).
If both p and q are terminal vertices as in Case 2-2, it means that q is the
root vertex. Then, we transform Tk in linear time such that the new tree
is rooted at p that now has three terminal vertices as children, in which
case a 2-DPC solution is constructed directly as explained in Case 3-2. For
the last case of Case 2-3, one of the two children of p is selected as γk, and
a simple reduction process is performed where a Hamiltonian path in the
cube of Tk(γk) from γk to one of its children, which is then extended to p, is
contracted to the new terminal vertex γk+1 (see Figure 5(b)). In this simple
process, we may have to be careful in selecting γk because, if both q and
its neighbor (child or parent) other than p are terminal vertices, the four
terminal vertices will line up after the reduction process. Thus, in order
to guarantee not to break the second condition of Theorem 1 in the new
problem, we choose one among the two children of p that does not match q
if q happens to be a terminal vertex (for example, if q is α1k , one that is not
β1k is selected as γk).

3.5. Algorithm and time complexity

The algorithm described in this section is summarized in Figure 6. The
crucial part of our algorithm is to determine what action to take for the cur-
rent problem (Tk, Ak, Bk) among the choices of the reduction (Case 1-1, Case
1-2, Case 1-3-a, Case 2-1, Case 2-3, and Case 3-1) and the direct construc-
tion (Case 1-3-b, Case 1-3-c, Case 2-2, and Case 3-2), where the decision can
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easily be made in constant time once the pivot vertex is located. For effi-
cient selection of the pivot vertex during the repeated reduction processes,
we store in each vertex v of the tree a value num terms[v] that holds the
number of terminal vertices that are proper descendants of v in Tk. Given
the input tree T0, num terms[v] can be initialized in time linear to the size
of the tree, i.e. |V (T0)|, through a simple depth first search (Line 2), during
which (i) when a vertex v is first visited, num terms[v] is set to one if v is a
terminal vertex, or zero otherwise, and (ii) when the search for the subtree
rooted at v is finished, num terms[v] is added to that of its parent. Then,
the num terms[v] array is completed by decreasing the value by 1 for each
of the four terminals.

Algorithm 2: Finding a paired 2-DPC in the cube of a tree

1 Function Paired 2-DPC in TREE CUBE(T , A, B)
input : A rooted tree T and terminal sets A = {α1, α2} and

B = {β1, β2} that satisfy the two conditions of
Theorem 1;

output: A paired 2-DPC {P1, P2} of T 3 joining A and B;

2 Initialize the num terms[v] array;
3 T0 ← T , A0 ← A, B0 ← B;
4 k = 0;
5 repeat
6 Select a pivot vertex p from (Tk, Ak, Bk);
7 If a reduction is possible, reduce (Tk, Ak, Bk) into

(Tk+1, Ak+1, Bk+1);
8 k ← k + 1;

9 until a reduction is impossible;
10 Find a paired 2-DPC {P1k , P2k} for (Tk, Ak, Bk) via a direct

construction;
/* Now, one of the paths P1k and P2k contains γk. */

11 repeat
12 Expand {P1k , P2k} into {P1k−1

, P2k−1
} by replacing γk with

the Hamiltonian path containing γk−1;
13 k ← k − 1;

14 until k > 0;
15 {P1, P2} ← {P10 , P20};
16 end

Figure 6: The algorithm for finding a paired 2-DPC in the cube of a tree
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Observation 1. Given a tree T with n vertices, the num terms[v] array
can be initialized in time proportional to n.

Now, consider the process of reducing the current problem (Tk, Ak, Bk)
to the new problem (Tk+1, Ak+1, Bk+1) in Lines 6 to 8. First, the pivot
vertex can be selected in constant time by comparing the num terms[v]

values of the parents of the three terminal vertices not being the root vertex.
Furthermore, if we let nk and nk+1 be |V (Tk)| and |V (Tk+1)|, respectively,
the partial tree that will be compressed to a single terminal vertex will have
nk − nk+1 + 1 vertices, which can be identified in constant time. Then, by
Corollary 1, it is not difficult to see that the Hamiltonian path (Case 1-3-
a and Case 2-1), the extended Hamiltonian path (Case 2-3 and Case 3-1),
and the extended sequence of Hamiltonian paths (Case 1-1 and Case 1-2)
can all be found in time linear to nk − nk+1. Once the new contracted
tree is produced, the num terms[v] must be updated for the next iteration.
However, this computation is just simple because only the value of the new
terminal vertex except Case 1-2 where that of the pivot vertex p also needs
to be updated can be set to the new value properly in constant time. Adding
all the costs in the single reduction step, we arrive at the following fact:

Observation 2. When a reduction occurs for the tree Tk with nk vertices,
the computation time T (nk) for Tk can be described in terms of that for the
new tree Tk+1 with nk+1 vertices as T (nk) ≤ T (nk+1) + crd · (nk −nk+1 + 1)
for some constant crd.

Finally, consider the cost for the direct construction of a paired 2-DPC
performed in Line 10. First of all, the two partial trees that partition Tk,
for which the two disjoint paths will cover respectively, can be identified
in time linear to |V (Tk)| (Case 1-3-b, Case 1-3-c, Case 2-2, and Case 3-2).
(Notice that it is enough to enumerate for each of the two disjoint covering
paths the root vertices of the subtrees for which Hamiltonian paths are to
be found, and their numbers are bounded by |V (Tk)|.) Furthermore, in any
case, we can see that the total cost for finding the Hamiltonian paths and
connecting them is also bounded by O(|V (Tk)|).

Observation 3. When a direct construction occurs for a tree Tk with nk
vertices, the computation time is T (nk) ≤ cdc · nk for some constant cdc.

Theorem 3. Given a tree T with n (≥ 4) vertices and two terminal sets
A = {α1, α2} and B = {β1, β2} that satisfy the two conditions of Theorem 1,
we can find a paired 2-DPC of T 3 joining A and B in O(n) time.
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Proof. Assume that, for the given input tree T (= T0) with n (= n0) ver-
tices, the reduction stops at Tk with nk vertices, for which a paired 2-DPC
is constructed directly. Then, by applying the recursive formula in Observa-
tion 2 repeatedly, and the cost function in Observation 3 lastly, we are led
to

T (n) ≤ T (nk) + crd ·
∑k−1

i=0 (ni − ni+1 + 1)

≤ cdc · nk + crd · (n0 − nk + k)

≤ max{cdc, crd} · (n0 + k) ≤ 2 ·max{cdc, crd} · n = O(n).

Constructing the final solution {P1, P2} by the simple backward expansions
of the compressed paths in Lines 12 and 13 involves at most n vertices in
total. Thus, the entire construction computation including the linear-time
initialization, described in Observation 1, can be done in time proportional
to the number of vertices of the input tree. �

4. Finding a paired 2-DPC in the cube of a connected graph

Now, we are ready to describe a linear-time algorithm for finding a paired
2-DPC of G3 for a given connected graph G and two terminal sets A =
{α1, α2} and B = {β1, β2}.

4.1. Finding a solution via a spanning tree possibly augmented with an edge

The key idea of our main algorithm is to transform the problem for
an arbitrary graph into a problem for a spanning tree, which provides a
simpler solution. We first show in the next theorem that whenever a paired
2-DPC joining two terminal sets exists in the cube of a graph G, there is
a spanning tree T of the graph such that the cube of the spanning tree
augmented with at most one edge e has a paired 2-DPC joining the same
terminal sets. Be noticed that a necessary condition for two terminal sets
to break the conditions of Theorem 1 for a connected graph is either the
four terminal vertices are in the closed neighborhood of some vertex (the
C1 condition), or they form a path of length three in the graph in such
a way that matching pairs of terminal vertices have the same degrees in
the path (the C2 condition). In the proof of the theorem, we shall call two
terminal sets strongly admissible for a graph if they do not even meet this
minimum requirement with respect to the graph, guaranteeing the existence
of a paired 2-DPC in the cube of the graph joining the two terminal sets.
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Theorem 4. Given a connected graph G, let two terminal sets A = {α1, α2}
and B = {β1, β2} satisfy the two conditions, C1 and C2, of Theorem 1.
Then, G always has a spanning tree T such that T 3 or (T + e)3 for some
edge e ∈ E(G) \ E(T ) has a paired 2-DPC joining A and B.

Proof. If there exists a terminal vertex γ ∈ A∪B that is not a cut vertex
in G, imagine a depth-first-search tree (a DFS tree in short) T of G rooted
at γ. Then, T meets the conditions of Theorem 1 with respect to A and B,
implying the existence of a paired 2-DPC of T 3 joining A and B because γ,
which has only one child, is connected to T only through a trivial bridge.
Therefore, from now on in this proof, we shall assume that every terminal
vertex is a cut vertex in G.

The remaining proof proceeds by classifying the given graph G in terms
of the number of edges in the subgraph H that is induced by the four
terminal vertices in A ∪ B. (For the sake of easier understanding, we shall
investigate four cases in the order of increasing complexity.) Note that if T
is a spanning tree such that |E(H) ∩ E(T )| ≥ 1 as in the first three cases,
the closed neighborhood of a nonterminal vertex in T cannot include all the
four terminal vertices to break the C1 condition of Theorem 1.

Case 1: |E(H)| = 1 or 2. In this case, H is in the form of one of the
three graphs in Figure 7(a) that illustrates how four terminal vertices may
be connected through one or two edges. Then, for any terminal vertex γ of
degree one in H, consider a DFS tree T of G that is rooted at γ and contains
all the edges of H. (Such a DFS tree can easily be built by putting the edges
of H in the front of the respective lists in the adjacency list representation
of G.) Then, it is obvious that A and B are strongly admissible for the
spanning tree T , and therefore T 3 has a paired 2-DPC joining A and B.

Case 2: |E(H)| ≥ 4. In this case, consider a graph H4 with four edges
that results from removing arbitrary |E(H)| − 4 edges from H. Then, there
are two kinds of H4s as illustrated in Figure 7(b). When H4 is a cycle of
length four (see Figure 7(c)), choose a terminal vertex γ that is not β1 but
is adjacent to α1. Then, for a spanning tree T of G that is rooted at α1 and
contains all the edges of H4 except (α1, γ), A and B are strongly admissible
for T , and therefore we have a desired 2-DPC. When H4 has a cycle of
length three (see Figure 7(d)), assume without loss of generality that α1 is
the terminal vertex of degree three in H4. Imagine a path of length three in
H4 that results from deleting an edge (α1, γ), where γ is β1 if β1 has degree
two in H4 or a terminal vertex other than α1 and β1 otherwise. Then, any
spanning tree T of G that is rooted at β1 and contains all the tree edges
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(a) Possible Hs in Case 1 (b) Possible H4s in Case 2

(c) Edge deletion in H4 (cycle
of length 4)

(d) Edge deletion in H4 (cy-
cle of length 3)

Figure 7: Illustrations for Cases 1 and 2 of Theorem 4

of the path will make A and B strongly admissible with respect to itself,
proving the theorem.

Case 3: |E(H)| = 3. There are three different kinds of Hs depending
on how the three edges connect the four terminal vertices. First, if H is
made of an isolated vertex and a cycle of length three as shown in the first
graph in Figure 8(a) (Case 3-1), it is enough to delete from G an arbitrary
edge of the length-three cycle, and construct a DFS tree T of G that is
rooted at any terminal vertex incident to the deleted edge and contains the
remaining two edges of H. Clearly, A and B are strongly admissible for
the spanning tree T , whose cube then has a paired 2-DPC joining them.
Second, let H be a 3-leaf star tree whose center vertex is assumed to be
α1 without loss of generality (see the second graph in Figure 8(a)). If there
exists an edge of H that is not a bridge in G, it suffices to remove the edge
from G, still allowing G to be connected, and find a spanning tree T of
G that is rooted at a terminal vertex not incident to the deleted edge and
contains the remaining two edges of H, which would make A and B strongly
admissible for T . If all the three edges of H are bridges in G (note that they
are nontrivial because the terminal vertices are all cut vertices as assumed
in the proof), there must exist an edge, a trivial bridge or a non-bridge,
incident to α1 that would prevent α1 from ever being a pure bridge vertex
in G, because otherwise A and B would break the condition C1 of Theorem 1
with respect to G. That is, α1 must be incident to a trivial bridge and/or
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must be adjacent to some two other vertices such that the three vertices are
contained in a cycle (see Figure 8(b)).

(a) Possible Hs

(b) Second subcase
where α1 is not a pure
bridge vertex

(c) Hybrid construction
for the case of (b)

(d) Fourth subcase
where α2 is not a pure
bridge vertex

(e) Hybrid construction
for the case of (d)

Figure 8: Illustrations for Case 3 of Theorem 4

If there exists a trivial bridge incident to α1 (Case 3-2-a), it is sufficient
to find a DFS tree T of G rooted at α1 in which α1 cannot be a pure bridge
vertex, allowing T 3 to have a paired 2-DPC joining A and B. If there is no

21



such trivial bridge, but is a cycle containing α1 (Case 3-2-b), construct a
spanning tree T of G by performing a depth-first search starting from α1.
Then, one of the two edges in the cycle that are incident to α1 must turn
out to be a back edge in the search. If we denote the other end vertex of
this edge by β′1 (see Figure 8(c)), then it is clear that A and {β′1, β2} are
strongly admissible with respect to the tree T \T(β1) (recall that T(β1) is the
subtree of T rooted at β1), implying that there exists a paired 2-DPC of the
cube of T \ T(β1), made of an α1–β

′
1 path and an α2–β2 path. Now, imagine

a Hamiltonian path of T 3
(β1)

that connects β1 to a child of β1. If we add

an edge e = (α1, β
′
1) to the spanning tree T , this Hamiltonian path can be

combined with the α1–β
′
1 path in the graph (T+e)3 through the child vertex

to β′1, forming an α1–β1 path. Together with the α2–β2, the concatenated
path then constitutes a paired 2-DPC of (T + e)3 joining A and B, proving
the existence of the spanning tree T and an edge e of the theorem.

For the two remaining cases of Hs in which H is a path of length three,
assume without loss of generality that α2 is an internal vertex. If the other
internal vertex is not β2 as shown in the third graph in Figure 8(a) (Case
3-3-a), A and B will be strongly admissible for a spanning tree T of G that
is rooted at a vertex of degree one in H and contains all the three edges
of H, proving the theorem. If the other internal vertex is β2 (the fourth
one in Figure 8(a)), at least one of α2 and β2 must be a non-pure bridge
vertex so that A and B satisfy the conditions of Theorem 1. If we assume
without loss of generality that α2 is not a pure bridge vertex, α2 must be
incident to a trivial bridge (Case 3-3-b-i) and/or must be contained in a
cycle (Case 3-3-b-ii). Then, the existence of T or T + e that the theorem
says can similarly be found as before except that α2 and α1 now behave
as α1 and β1 of the second subcase, respectively (refer to Figures 8(d) and
8(e)), completing the proof for Case 3.

Case 4: |E(H)| = 0. In this case, there exist no edges between the
four terminal vertices, and therefore only the first condition C1 of Theo-
rem 1, requiring that the four terminal vertices should not be in the closed
neighborhood of some pure bridge vertex, might be broken for a spanning
tree of G. First, if there is no (non-terminal) vertex v in G, whether it is
a pure bridge vertex or not, such that A ∪ B ⊆ NG[v] (Case 4-1), then it
is obvious that A and B are strongly admissible for any spanning tree T of
G. Second, if there is more than one such vertex (Case 4-2), α1 will be at
least distance-three away from some other terminal vertex in any DFS tree
T of G rooted at α1, implying that A and B are again strongly admissible
for T . Third, assume for the rest of the proof that there exists a unique
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(non-terminal) vertex v such that A ∪ B ⊆ NG[v]. If there is a terminal
vertex, say α1 such that (v, α1) is not a bridge (Case 4-3-a), we can build
a spanning tree T of G from G \ (v, α1) rooted at v for which A and B
are always strongly admissible. If all the four edges from v to the terminal
vertices are bridges in G (again they must be nontrivial), the proof proceeds
very similar to the second subcase of Case 3. That is, in order for the first
condition C1 of Theorem 1 to be met for G, v should be incident to a triv-
ial bridge and/or should be adjacent to some two other vertices such that
the three vertices are contained in a cycle. If a trivial bridge is adjacent to
v (Case 4-3-b-i), finding a DFS tree T of G rooted v will suffice to prove
the theorem.

Figure 9: Illustrations for Case 4 of Theorem 4

If there is no such trivial bridge, but is a cycle containing v (Case 4-3-
b-ii), a depth-first search is carried out starting from v to find a spanning
tree T of G, where we call α′1 the vertex in the cycle that, together with v,
forms a back edge in the search (refer to Figure 9). Then, {α′1, α2} and B
are strongly admissible for T \ T(α1), guaranteeing the existence of a paired
2-DPC in the cube of T \ T(α1), made of an α′1–β1 path and an α2–β2 path.
Similar to before, if we add an edge e = (v, α′1) to the spanning tree T , a
Hamiltonian path of T 3

(α1)
from α1 to a child of α1 can be connected to the

α′1–β1 path of the paired 2-DPC in (T + e)3 through the edge from the child
of α1 to α′1. This implies the existence of a spanning T and an edge e for
which (T + e)3 has a paired 2-DPC joining A and B, completing the entire
proof of the theorem. �

Remark 1. Given a connected graph G whose cube has a paired 2-DPC
joining two terminal sets A and B, there often exists a spanning tree T
of G whose cube also has a paired 2-DPC joining the same terminal sets.
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Figure 10: Any spanning tree of the graph shown in the left would violate the condition
C1 of Theorem 1. On the other hand, any spanning tree of the graph in the right would
violate the condition C2.

However, this is not always true as illustrated in Figure 10, in which a
unicyclic subgraph of a connected graph is considered for our algorithm to
break one of the two conditions of Theorem 1 and thus to be able to build
a desired paired 2-DPC.

4.2. Algorithm and time complexity

The proof of Theorem 4 is constructive in nature, and is easily led to
an efficient procedure. Our main algorithm is summarized in Algorithm 3,
which consists of four major stages. In the first step (Lines 2 and 3), a pre-
computation is performed to decide if the edges of the graph G are bridges
and if the terminal vertices in A and B are cut vertices. Once obtained, this
information is used effectively to answer each question raised in the following
three stages. Before starting to find a paired 2-DPC of G3, the algorithm
checks in the second step if a solution ever exists (Line 4), and continues only
if it does. In the third (Lines 6 to 9) and the fourth (Lines 10 to 24) steps,
which are an algorithmic description of the proof of Theorem 4, the paired
2-DPC is actually computed. First, if there is a terminal vertex vR that is
not a cut vertex, we use Algorithm 2 (Paired 2-DPC in TREE CUBE) to find
a paired 2-DPC of T 3 joining A and B for a spanning tree T of G rooted
at vR, which becomes the desired solution for G3. If all the four terminal
vertices are cut vertices, the fourth step, which is actually the main part of
the proof, is performed.

Observe that each subcase occurred in the proof of Theorem 4 can
uniquely be mapped into one of two types of operations, type-A or type-
B (refer to the caption of Figure 11). For the type-A operation (Lines 12
and 16), a depth-first search is done to build a spanning tree T of G which
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Algorithm 3: Construction of a paired 2-DPC in the cube of a graph

1 Function Paired 2-DPC in GRAPH CUBE(G, A, B)
input : A connected graph G and terminal sets A = {α1, α2}

and B = {β1, β2};
output: A paired 2-DPC {P1, P2} of G3 joining A and B;

2 Determine if each edge is a bridge in G;
3 Determine if each terminal vertex is a cut vertex in G;

4 Determine if both two conditions of Theorem 1 are satisfied;
5 if not satisfied then {P1, P2} ← {null,null}; return;

6 if a terminal vertex vR is not a cut vertex then
7 (T,null)← DFS(G, vR, null, null, 0);
8 {P1, P2} ← Paired 2-DPC in TREE CUBE(T , A, B);
9 return;

10 Classify the current case according to H = G[A ∪B];
11 if it is type-A then
12 Pick the vertex vR from which a spanning tree T is built;
13 Set the set of edges X to be excluded in T ;
14 Set the set of edges I to be included in T ;
15 (T,null)← DFS(G, vR, X, I, 0);
16 {P1, P2} ← Paired 2-DPC in TREE CUBE(T , A, B);

17 else // type-B

18 Pick the vertex vR from which a spanning tree T is built;
19 (T, u)← DFS(G, vR, null, null, 1);

/* Now, the edge e = (vR, u) is a back edge of T. */

20 Pick the terminal w s.t. a Hamiltonian path is sought in T 3
(w);

21 P11 ← Hamiltonian Path in TREE CUBE(T(w), w, child(w));

22 (A′, B′)← (A,B)− w + u; // Replace w by u in A & B.
23 {P12, P2} ← Paired 2-DPC in TREE CUBE(T \ T(w), A′, B′);

24 P1 ← CombinePaths(P11, P12, u, child(w));

25 end

Figure 11: The algorithm for finding a paired 2-DPC in the cube of a graph. In Line 10,
the current case is classified as one of the 13 different subcases specified in the proof of
Theorem 4, where Case 3-2-b, Case 3-3-b-ii, and Case 4-3-b-ii belong to type-B, and the
others to type-A. A call to function DFS(G, vR, X, I, f) for a connected graph G, a
vertex vR, two edge sets X and I, and a Boolean flag f returns a pair (T, u), where T is
a spanning tree of G with root vR s.t. X ∩ E(T ) = ∅ and I ⊆ E(T ), and u is a vertex
s.t. e = (vR, u) is a back edge of T if f is 1, or undefined otherwise. Also, the function
CombinePaths(P11, P12, u, child(w)) returns the path produced by combining P11

and P12 through the edge (u, child(w)) of (T + e)3. See the text for details.
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is rooted at a vertex vR and might be restricted not to contain a set of
edges X and to contain a set of edges I. Here, vR, X, and I can be quickly
determined according to the classified subcase as described in the proof of
the theorem. Then, Algorithm 2 is exploited to search for a paired 2-DPC
of T 3, which will also be a solution for G3.

For the type-B operation (Lines 18 to 24), a depth-first search starts
at a carefully selected vertex vR, finding a spanning tree T as well as a
vertex u from which a back edge to the root vertex vR exists. Then, Al-
gorithm 1 (Hamiltonian Path in TREE CUBE) is performed for a terminal
vertex w in A ∪ B to build a Hamiltonian path in T 3

(w) from a vertex w to

child(w), a child of w. In addition, Algorithm 2 is used to find a paired
2-DPC in the cube of T \ T(w) joining two terminal sets that are slightly
changed from A and B by replacing w with u. Finally, the Hamiltonian
path and the paired 2-DPC are merged via the CombinePaths function to
produce a paired 2-DPC of (T + e)3 with e = (vR, u), joining the input
terminal sets A and B, which will also be a solution for G3. Recall from
the proof of Theorem 4 that vR = α1 and w = β1 in Case 3-2-b, vR = α2

and w = α1 in Case 3-3-b-ii, and vR is a non-terminal vertex such that
A ∪ B ⊆ NG[v] and w = α1 in Case 4-3-b-ii. With these setups, the call
to the function CombinePaths(P11, P12, u, child(w)) returns the path
obtained by concatenating P11 and P12 through the edge (u, child(w)) of
(T + e)3.

Theorem 5. Given a connected graph G with n (≥ 4) vertices and m edges
and two terminal sets A = {α1, α2} and B = {β1, β2}, we can determine
the existence of a paired 2-DPC of G3 joining A and B and find one if one
exists in O(n+m) time.

Proof. For efficient implementation of Algorithm 3, we adopt an adjacency
list structure to represent the graph G. Then, the computation to identify
bridges and cut vertices of G (Lines 2 and 3) can be done in O(n+m) time
using the well-known algorithm for computing biconnected components [14].
Also, the existence of a desired 2-DPC can also be determined (Line 4) in
O(n + m) time by examining the connectivity of the four terminal vertices
and the properties of the edges incident to them. While the question in
Line 6 can be answered in constant time, Line 10 takes O(n) time to identify
the structure of H, in which the decision of a proper operation to perform
and the relevant information is determined in constant time based on the pre-
computed information. The remaining expensive operations are the depth-
first search which can be done in O(n+m) time, and the computations for
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finding a Hamiltonian path and a paired 2-DPC in the cube of a tree which
can be done in O(n) time by Corollary 1 and Theorem 3. Therefore, a paired
2-DPC of G3 joining A and B can be built in linear time if it exists. �

5. Concluding remarks

In this paper, we have presented a linear-time algorithm to find a paired
2-DPC in the cube of a connected graph joining two arbitrary terminal sets.
In finding a Hamiltonian cycle or path in the cube of a connected graph
in linear time, it was sufficient to examine only the edges of an arbitrary
spanning tree of the graph. Interestingly, we have shown that almost the
same number of edges were enough to find a paired 2-DPC in linear time. For
the latter problem, however, the spanning tree and possibly an additional
edge had to be selected carefully so that the skeleton graph is feasible for
the input terminal sets. Our paired 2-DPC algorithm easily leads not only
to a linear-time algorithm for finding an unpaired 2-DPC in the cube of a
connected graph, but also to a linear-time algorithm for fining a Hamiltonian
path in the cube of a connected graph that should pass through a prescribed
edge (x, y), whether the direction between x and y in the path is specified or
not. Unlike the cube of a connected graph that allows a solid construction,
finding a paired 2-disjoint path cover in the square of a 2-connected graph
still remains a challenging problem.
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