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Figure 1: Camera tracking results. The presented camera pose estimation technique took roughly 34 ms per input depth frame on a mobile
phone when the tracking computations except for the bilateral filtering of raw depth images of 320×240 pixels, which was done in parallel on the
GPU, were performed by the mobile CPU alone. Currently in our 3D object scanning system, a user can turn on and off the OpenGL rendering
that interactively visualizes progressively growing point-normal sets during camera tracking. Please see also the supplementary materials.

ABSTRACT

The KinectFusion algorithm is now used routinely to reconstruct
dense 3D surfaces at real-time frame rates using a commodity depth
camera. To achieve robust pose estimation, the method conducts
the frame-to-model tracking during camera tracking that must in-
evitably accompany the memory-bound, GPU-assisted volumetric
computations for the model manipulation, to which mobile proces-
sors are often more vulnerable than PC-based processors. In this pa-
per, we present an effective camera-tracking method that is based on
the computationally lighter frame-to-frame tracking method. This
method’s tendency toward rapid accumulation of pose estimation
errors is suppressed effectively via a predictor–corrector technique.
By removing the costly volumetric computations from the pose esti-
mation process, our camera tracking system becomes more efficient
in terms of both time and space complexity, offering a compact
implementation of depth sensor-based camera tracking on low-end
platforms such as mobile devices in addition to high-end PCs.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and Scanning; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Tracking H.5.1 [Information
Interfaces and Presentation]: Multimedia Information Systems—
Artificial, augmented, and virtual realities

1 PROBLEM AND OUR CONTRIBUTION

The KinectFusion algorithm [4, 2] is a widely accepted method
for depth sensor-based camera tracking, enabling us to track six-
degrees-of-freedom camera poses and reconstruct dense surface
models at real-time frame rates. Although developed originally for
the Microsoft Kinect sensor, it can be adapted effectively for other
similar commodity depth cameras in a variety of real-time appli-
cations. The two key elements of the KinectFusion algorithm are
the frame-to-model correspondence between two sequential frames
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and the fast iterative closest point (ICP) pose estimation, which to-
gether generate an incrementally growing 3D model that is repre-
sented implicitly in a volumetric signed distance field.

A linearized computational model that needs a few iterations to
solve a 6× 6 linear system offers fast computation of an estimate
for the camera pose of the current frame. However, because of the
linearity of the method, errors tend to accumulate rapidly when the
current frame is to be aligned with only the previous frame (frame-
to-frame tracking), resulting in the estimated camera pose becom-
ing inaccurate within a few frames. This problem was solved by
registering the current frame with the 3D model accumulated up
to the previous frame (frame-to-model tracking), resulting in sta-
ble and accurate tracking. While very effective, this approach in-
evitably demanded the generation of an enhanced depth image for
every frame, involving memory-intensive volumetric computations
such as signed distance accumulation and ray casting. For real-time
applications, this requires accelerated computation via massively
parallel GPU hardware. Despite the recent remarkable advances in
mobile computing, however, mobile processors are still often vul-
nerable to such heavy computations in terms of the cost and power
consumption.

In this work, we propose a low-cost method for real-time depth-
camera tracking that avoids having to maintain the costly volumet-
ric signed distance field while estimating camera poses effectively
from live depth images. Our method is based on the linearized ICP
model of KinectFusion, but aligns the current frame with previ-
ous frames without relying on the surface model built into the vol-
ume space. Instead, to suppress the numerical instability problem
caused by the deficiencies in the frame-to-frame tracking, we adopt
the idea behind prediction–correction methods, which has been ap-
plied successfully to the numerical integration of ordinary differen-
tial equations [3]. By separating the computation of the pose esti-
mation from the volumetric computation for the 3D reconstruction
and enhanced depth extraction, our camera tracking method itself
becomes computationally more efficient and significantly reduces
the memory requirement to maintain the truncated signed distance
field, allowing a compact implementation of the depth sensor-based
object scanning process on mobile platforms, which are less able to
handle high computational complexity and heavy memory access
requirements than typical PC platforms.
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2 LINEARIZED ICP MODEL [4]

Consider a live depth stream produced by a moving depth camera,
each frame Dk (k = 0,1, · · ·) of which provides the distance Dk(~u)
from the camera plane to the nearest object seen through every pixel
~u. When the 3×3 intrinsic matrix of the camera is known, the coor-
dinate ~pk(~u) of the nearest point, defined in the kth frame’s camera
space, can be obtained via an inverse projection transformation. In
addition, a simple divided-difference technique applied to Dk can
give an approximation to the normal vector ~nk(~u) at ~pk(~u). Let Pk
be the set of all point–normal pairs (~pk(~u),~nk(~u)) created from Dk.

Given a live depth stream, an essential task is to estimate the
pose of the depth camera at each time k in a unique world space.
We express the camera pose as a 3×4 matrix Tk =

[
Rk |~tk

]
, where

the translation vector~tk is the position of the camera center, and
the three columns of the 3× 3 rotation matrix Rk are the three or-
thonormal vectors representing the camera’s heading. In a frame-
by-frame process, the KinectFusion method estimates the camera
pose matrix Tk for the current kth frame using the matrix Tk−1 and
the point–normal set P∗k−1 obtained from the enhanced depth image
that is extracted on the fly from the signed distance field accumu-
lated thus far.

To obtain an estimate for Tk, an initial guess T̃ z=0
k is iteratively

refined by estimating a rigid body transformation T z
inc (z = 1,2, · · ·)

such that T̃ z
k = T z

incT̃ z−1
k until a satisfactory estimate T̃ z

k is obtained.
In each z-iteration, the point-to-point correspondence between the
point–normal sets of the (k−1)th and kth frames is established us-
ing the fast inverse calibration method [1], where the transformation
T̃ z

k→k−1 = T−1
k−1T̃ z−1

k , composed using the estimated T̃ z−1
k from the

previous iteration, is used as the (approximate) rigid body trans-
formation from the kth to the (k− 1)th camera spaces. Then, the
matrix T z

inc, which refines T̃ z−1
k one step further, is calculated by

optimizing an energy function in the form of the sum of the squares
of the “distance errors” that are approximately expressed as linear
combinations of the translation displacement (tx, ty, tz) and rotation
angles (α,β ,γ) of T z

inc. Because of the linearity of the least-squares
problem, T z

inc in each z-iteration can be approximated rapidly, sim-
ply by solving a linear system of normal equations in six unknowns
(tx, ty, tz,α,β ,γ).

3 A MODIFIED FRAME-TO-FRAME TRACKING TECHNIQUE

3.1 Application of a predictor–corrector method

The linearized ICP computation of the KinectFusion method (L-
ICP for short) involves an initial guess T̃ z=0

k for Tk being progres-
sively refined as T̃ z

k = T z
incT̃ z−1

k . In every z-iteration, T̃ z−1
k is used to

find the “closest” points between two frames, which are then used
to describe the energy function to be optimized. The camera pose
Tk−1 from the previous frame is usually chosen as the initial guess,
there being no obvious better alternative. Combined with any pos-
sible deficiency in the point–normal set Pk−1 produced from the
single, error-prone depth image Dk−1, giving a poor initial value
for the linearized computational model often leads to an inaccurate
approximation.

The camera poses that are estimated by a simple frame-to-frame
tracking scheme may not be sufficiently precise because errors in
the resulting matrices tend to accumulate quickly. However, the es-
timated poses for the next few frames will be fairly close to reality.
Therefore, they may be utilized as initial guesses for the z-iterations
in later rounds of the L-ICP computation to improve the accuracy
of the corresponding camera poses. Note that the L-ICP computa-
tion is implicit in that the matrix Tk is needed to solve for itself. In
principle, the situation is similar to the case of solving ordinary dif-
ferential equations, where a higher-order solution is often described
implicitly. In developing our method, we borrow the idea of a nu-
merical technique called the predictor–corrector method, which has

been applied successfully to the numerical integration of ordinary
differential equations [3].

Figure 2 illustrates the proposed computation pipeline for input
(Tk−1,Pk−1,Pk), where Tk−1 is a successful previous estimate. With
the (k−1)th frame as a reference frame, the frame-to-frame track-
ing computation first uses the fast L-ICP method, generating poses
T̂k+i for the subsequent frames. This predictor step finishes after
m+1 frames (m≥ 0). The last camera pose T̂k+m is then employed
as the initial value in another L-ICP computation to integrate the
depth image Dk+m of the (k+m)th frame against Dk−1 of the most
recent previous reference frame. After the enhanced pose Tk+m is
obtained in this corrector step, the (k +m)th frame becomes the
reference frame for the subsequent pose estimation. In our modi-
fied frame-to-frame tracking approach, only these reference frames,
that is, the frames to which the corrector step has been applied, are
regarded as legitimate depth frames. It is these frames whose point–
normal pairs are used later to reconstruct 3D models.

L-ICP

L-ICP

Predictor step

Corrector step

Figure 2: The modified frame-to-frame camera tracking. After the
L-ICP computation is repeated for the next (m+ 1) frames starting
from the (k−1)th frame (the predictor step), the most recent estimate
T̂k+m is used as input to another L-ICP computation between the (k−
1)th and the (k+m)th frames to obtain an error-corrected estimate
Tk+m (the corrector step).

3.2 Adaptive selection of depth image frames

Taking only the reference frames for further computations has the
effect of temporal sampling of the dense depth stream, eventually
resulting in efficient processing of the captured data. One way to
choose the intervals between the reference frames is to reflect the
actual motion of the camera, whereby the predictor step stops if
the “predicted” camera pose deviates markedly from that of the last
reference frame. Let Tk−1 =

[
Rk−1 |~tk−1

]
and T̂k+i =

[
R̂k+i |~̂tk+i

]
be the pose matrix of the last reference frame and the matrix pro-
duced in the predictor step, respectively (see Figure 2). The trans-
lation distance and rotation angle between the two poses are then

expressed as ||~̂tk+i−~tk−1 ||2 and cos−1 tr(R̂k+iRt
k−1)−1

2 , respectively,
where tr(·) denotes the trace of a square matrix. Therefore, for
given distance and angle thresholds εd and εa, respectively, we exit
from the predictor-step iterations if at least one of the following
conditions is met: ||~̂tk+i−~tk−1 ||2 > εd and tr(R̂k+iRt

k−1)< ε∗a with
ε∗a = 2cosεa +1.

3.3 Normal-based point filtering

The error introduced in the normal vector ~nk(~u) at ~pk(~u), es-
timated by applying a divided-difference scheme to noise-prone
back-projected points, often influences significantly the reliabil-
ity of the ICP computation. In an attempt to supply only reliable
point–normal pairs to the L-ICP stage, we modified the normal ap-
proximation method as follows. First, two approximations were
computed in two different divided-difference directions: ~np

k (~u) =



~N p
k (~u)

||~N p
k (~u)||

in the principal axis direction and ~nd
k (~u) =

~Nd
k (~u)

||~Nd
k (~u)||

in the

diagonal direction, where, for ~ui, j = (u+ i,v+ j) with ~u = (u,v),
~N p

k (~u) = {~pk(~u1,0)−~pk(~u−1,0)}× {~pk(~u0,1)−~pk(~u0,−1)} and ~Nd
k (~u) = {~pk(~u1,1)−

~pk(~u−1,−1}× {~pk(~u1,−1)−~pk(~u−1,1)}. Then, if the angle between ~np
k (~u)

and ~nd
k (~u) is greater than a given threshold εn, we decide that the

captured depth values around the pixel ~u are not sufficiently de-
pendable, and remove its point–normal pair from the ICP compu-
tation. Otherwise, their average direction is used as ~nk(~u) in the
subsequent computation. Although this additional normal filtering
method itself takes extra computing time, the decrease in the error
of the energy function tends to reduce the number of z-iterations
and therefore the overall ICP time.

4 RESULTS

We first implemented our method on a PC platform, and the PC
version was then ported to a mobile phone that used the Samsung
Exynos 8 Octa 8890 chipset equipped with an ARM Mali-T880
GPU. In our current implementation, the entire process was run on
the CPU alone except for the bilateral filtering of raw depth images.

4.1 Error analysis using synthetic 3D scenes
To evaluate the effectiveness of the proposed predictor–corrector
approach, we performed a quantitative analysis of the translational
and rotational errors in the poses produced by variants of the frame-
to-frame tracking method. For this experiment, we used two syn-
thetic depth streams with ground truth camera poses, created by ren-
dering the virtual 3D scenes of different complexity using OpenGL
and extracting depth values in OpenGL’s camera space (see Fig-
ure 3).

(a) Virtual Venus (b) Virtual Desk

Figure 3: Two synthetic 3D scenes with camera trajectories.

Figure 4 shows the results on the translational and rotational
errors in the poses estimated for the Virtual Desk scene, where
both types of errors were usually accumulated rapidly during track-
ing when the original frame-to-frame tracking method (Frame-to-
frame) was applied, with or without normal-based point filter-
ing (NF), resulting in significant artifacts in the reconstructed sur-
faces. On the other hand, when enhanced with the predictor–
corrector method, the frame-to-frame tracking method (Ours) re-
duced drastically the pose estimation errors, as indicated clearly in
the graphs. (Similar results were also obtained for the Virtual Venus
scene.)

In all cases, the predictor–corrector mechanism worked as
hoped, keeping the errors down to levels much below those for the
simple frame-to-frame tracking. In particular, we can observe that
the adaptive frame selection method (Adaptive) effectively picked
the frames to be corrected based on the estimated errors, and pro-
duced more precise and more stable tracking results than the meth-
ods (Fixed n) that selected every nth frame as a reference frame.
When the adaptive method was applied, 167 and 46 reference
frames were selected out of 1000 and 436 total frames for Virtual
Venus and the Virtual Desk, respectively, implying that these num-
bers of additional L-ICP computations were necessary to correct the

estimation errors. (The average intervals between them were 5.994
and 9.578, respectively.)

The translational errors of 1.11 mm (ave) and 2.05 mm (max) for
Virtual Venus and 0.201 mm (ave) and 0.458 mm (max) for Vir-
tual Desk were quite small, considering that the distances from
the camera to the nearest surfaces were confined to a range of
400 mm to 1,400 mm in this experiment. The rotational errors were
kept down to 0.0661 ◦ (ave) and 0.137 ◦ (max), and 0.0192 ◦ (ave)
and 0.0740 ◦ (max) for these two scenes, respectively. It is noted
that about an order of magnitude smaller estimation errors were
achieved for Virtual Desk than for Virtual Venus; this was mainly
because more geometric features were represented in the depth im-
ages of the former scene, enabling a more stable pose estimation.

4.2 Real scene tests on a mobile phone
We also tested our camera tracking method on the mentioned mo-
bile phone, where live depth streams at 320× 240 resolution were
taken at 30 fps in real environments by a mobile device-based Struc-
ture sensor and a PC-based Kinect sensor (Kinect for Windows v1).
In a real-scene test, applying the normal-based point filtering that
rejects back-projected points with inconsistent normal directions
is important because our method, relying on the frame-to-frame
alignment, is more vulnerable than the frame-to-model alignment
to noises in the captured depth images, for which the angle thresh-
old εn = 10◦ usually worked fine. In addition, the distance and
angle thresholds of εd = 27 mm and εa = 3◦ were applied for the
adaptive selection of reference frames in the presented results.

Table 1 summarizes the runtime performance measured on the
mobile phone for the four depth streams: 2-Men-S and Desk-S
from the Structure sensor and Desk-K and Office-K from the Kinect
sensor (see Figure 1 for the respective reconstructed point clouds).
First, the extra overhead of correcting the pose estimation errors
produced by the frame-to-frame tracking is shown in the table (a).
Here, “# of L-ICPs” shows the total number of times in which the
frame-to-frame L-ICP computation is carried out. Thus, the dif-
ference between the frame-to-frame tracking (“original”) and our
method (“ours”) reveals how many reference frames were chosen
during the camera tracking. On the other hand, “# of z-iterations”
reveals how many times the linear system of normal equations had
to be solved, which is a good complexity measure for the entire
tracking computation. We find that our solution demanded roughly
1.10 to 1.21 times more tracking computations, respectively, than
the faulty frame-to-frame tracking, which is quite acceptable con-
sidering the increased precision in the pose estimation.

Second, the table (b) presents the actual execution times taken
by our method to handle the input depth streams, where the camera
tracking computation consumed 30.72 to 37.86 milliseconds per in-
put depth frame on average on the mobile CPU. It is noted that the
per-frame tracking time is basically affected by the resolution of
input depth images. Thus, when the same resolution was adopted,
the camera tracking times for the depth streams from the Kinect
sensor were almost the same as those from the Structure sensor,
although the former, which is a PC-based sensor, usually captured
more refined depth images. It is clear from the achieved timings by
the single-threaded mobile CPU version that the modified frame-to-
frame approach allowed to effectively perform the camera tracking
on the tested mobile phone without concern for the memory-bound
GPU computation, for which the mobile device is still more vul-
nerable than typical PC platforms. We expect that a multithreaded
CPU implementation or a GPU optimization will further improve
the temporal efficiency on the mobile device.

5 CONCLUDING REMARKS

By separating the computation of the pose estimation from that
of the 3D reconstruction and enhanced depth extraction in the
KinectFusion algorithm, the camera tracking method itself became
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Figure 4: Camera pose estimation errors (Virtual Desk). Frame-to-frame (NF) and Frame-to-frame for the original methods with and without the
normal-based point filtering (NF) applied, and Ours (Fixed n/NF) and Ours (Adaptive/NF) for the modified methods with per-every-nth-frame and
adaptive corrections.

(a) Overheads of the predictor-corrector method

# of L-ICPs # of z-iterations
original ours original ours

2-Men-S 499 539 2,465 2,785
Desk-S 499 568 2,463 2,935
Desk-K 400 435 1,901 2,090
Office-K 1,029 1,215 5,360 6,490

(b) Average run times and the sizes of produced point-normal sets

2-Men-S Desk-S Desk-K Office-K

# of input frames 500 500 401 1,030
# of ref. frames 40 69 35 186

# of pt.s per ref. fr. 28,190.5 34,859.9 35,978.8 27,642.7
# of final points 1,128K 2,405K 1,259K 5,142K

tracking time (ms) 33.02 34.92 30.72 37.86

Table 1: Runtime performance on the mobile phone. In (a), the
overheads caused by our tracking method (“ours”) that selects the
reference frames adaptively are analyzed with respect to the origi-
nal frame-to-frame tracking (“original”). In (b), the average per-frame
timings taken by our method to track the camera is given in “tracking
time.” “# of pt.s per ref. fr.” indicates the average number of point-
normal pairs generated per every reference frame, while “# of final
points” is for the final sizes of the accumulated point–normal sets.

computationally lighter and significantly reduced the memory re-
quirement, allowing a flexible, computationally lightweight cam-
era tracking software on mobile devices. We have demonstrated
that the numerical instability problem of the error-prone frame-to-
frame depth-camera tracking method can be eased significantly by
correcting the predicted camera poses of adaptively selected depth

frames. Furthermore, our approach automatically filtered dense live
depth streams, preventing the resulting point–normal cloud from
growing excessively. Currently, our 3D object scanning system
naturally generates a point-normal cloud as a result of 3D recon-
struction, which is dense enough to be able to closely examine the
progressively growing surfaces. On the other hand, the possibility
is recently shown in [5] that the point-normal pairs, converted into
volume space, can be ray-traced interactively on a mobile GPU. If
necessary, we could adopt such a surface rendering technique, say,
every few other frames, which runs on the GPU in parallel with our
CPU-based camera tracking process.
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[5] P. Ondrúška, P. Kohli, and S. Izadi. Mobilefusion: real-time volumet-
ric surface reconstruction and dense tracking on mobile phones. IEEE
Trans. Vis. Comput. Graph., 21(11):1251–1258, 2015.




