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Figure 1: Mobile distributed GPU ray tracing. Through a master/slave system performing tile-based rendering, in which each
slave machine keeps a full copy of size-reduced rendering data on limited graphics memory, we were able to achieve a good
efficiency of distributed ray tracing in a mobile cluster with six slaves.

ABSTRACT
Ray tracing large-scale 3D scenes at interactive frame rates is a
challenging problem on mobile devices. In this paper, we present
a mobile ray tracing system that aims to render large scenes with
many millions of triangles at interactive speeds on a small-scale mo-
bile cluster. To mitigate performance degradation due to excessive
data communication on mobile and wireless networks with still
high latency, we employ a tile-based rendering strategy where each
participating mobile device keeps an entire copy of the necessary
rendering data. To realize such a system, we compress the 3D scene
data to a size loadable into graphics memory, which enables an
effective mobile GPU ray tracing. Also, by using a careful interac-
tion scheme between the master and slave devices in the mobile
cluster, we enhance the efficiency of the mobile distributed GPU
ray tracing markedly.

CCS CONCEPTS
• Human-centered computing → Mobile computing; • Com-
putingmethodologies→Ray tracing;Distributed algorithms;
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1 INTRODUCTION
Distributed/parallel computing has long been an effective tool to
visualize large-scale datasets which require substantial computa-
tional resources for interactive manipulation. Recent advances in
mobile technology suggest to explore mobile clusters, composed
of ubiquitous smartphones and tablets connected through mobile
and wireless communication networks, for solving large-scale and
grand-challenge problems (refer to [Arslan et al. 2015] for a sur-
vey of some mobile cluster systems). While previous results on
interactive ray tracing in distributed systems usually considered
networked workstations and PCs (for instance, [Wald et al. 2003]),
very few work has been reported that exploits mobile devices.

In an effort to investigate the feasibility of mobile cluster com-
puting in interactive visualization of large-scale 3D scenes, we have
developed a ray tracing system that aims to render large scenes
with more than ten million triangles at interactive frame rates on a
small-sized cluster made of up to a dozen mobile devices. Some of
the main features of our rendering system are as follows. First, dis-
tributing bulky 3D scene data dynamically among processing units
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during rendering is not appropriate for the current mobile cluster
system due to its high transmission latency. Thus we adopted a
tile-based master/slave rendering scheme where each slave mobile
device, storing a full copy of all necessary scene data, repeatedly
renders the tile area assigned to it, and transmits the 2D tile image
back to the master mobile device.

Second, in order for a mobile device to be able to load as large a
3D scene as possible, we applied a space-efficient scene represen-
tation technique that substantially reduces the size of rendering
data that must be handled. In particular, we extended the kd-tree
representation scheme, proposed by Choi et al. [Choi et al. 2013],
to further reduce the memory requirements without any serious
degradation of rendering performance. Third, considering that the
data communication between mobile devices is not so efficient as
in the PC cluster environment, we paid special attention to mini-
mizing performance drop due to ineffective interactions between
the master and slaves.

2 COMPRESSION OF 3D SCENE DATA
2.1 Space-efficient representation of kd-tree
The kd-tree is one of the most essential spatial data structures
that accelerate ray-object intersection computations. Whereas it is
routinely used for efficient ray tracing, the kd-tree has a well-known
drawback in which a large number of triangles that intersect with
splitting planes are repeatedly duplicated into subvolumes during
the kd-tree construction. This causes to increase the actual number
of triangles that must be handled by the resulting kd-tree structure,
often leading to inefficient, large and tall trees with high triangle
redundancy (see Table 1).

Table 1: Sizes of example 3D scenes. The sizes of the kd-trees
generated by the standard construction algorithm based on
a surface-area heuristic (SAH) [Wald and Havran 2006] and
represented with the compact data structure of Wald [Wald
2004] are compared with those of the respective geometry
data. Here, the geometry of each scene with normals and
texture coordinates at vertices was stored using the ‘indexed
face set’ method. As is confirmed in the table, due to the
replication of triangles during kd-tree construction, the re-
sulting acceleration structure often imposes a substantial
spatial overhead.

No.’s of
triangles

(K)

No.’s of
vertices
(K)

Size of
geom.
(MB)

Size of
kd-tree
(MB)

Soda Hall 2,167.5 1,438.1 153.1 86.0
SanMig-7M 7,095.0 3,984.9 237.5 335.7
San Miguel 10,500.6 6,093.5 352.0 590.8
Power Plant 12,748.5 5,731.5 480.6 603.7

2.2 Extending the kd-tree representation
method

In order to relieve the memory problem, Choi et al. [Choi et al. 2013]
proposed a space-efficient kd-tree construction and representation

scheme that allows an inner node to optionally store a reference to
a triangle that would otherwise be duplicated in an excessive num-
ber of leaf nodes in the standard representation (refer to Figure 2).
With a slightly modified kd-tree traversal algorithm, it was shown
that their method markedly reduced the memory requirements for
representing the tree structure, while effectively avoiding a serious
degradation of the ray-tracing performance.

I
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(a) Standard scheme
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(b) Choi et al.’s scheme

Figure 2: Augmented inner nodes for space-efficient kd-
trees ([Choi et al. 2013]). In their method, Choi et al. had
the option of storing a reference to a triangle with high re-
dundancy in the root of a proper subtree instead of leaving
multiple copies in the leaf nodes, which greatly reduced the
space required for representing the subtree.

To enhance the space reduction effect further, we extend their
kd-tree construction and traversal algorithms in such a way that up
to two triangles may be referenced at an inner node. Our extension
is based on the observation that the inner node layouts adopt an
8-byte alignment rule for efficient caching of the tree information,
and the lower 32 bits of the T-reference node, i.e. the inner node
with a reference to a triangle, are not used. In the original method,
at most one triangle was permitted per inner node because an
excessive amount of triangle references put on the inner nodes may
slow down ray tracing seriously.

Be noted that the triangle references in the inner nodes incur
a high frequency of, possibly unnecessary, early ray-triangle in-
tersection computations during rendering. In addition, they cause
too frequent divergent branches during the kd-tree traversal pro-
cess, which is in particular critical when implemented on a high
performance PC GPU. On the other hand, the GPU on the mobile
device usually has a much lower parallel processing capability than
the PC GPU. Therefore, the strategy of storing up to two triangle
references on mobile platforms has the advantage of saving more
space compared to the drawback of slowing down. This is more true
when the ray tracer is implemented on a mobile GPU that usually
has relatively limited graphics memory and memory bandwidth.

Table 2a shows howmuchmemory usages for the geometries and
kd-trees have been reduced further by our extension. In building
the tested kd-trees, we set the pair of occupancy and frequency
thresholds (τoccu ,τf r eq ) to (0.5, 0.4) in favor of achieving greater
kd-tree-size reductionwhile keeping the frame-rate degradation at a
reasonably low level (please refer to [Choi et al. 2013] to understand
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what these control parameters are for). Also, for a good balance
between the kd-tree-size reduction and ray-tracing speed, we let at
most 8 triangle references in total be placed on inner nodes on the
path from each leaf node to the root node of the kd-tree.

Table 2: Compression of 3D scene data. In these tables, “Stan-
dard” indicates the kd-tree construction and representation
method that is based on [Wald and Havran 2006] and [Wald
2004]. On the other hand, “Choi et al.” implies the method
proposed in [Choi et al. 2013]. The percentages in parenthe-
ses show how the respective methods reduced the memory
requirements compared to the standard SAH-based kd-tree.

(a) Sizes of the constructed kd-trees (unit: MB).

Standard Choi et al. Ours

Soda Hall 86.0 50.1 (58.3%) 41.8 (48.6%)
SanMig-7M 335.7 202.7 (60.4%) 167.2 (49.8%)
San Miguel 590.8 342.2 (57.9%) 285.3 (48.3%)
Power Plant 603.7 321.0 (53.2%) 252.7 (41.9%)

(b) Total sizes of the scene data (unit: MB).

Standard Choi et al. Ours

Soda Hall 239.1 203.2 (85.0%) 194.9 (81.5%)
SanMig-7M 573.2 440.2 (76.8%) 404.7 (70.6%)
San Miguel 942.8 694.2 (73.6%) 637.3 (67.6%)
Power Plant 1,084.3 801.6 (73.9%) 733.3 (67.6%)

Overall, our extension yielded a kd-tree-size reduction of 50.2% to
58.1% compared to the sizes of the standard kd-trees given in Table 1.
Compared to the case when at most one triangle reference is placed
per inner node, it also achieved an additional memory reduction up
to 11.3%. Interestingly, the sizes of the geometry data also decreased
slightly because culling more redundant triangles from leaf nodes
enhanced spatial coherence in the triangle index lists, which in turn
allowed the storage of a significant proportion of triangle indices
in the 2-byte leaf mode provided by the kd-tree layouts (refer to
[Choi et al. 2013] for this leaf-node representation method). As a
result, the total memory requirements to store the entire scene data
were significantly reduced, as indicated in the Table 2b. As noted
previously, it is inevitable that the ray-tracing frame rates drop
to some degree because of additional computations for handling
the inner nodes having triangle references. However, the timing
results in Table 3 indicate only a slight decrease in rendering speed
compared to the method of [Choi et al. 2013], which, considering
the increased complexity of the kd-tree traversal algorithm, is quite
encouraging.

3 EFFICIENT INTERACTIONS BETWEEN THE
MASTER AND SLAVES

Our distributed mobile ray tracer employs a master/slave rendering
model with one mater device and multiple slave devices on a mobile
communication network, in which the image area is subdivided
into a set of 2D tiles forming a pool of rendering tasks. The master

Table 3: Ray tracing time variation according to different
kd-trees (unit: ms). The times for ray-tracing an image of
1, 024 × 1, 024 pixels on a single mobile device are compared.
The Power Plant scene could not be rendered with the stan-
dard kd-tree due to the lack of GPU memory space.

Soda Hall SanMig-
7M

San
Miguel

Power
Plant

Standard 2,547.3 3,210.4 4,117.7 -

Choi et al. 2,648.2 3,664.7 4,194.9 2,985.0
(104.0%) (114.2%) (101.9%) -

Ours 2,769.8 3,868.5 4,283.5 3,093.7
(108.7%) (120.5%) (104.0%) -

is responsible for dynamically sending tile indices to and collecting
rendered tile images from the slaves. Before the master starts to
handing out tile indices to the slaves, each slave loads an entire
copy of the necessary rendering data including the scene geometry
and the compressed kd-tree in its graphics memory. All ray-tracing
computations are performed on the GPUs of the slaves as initiated
by the master.

Figure 3a illustrates a simple interaction model between the mas-
ter and the ith slave, where a single thread on each side handles
both communication and GPU ray tracing. Compared to the PC en-
vironment, however, we observed that the communication latency
between mobile devices is quite high and sometimes irregular, eas-
ily becoming a major bottleneck in the entire distributed rendering
pipeline. In particular, the mobile GPU had to stop rendering while
the ray-traced tile image was being transmitted, leading to inef-
ficient usage of computational resources. Therefore, in designing
our distributed system, it was very important to hide the network
latency of mobile communication as much as possible.

Figure 3b shows an improved interaction scheme. On the master
side, two threads are created for each added slave, where one thread,
thread 2i, is responsible for sending a tile index as soon as the
ith slave is available, and the other, thread 2i+1, is dedicated to
receiving the rendered tile image from the slave. On the other
hand, the ith slave creates an extra thread only responsible for
transmitting the rendered image tile while the main thread focuses
mostly on the GPU rendering task. In this way, we were able to
overlap the rendering computation and data transmission as much
as possible on the slave side, enhancing the overall frame rates (see
Table 4).

4 RESULTS
To demonstrate the effectiveness of the presented method, we first
implemented a GPU-based full ray tracer using the OpenCL 1.2 API,
which enabled to handle the three types of kd-trees constructedwith
and without the size-reduction methods applied. Then the proposed
mobile ray tracer was implemented and tested on a mobile cluster
built using LG G5 smartphones, each of which used the Qualcomm
Snapdragon 820 chipset equipped with an Adreno 530 GPU and
was connected to an IEEE 802.11ac-based wireless network (see
Figure 1a and 5). For this smartphone, a graphics memory allocation
error was encountered when trying to load rendering data larger
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Figure 3: Mobile interaction model between the master and
the ith slave. By separating the tasks of image transmission
and GPU ray tracing appropriately, the overall efficiency of
mobile distributed rendering improved significantly.

than roughly 950MB. To perform fair evaluation, we selected four
representative scenes and camera views with low to high geometric
and rendering complexity (see Figure 1c & d and Figure 4), whose
triangle numbers ranged from 2,167K to 12,749K.

Table 5a shows how effectively the distributed ray tracing time
decreased as the number of participating slave machines increased,
where each rendering time was averaged after five runs. In this
table, the figures in parentheses indicate the efficiency which is
defined as τ1

SτS , where τ1 is the execution time on one slave and τS is
the time on S slaves. Despite the inefficient mobile communication
environment, our distributed ray tracer was able to maintain an
efficiency up to 80%when six smartphones participated in rendering.
Note that these timings were obtained using a 4 × 4 partition of
1, 024×1, 024 image meaning each tile is of 256×256 pixels. We also
tested smaller tile sizes in a hope to achieve better dynamic load
balancing, producing higher frame rates. However, in contrast to
our expectation, the distributed rendering performance deteriorated
rapidly. This is presumably because the communication overheads

Table 4: Rendering time comparison between the two
master-slave interactionmodels (unit: ms). Images of 1, 024×
1, 024 pixels were ray-traced using tiles of 256× 256 pixels. In
this table, "N" and "I" respectively indicate the mobile inter-
actionmodels that are illustrated in thefigures a and b of Fig-
ure 3. The percentages in parentheses clearly show that the
adopted interaction model significantly enhanced the tim-
ing performance on the mobile platform over the simple in-
teraction model.

# of participating slaves
3 4 5 6

Soda Hall
N 1,922.8 1,410.3 1,232.1 1,133.5

I 1,642.9 1,237.2 1,011.9 888.4
(85.4%) (87.7%) (82.1%) (78.4%)

Power Plant
N 1,257.2 978.2 874.7 762.2

I 1,157.8 859.3 779.0 670.1
(92.1%) (87.8%) (89.1%) (87.9%)

(a) Soda Hall (2,167K) (b) SanMig-7M (7,095K)

Figure 4: Example scenes and camera views tested. See also
Figures 1c and d.

grew very fast as image tiles of smaller sizes were transmitted more
frequently through the mobile network (see Table 5b).

5 CONCLUDING REMARKS
In this paper, we have demonstrated the possibility of using net-
worked mobile devices, which are ubiquitous these days, for inter-
actively visualizing large-scale 3D scenes. To the best knowledge
of the authors, this is the first study on the mobile distributed ray
tracing that can effectively handle 3D scenes with many millions
of triangles. Unfortunately, we were not able to test our method
against a mobile cluster of larger size due to the difficulty in build-
ing such a system. Even if more slave machines are available, simply
adding them to the current form of mobile cluster with six slaves
would not increase frame rates significantly due to fast growing
communication overheads at the image transmission stage, towhich
the current mobile communication system is more vulnerable than
the PC-based systems. A more balanced approach would be to
build multiple small-scale mobile clusters made of, for instance,
five to seven slaves, and to have each of the clusters render an



Effective Ray Tracing of Large 3D Scenes through Mobile Distrib. Computing SA ’17 MGIA, November 27-30, 2017, Bangkok, Thailand

Figure 5: Tile-based mobile distributed ray tracing (Power
Plant). Each different color represents a slave device that
produced the corresponding tile image where six slaves par-
ticipated in the distributed rendering.

interleaved frame, which we believe will increase the scalability of
our distributed rendering system more effectively.

Note that whereas the presented method employs the space-
reduced kd-tree structures for efficient distributed ray tracing, the
scene geometry that represents the vertex and face information
still requires a substantial amount of memory space as revealed
in Table 1. We are currently developing a geometry compression
method that is suitable for interactive mobile rendering. A success-
ful combination of data reduction techniques for both components
of scene data will generate a great synergistic effect for the ray
tracing of very large 3D scenes on the ubiquitous mobile platforms.

In addition, to raise the overall frame rates of our rendering
system, we are extending the GPU ray-tracing module to include
the adaptive sampling technique [Kim et al. 2016] which was shown
to reduce the total number of ray shootings, while introducing only
a small deterioration in the rendering quality. Not only improve the
computational speed, it would also help effectively reduce aliasing
artifacts in ray-traced images through efficient supersampling.
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