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Abstract

Given two disjoint vertex sets S = {s} and T = {t1, t2, t3} of a connected graph, a one-to-many
3-disjoint path cover joining S and T is a vertex-disjoint path cover {P1, P2, P3} such that each
path Pi joins s and ti. In this paper, we present an efficient algorithm that builds, if exists, a
one-to-many 3-disjoint path cover in the cube of a connected graph G joining the two terminal
sets. Interestingly enough, we show that a carefully selected spanning tree or spanning unicyclic
subgraph of G is all we need to find one in time linear to the size of G.
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1. Introduction

In this paper, we only consider an undirected graph G with vertex set V(G) and edge set E(G).
For two vertices u and v of G, a path from u to v is a sequence 〈w1, . . . ,wl〉 of distinct vertices
of G such that w1 = u, wl = v, and (wi,wi+1) ∈ E(G) for i ∈ {1, . . . , l − 1}. If l ≥ 3 and
(wl,w1) ∈ E(G), the sequence forms a cycle. A path that visits every vertex of G exactly once is
a Hamiltonian path of G; a cycle that visits every vertex of G exactly once is a Hamiltonian cycle
of G. A path cover of G is a set of paths in G such that every vertex of G belongs to at least one
path. A disjoint path cover of G is a set of internally vertex-disjoint paths that altogether cover
every vertex of G.

For two disjoint vertex sets S = {s} and T = {t1, . . . , tk} of G, the one-to-many k-disjoint path
cover (k-DPC for short) is a disjoint path cover composed of k paths, each of which respectively
joins the pair of s and ti, i ∈ {1, . . . , k}. When S = {s} and T = {t}, a disjoint path cover made
of k paths, each joining s and t, is called a one-to-one k-DPC. Another interesting disjoint path
cover is the many-to-many k-DPC, whose k disjoint paths collectively join disjoint vertex sets
S = {s1, . . . , sk} and T = {t1, . . . , tk}; if each source si is designated to a specific sink ti, the
disjoint path cover is called paired, or unpaired otherwise. As intuitively clear, we will call the
vertices in S and T sources and sinks, respectively, which together form a set of terminals.
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Various forms of disjoint path cover problems are found in many areas like code optimization,
software testing, and database design [1, 11]. Interestingly, the existence of a disjoint path cover
in a graph is closely related to the Hamiltonian properties as well as the concept of vertex con-
nectivity, characterized with respect to the minimum number of disjoint paths. In a graph with
at least three vertices, for instance, a t1–t2 Hamiltonian path forms a one-to-many 2-DPC joining
{s} and {t1, t2} for any vertex s , t1, t2; a Hamiltonian cycle forms a one-to-one 2-DPC joining
{s} and {t} for any pair of distinct vertices s and t. Deciding the existence of a k-DPC in a general
graph, however, is NP-complete for any fixed k ≥ 1 [14, 15]. Thus, researches have studied
the existence for some specific classes of graphs such as hypercubes [4], hypercube-like graphs
[14, 15], and tori [3]. For the cube of a connected graph, the exact condition for a paired 2-DPC
joining two terminal sets to exist was presented by the authors in [13], and, based upon the result,
a linear-time algorithm that finds such a paired 2-DPC was developed in [6]. Also, a characteri-
zation was established in [12] for the existence of a one-to-many 3-DPC joining terminal sets in
the cube of a connected graph.

In this paper, we present a linear-time algorithm that builds, if exists, a one-to-many 3-DPC
joining two terminal sets in the cube of a connected graph. For this, we carefully and efficiently
select a spanning tree or a spanning unicyclic subgraph of the graph, for which another, simpler
one-to-many 3-DPC algorithm of ours that runs in time linear to the size of the graph is explored.

2. Preliminaries

For a positive integer d, the d-th power Gd of a graph G is the graph, defined over the same
vertex set as G, whose two vertices are adjacent to each other if and only if there exists a path
of length at most d in G joining them. If a graph H is the d-th power of G, i.e. H = Gd, then
G is called a d-th root of H. When d = 3, we call H and G the cube of G and a cube root of
H, respectively. Determining whether a graph has a d-th root is not easy in general [10]; for
some classes of graphs, polynomial-time algorithms to solve the root finding problem have been
investigated [2, 8]. Note that if a cube root G of a given graph H could be found in polynomial
time such that H = G3, then we can solve the one-to-many 3-DPC problem on the graph H also
in polynomial time by combining our algorithm, presented in this paper, that finds a one-to-many
3-DPC of G3 in linear time.

To understand the exact conditions for the cube of a connected graph to have a one-to-many
3-DPC joining given terminal sets, we first give some definitions: A cut vertex and bridge of a
graph are respectively a vertex and an edge whose removal increases the number of connected
components in the graph. A nontrivial bridge is a bridge both of whose endvertices have degrees
greater than one (refer to Fig. 1). Note that a bridge is trivial if any of its endvertices is of degree
one implying deleting the bridge leaves a one-vertex component in the graph. A vertex of G is
said to be a pure bridge vertex if each of its incident edges is a nontrivial bridge. Also, a set of
three mutually adjacent vertices, each having a degree of at least three, is called a pure bridge
triangle if every edge that is incident with exactly one of the triangular vertices is a nontrivial
bridge. In addition, NG[u], or N[u] if the graph G is clear in the context, denotes the closed
neighborhood of a vertex u, i.e. NG[u] = {u} ∪ {v ∈ V(G) : (u, v) ∈ E(G)}. Furthermore, we
define NG[W] =

⋃
w∈W NG[w] for W ⊆ V(G).

Theorem 1 ([12]). Given disjoint terminal sets S = {s} and T = {t1, t2, t3} of a connected graph
G, the cube G3 has a one-to-many 3-DPC joining S and T if and only if

C1: there exists no pure bridge vertex u in G such that T ⊆ NG[u] and s < NG[u], and
2
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Fig. 1: Some terminologies. The seven nontrivial bridges are marked in dotted lines. Also, there are three pure bridge
vertices v7, v8, and v15, and one pure bridge triangle {v9, v10, v14}.

C2: T does not form a pure bridge triangle in G such that s < NG[T ].

Note that the validity of the two conditions in the above theorem can be determined in linear
time basically by identifying all nontrivial bridges of the graph with a help of the biconnected
component algorithm [5]. Now, we describe two more theorems on the Hamiltonian properties
of the cube of a connected graph, which will play key roles in developing our algorithms.

Theorem 2 ([7, 16]). The cube of a connected graph is Hamiltonian-connected, i.e. every pair
of distinct vertices are joined by a Hamiltonian path.

Theorem 3 ([6, 9]). Given a pair of distinct vertices in a tree of order n, a Hamiltonian path
joining them in the cube of the tree can be found in O(n) time.

Finally, throughout this paper, we denote by Tu a tree rooted at vertex u. Also, P ◦ Q denotes
the concatenation of two paths P and Q, i.e. P ◦ Q = 〈u1, . . . , up, v1, . . . , vq〉 for P = 〈u1, . . . , up〉

and Q = 〈v1, . . . , vq〉.

3. Finding a one-to-many 3-DPC in the cube of a tree

In this section, we describe a linear-time algorithm for finding a one-to-many 3-DPC joining
disjoint terminal sets S = {s} and T = {t1, t2, t3} in the cube of a tree Ts rooted at the source
s. Throughout this section, when we refer to Theorem 1, we restrict our attention to the C1
condition only because the C2 condition is always valid for trees. Furthermore, since the validity
of the conditions can be decided in linear time with respect to the size of the graph, we only
handle the feasible case in which the C1 condition is satisfied, and thus a desired one-to-many
3-DPC exists. Note that every edge of a tree is a bridge; an edge incident with a leaf or incident
with the root having a single child is trivial whereas all other edges are nontrivial.

Before presenting the main algorithm of this section, we first solve a subproblem of finding
a special type of Hamiltonian path defined as follows: Given a tree Tu rooted at vertex u and
a prescribed child z of u, find a Hamiltonian path of T 3

u − u that runs from some vertex v to z
such that v is a child of u if u has a child that is a leaf, or a grandchild of u otherwise. Such
v–z Hamiltonian path always exists, and Algorithm 1 describes a way to find a desired path by
combining Hamiltonian paths in the cubes of the subtrees of Tu rooted at the children of u, where
the vertex v is determined differently whether u has a child that is a leaf or not. Note that this
algorithm uses Theorem 3, assuring that there is a function HP in TCUBE(T,u,v) that finds a

3



Algorithm 1: Finding a Hamiltonian path in T 3
u − u

1 Function HP in TCUBE-ROOT(Tu, z)

2 flag← false ; // a leaf child of u has not yet been found

3 if z is a leaf then P← 〈z〉; flag← true;
4 else P← HP in TCUBE(Tz,w, z) for a child w of z;
5 foreach child c of u other than z do
6 if c is a leaf then P′ ← 〈c〉; flag← true;
7 else
8 w← a child of c;
9 if flag = true then P′ ← HP in TCUBE(Tc, c,w);

10 else P′ ← HP in TCUBE(Tc,w, c);
11 P← P′ ◦ P ; // place the new path P′ in front of P
12 end
13 return P;
14 end

Hamiltonian path joining two distinct vertices u and v in the cube of a tree T in time linear to the
size of T .

Lemma 1. Let Tu be a tree rooted at vertex u. Then for a child z of u, HP in TCUBE-ROOT(Tu, z)
in Algorithm 1 finds a Hamiltonian path of T 3

u −u that runs from a vertex v to z where v is a child
of u if u has a child that is a leaf, or a grandchild of u otherwise. Furthermore, it runs in time
linear to the size of Tu.

Proof. The proof is obvious from Theorem 3. �

The main algorithm of this section that finds a one-to-many 3-DPC in T 3
s for a rooted tree Ts

and terminal sets S = {s} and T = {t1, t2, t3} is inherently recursive in that the given one-to-many
3-DPC problem is dissected into two subproblems: a Hamiltonian path problem and (recursively)
a one-to-many 3-DPC problem on a smaller graph, where the second subproblem is sometimes
replaced by a simple Hamiltonian path problem. The key to our algorithm is how to divide the
input graph T 3

s into a pair of cube graphs on which the two subproblems are solved respectively.
For this, define numSinks[u] for a vertex u to be the number of sinks that are proper descendants
of u, where it is trivial that numSinks[s] = 3 and numSinks[u] = 0 if u is a leaf. Now, from
all parents of the sinks, choose a pivot vertex x which has the smallest numSinks value, i.e.
numSinks[x] ≤ numSinks[x′] for all other parents x′ of sinks. Then, depending on the value
of numSinks[x], the pair of cubes we seek are either T 3

x − x and the cube of T ′s := Ts − (Tx − x),
or T 3

ti and the cube of T ′s := Ts − Tti for some sink child ti of x, as will be detailed below.
Our algorithm is as follows (refer to Fig. 2). First, consider the case of numSinks[x] = 1,

where the sink t1 is assumed to be a child of x. Let P be a v–t1 Hamiltonian path in T 3
x − x

found by the function HP in TCUBE-ROOT(Tx, t1), where, as noted earlier, v is either a child or
a grandchild of x depending on whether x has a child that is a leaf or not. Also, let T ′s denote
the subtree of Ts with all proper descendants of x being deleted, i.e. T ′s = Ts − (Tx − x). If x is
not a sink (Fig. 2(a)), we find a one-to-many 3-DPC joining {s} and {x, t2, t3} in the cube of T ′s
which exists because x, one of the three sinks, is a leaf of T ′s, thus satisfying the C1 condition of
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Fig. 2: Hybrid subcases in the description of Algorithm 2: (a) to (d) for numSinks[x] = 1, (e) and (f) for
numSinks[x] = 2, and (g) for numSinks[x] = 3.

Theorem 1. (In order to break the C1 condition, every sink must, at least, be either a pure bridge
vertex or adjacent to a pure bridge vertex, which cannot be true for a sink that is a leaf.) Then, a
desired one-to-many 3-DPC in T 3

s can be built by combining the s–x path and P.
If x happens to be a sink, consider the parent of x, named y, which exists since the pivot x is

not the root of Ts. If y is not a terminal (Fig. 2(b)), a desired 3-DPC can be built analogously
from P and a one-to-many 3-DPC in the cube of T ′s joining {s} and {y, t2, t3}. If y is a source
(Fig. 2(c)), then 〈s〉 ◦ P forms an s–t1 path, in which case it suffices to build s–t2 and s–t3 paths
from a t2–t3 Hamiltonian path in the cube of T ′s. If y is also a sink, meaning that {x, y} = {t2, t3},
t1, y ∈ N[x], and y also has a parent, named z (Fig. 2(d)), then x must have a child which is a
leaf; otherwise, x would be a pure bridge vertex breaking the C1 condition of Theorem 1 in Ts.
This implies that the start vertex of P, the v–t1 Hamiltonian path in T 3

x − x, may be reached from
z in T 3

s . Thus, if z is not a source, a desired DPC can be built from P and a one-to-many 3-DPC
joining {s} and {z, t2, t3} in the cube of T ′s; if z is a source, it can be constructed from P and a t2–t3
Hamiltonian path of the cube of T ′s.

Second, consider the other two cases of numSinks[x] ∈ {2, 3}, where at least two of the
three sinks are children of the pivot x (recall the choice of the pivot x). Let them be t1 and t2,
respectively. In particular, we assume t1 to be the sink that has a child if there is such one (this
choice of t1 will guarantee the existence of a one-to-many 3-DPC that we will seek in a subtree
later). Let P be a w–t1 Hamiltonian path of T 3

t1 produced by HP in TCUBE() if t1 has a child w;
P = 〈t1〉 otherwise. On the other hand, let T ′s be the subtree of Ts with the vertices of Tt1 being
deleted, i.e. T ′s = Ts − Tt1 .

If numSinks[x] = 2, x cannot be the source s, implying it has a parent, named y. There are
two subcases to consider. Assume x is not a sink (Fig. 2(e)). Then, for the sink set {x, t2, t3}, x
may not be a pure bridge vertex of T ′s such that x, t2, t3 ∈ N[x] and s < N[x] because otherwise
t1 as well as t2 would have a child (recall how t1 has been chosen), indicating x is a pure bridge
vertex of Ts such that t1, t2, t3 ∈ N[x] and s < N[x], breaking the C1 condition for Ts. Therefore,
there exists a one-to-many 3-DPC joining {s} and {x, t2, t3} in the cube of T ′s, which builds a
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Algorithm 2: Finding a one-to-many 3-DPC in the cube of a tree

1 Function 3-DPC in TCUBE(Ts, {s}, {t1, t2, t3})

2 x← a pivot vertex;
3 if numSinks[x]= 1 then // Assume t1 is a child of x.
4 P← HP in TCUBE-ROOT(Tx, t1);
5 T ′s ← Ts − (Tx − x);
6 if x is not a sink then u← x;
7 else if the parent of x is not a sink then u← the parent of x;
8 else u← the grandparent of x;
9 else // Assume t1 and t2 are children of x.

/* Assume further t1 has a child or t2 has no child. */

10 if t1 is a leaf then P← 〈t1〉;
11 else P← HP in TCUBE(Tt1 ,w, t1) for a child w of t1;
12 T ′s ← Ts − Tt1 ;
13 if numSinks[x]= 2 then
14 if x is not a sink then u← x;
15 else u← the parent of x;
16 else u← x; // numSinks[x]= 3

17 if u , s then
18 P′ ← 3-DPC in TCUBE(T ′s, {s}, {u, t2, t3});
19 P ← (P′ − P′) ∪ {P′ ◦ P}, where P′ is the s–u path in P′;
20 else
21 P′ ← HP in TCUBE(T ′s, t2, t3);
22 Transform P′ into a 2-DPC P′ joining {s} and {t2, t3};
23 P ← P′ ∪ {〈s〉 ◦ P};
24 return P;
25 end

desired 3-DPC together with the path P. If x is a sink, i.e. x = t3 as illustrated in Fig. 2(f), a
desired 3-DPC can be built using a one-to-many 3-DPC of the cube of T ′s joining {s} and {y, t2, t3}
if y , s (which is guaranteed to exist for the same reason as before), or using a t2–t3 Hamiltonian
path of the cube of T ′s otherwise. If numSinks[x] = 3, all the three sinks t1, t2, and t3 become
children of x (Fig. 2(g)). Then, similarly as before, a desired 3-DPC can be built using a one-
to-many 3-DPC of the cube of T ′s joining {s} and {x, t2, t3} if x , s (which also exists thanks to
the choice of t1), or using a t2–t3 Hamiltonian path of the cube of T ′s otherwise. The resulting
algorithm is now summarized in Algorithm 2.

Theorem 4. Given a tree of order n ≥ 4 and disjoint terminal sets S = {s} and T = {t1, t2, t3}
that satisfy the two conditions of Theorem 1, a one-to-many 3-DPC in the cube of the tree can be
found in O(n) time.

Proof. Basically, our recursive algorithm finds the answer by computing a Hamiltonian path
and a one-to-many 3-DPC in the cube of a subtree T ′s of Ts (or another Hamiltonian path). As
verified above, the one-to-many 3-DPC always exists in the cube of T ′s because the given terminal
sets satisfy the C1 condition of Theorem 1 for T ′s. Also, the Hamiltonian path(s) can be found
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correctly in linear time by Theorem 3 and Lemma 1. Therefore, the correctness of our algorithm
can be shown by induction on the number of vertices of Ts, and is omitted here. (Note that
the base case for a tree Ts with four vertices is trivial, and the inductive step for the tree Ts

having more than four vertices relies on the inductive hypothesis that the theorem is valid for its
subtree T ′s having a fewer number of vertices.) Time complexity-wise, the cost of maintaining
the numSinks values, which is essential for choosing the pivot vertex, must be analyzed: For the
initial tree Ts with n vertices, the entire array is initialized once in O(n) time before the algorithm
starts. Then, each time the algorithm is called recursively on a smaller tree T ′s, it is enough to
update the numSinks values for a constant number of vertices of T ′s. (For example, in the case
illustrated in Fig. 2(d) with T ′s = Ts − (Tx − x), it suffices to decrease by one the current value
for each of x, y, and the new terminal z.) This means that each pivot vertex can be selected in
constant time. Also, it is trivial that other minor operations is done in constant time. Therefore,
the run time T (n) of Algorithm 2 is max1≤n′<n{O(n′) + T (n − n′),O(n′) + O(n − n′)} + c for some
constant c, leading to T (n) ≤ 2cn − c. �

4. Finding a one-to-many 3-DPC in the cube of a connected graph

Now, we are ready to describe our linear-time algorithm for finding a one-to-many 3-DPC
in the cube of a connected graph G joining disjoint terminal sets S = {s} and T = {t1, t2, t3}.
Similarly as before, we assume that the two conditions C1 and C2 of Theorem 1 have been
validated in time linear to the size of G. The main idea of our algorithm is to extract a simple
subgraph from G, either a spanning tree or a spanning unicyclic subgraph, from whose cube a
desired one-to-many 3-DPC can efficiently be built for G3. In the following theorem, we show
that it is always possible to find such a spanning subgraph.

Theorem 5. Given a connected graph G having at least four vertices and disjoint terminal sets
S = {s} and T = {t1, t2, t3} that satisfy the two conditions of Theorem 1, there exists a rooted
spanning tree Tu of G such that T 3

u or (Tu + e)3 for some edge e ∈ E(G) \ E(Tu) admits a
one-to-many 3-DPC joining S and T .

Proof. Our proof proceeds by induction on the number of edges of G. Since the base case can be
proven trivially, we focus on the inductive step. If some sink ti is not a cut vertex of G, consider
a depth-first-search tree (a DFS tree in short) Tti rooted at ti. Then it is clear that the root ti has
only one child in Tti , and thus is connected to the rest of Tti via a trivial bridge, guaranteeing
the validity of the two conditions of Theorem 1 for Tti . Thus, T 3

ti (and thus G3) will admit a
one-to-many 3-DPC joining S and T . Thus hereafter we assume that every sink is a cut vertex of
G. Now, let H be the subgraph of G induced by the three sinks. Then there are four cases.

Case 1: |E(H)| = 1. Let Tu be a DFS tree of G containing the edge of H, which is easily built
by placing the edge in the front of the respective lists in the adjacency list representation of G.
Then, the sink that is not incident to the only edge of H may not be incident to the other sinks
in Tu, implying both C1 and C2 conditions are satisfied for Tu. (Recall that in order to break the
conditions, the three sinks must, at least, either belong to the closed neighborhood of a vertex or
form a triangle in the tree.) So T 3

u admits a desired one-to-many 3-DPC.
Case 2: |E(H)| = 2. Assume w.l.o.g. that E(H) = {(t1, t2), (t2, t3)}. Suppose an edge of H, say

(t1, t2), is not a bridge of G. The terminal sets still satisfy the C1 condition in the connected graph
G−(t1, t2) as a pure bridge vertex cannot include the three sinks in its closed neighborhood. They
also satisfy the C2 condition in G − (t1, t2) as the sinks even may not form a triangle. Thus for
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Fig. 3: Two hybrid subcases in the proof of Theorem 5.

G − (t1, t2), which has one fewer edges than G, the theorem holds by the inductive hypothesis,
which is also true for G. (Recall that the proof is inductive on the number of edges of the graph,
and the current case is reduced to Case 1 of |E(H)| = 1 in the smaller graph.)

So, we assume for this case that both (t1, t2) and (t2, t3) are bridges, which are also nontrivial
because all the sinks are cut vertices as assumed. If s ∈ N[t2], the validity of the two conditions
clearly continues to be true in any spanning tree containing (s, t2) as well as the two edges of
H. Now, assume further s < N[t2]. Note that t2 cannot be a pure bridge vertex of G by the
hypothesis of the theorem, implying, in G, either (i) some vertex adjacent to t2 has degree 1 or
(ii) some edge incident with t2 is not a bridge. For the subcase (i), it suffices to build a spanning
tree that contains the edges of H. For the subcase (ii), we build a spanning unicyclic subgraph
whose cube admits a wanted disjoint path cover. Performing a depth-first search from t2 returns
a DFS tree Tt2 , in which there is at least one back edge (z, t2) from a vertex z to t2. (Note that a
back edge is an edge from a vertex to one of its ancestors in the tree produced by a DFS.) Then,
since (t2, t1) and (t2, t3) are nontrivial bridges, z cannot belong to the rooted subtrees Tt1 and Tt3 of
Tt2 . Assuming safely s does not belong Tt1 (we can always name the sink whose corresponding
subtree does not contain s as t1), let P be a w–t1 Hamiltonian path of T 3

t1 for some child w of
t1 (see Fig. 3(a)). Then, based on the fact that (z,w) is an edge of the cube of the spanning
unicyclic subgraph G′ := Tt2 + (z, t2), a one-to-many 3-DPC in the cube of G′ can be built from
P and a one-to-many 3-DPC of the cube of Tt2 − Tt1 joining {s} and {z, t2, t3} if z , s; from P and
a t2–t3 Hamiltonian path of the cube of Tt2 − Tt1 otherwise.

Case 3: |E(H)| = 3. By the hypothesis of the theorem, {t1, t2, t3} does not form a pure bridge
triangle in G such that s < N[{t1, t2, t3}]. Thus, there must be a sink, say t1, such that (i) no edge
other than (t1, t2) and (t1, t3) is incident with t1, (ii) there is an edge incident with t1 other than
(t1, t2) and (t1, t3) that is not a nontrivial bridge, or (iii) s ∈ N(t1). For the graphs G − (t1, t2) for
the subcase (i) and G − (t2, t3) for the subcases (ii) & (iii), the terminal sets still satisfy the C1
condition (trivially C2 too), which recursively sends us to Case 2 of a graph having fewer edges
than G.

Case 4: |E(H)| = 0. Since, in this case, a subgraph of G may break the C1 condition only,
we focus on the necessary condition that a vertex u exists such that {t1, t2, t3} ⊆ N[u]. If no such
vertex exists, any spanning tree of G will be good. Hence, for the rest of the proof we assume
that there exists such a vertex u. There are two cases. First, if some edge joining u and a sink,
say (u, t1), is not a bridge, we find a DFS tree Tt1 in G − (u, t1) starting from t1. Then, it is
easy to see that any other vertex v cannot satisfy the necessary condition in Tt1 , indicating Tt1 is
the spanning subgraph we are looking for. Second, if the edges from u to the sinks, i.e. (u, t1),
(u, t2), and (u, t3) are all bridges, in particular, nontrivial because the sinks are all cut vertices as
assumed in the beginning of the proof, we build a DFS tree Tu starting from u, where a back
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Fig. 4: Examples of hard-to-handle cases. Removing any edge of the triangle 〈t1, u, v〉 in each graph results in violating
the conditions C1 and C2, respectively.

edge to the root u might has been found during the depth-first search. If no such back edge has
been found, implying every edge incident with u is a bridge, then, to break the C1 condition for
G, either a trivial bridge must be incident with u or s ∈ N[u]. In either case, both C1 and C2
conditions are also valid for Tu. Finally, suppose a back edge to u, say (z, u) has been found (see
Fig. 3(b)). Again, assuming safely s does not belong to the subtree Tt1 of Tu, rooted at t1 (we
can always name the sink whose corresponding subtree does not contain s as t1), we find a w–t1
Hamiltonian path P of T 3

t1 for some child w of t1. Then a desired disjoint path cover in the cube
of the spanning unicyclic subgraph Tu + (z, u) can be built from P and a one-to-many 3-DPC of
the cube of Tu − Tt1 joining {s} and {z, t2, t3} if z , s; from P and a t2–t3 Hamiltonian path of the
cube of Tu − Tt1 otherwise. This completes the entire proof. �

Remark. Sometimes, the edges of a spanning tree Tu of G, however carefully selected, do not
provide sufficient connectivity to guarantee the existence of a one-to-many 3-DPC in T 3

u (see
Fig. 4 for some examples). Even in that case, however, an extra edge is always enough to resolve
the problem.

The proof of Theorem 5 is constructive in nature. Thus, it provides an effective algorithm
3-DPC in GCUBE for our problem, as summarized in Algorithm 3, where the function DFS(G, x)
finds a DFS tree Tx rooted at x and the endvertex z of a back edge (z, x), if any found.

Theorem 6. Given disjoint terminal sets S = {s} and T = {t1, t2, t3} in a connected graph G
with n vertices and m edges, we can both determine the existence of a one-to-many 3-DPC of G3

joining S and T and find one if any exists in O(n + m) time.

Proof. If we represent the graph G using an adjacency list structure, all bridges and cut vertices
of G can be identified in O(n+m) time using the bicomponent algorithm, from which the validity
of the C1 and C2 conditions may be determined also in O(n + m) time. On the other hand, the
correctness of Algorithm 3, 3-DPC in GCUBE(), is direct from Theorems 3, 4, and 5. The time
complexity is dominated by a recursive function call, the function calls to HP in TCUBE() and
3-DPC in TCUBE(), both of which run in O(n) time, and other basic operations, all of which can
be done in linear time: (i) DFS() that returns a DFS tree, a back edge to the root, if any, and an
indicator on s < V(Tt1 ), (ii) finding a spanning tree containing a constant number of prescribed
edges, (iii) transforming a tree into Ts, (iv) deleting an edge from G, (v) selecting an edge (ti, t j)
in Step 15, (vi) choosing a vertex u in Step 18, if any, (vii) answering the question in Step 29,
and finally (viii) transforming a path P′ into a one-to-many 2-DPC P′ in Step 41. Therefore,
Algorithm 3 runs on an arbitrary connected graph and terminal sets in time

T (n,m, |E(H)|) ≤
{

T (n,m − 1, |E(H)| − 1) + O(n + m) if |E(H)| ≥ 2,
O(n + m) otherwise,

which is easily shown to be O(n + m). �
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Algorithm 3: Finding a one-to-many 3-DPC in the cube of a graph

1 Function 3-DPC in GCUBE(G, {s}, {t1, t2, t3})
2 if a sink ti is not a cut vertex then
3 Convert a DFS tree rooted at ti into a tree Ts rooted at s;
4 return P ← 3-DPC in TCUBE(Ts, {s}, {t1, t2, t3});
5 H ← the subgraph of G induced by {t1, t2, t3};
6 switch |E(H)| do
7 case 1 do // Assume E(H) = {(t1, t2)}.
8 Convert a spanning tree that contains (t1, t2) into a tree Ts;
9 return P ← 3-DPC in TCUBE(Ts, {s}, {t1, t2, t3});

10 case 2 do // Assume E(H) = {(t1, t2), (t2, t3)}.
11 if an edge (t2, t j) joining sinks is not a bridge then
12 return P ← 3-DPC in GCUBE(G − (t2, t j), {s}, {t1, t2, t3});
13 return P ← BuildDPC(G, t2, {s}, {t1, t2, t3}); // Fig. 3(a)

14 case 3 do
15 Let (ti, t j) be the edge chosen in the proof of Theorem 5;
16 return P ← 3-DPC in GCUBE(G − (ti, t j), {s}, {t1, t2, t3});
17 case 0 do
18 if there is no vertex u such that {t1, t2, t3} ⊆ N[u] then
19 Build a spanning tree Ts rooted at s;
20 return P ← 3-DPC in TCUBE(Ts, {s}, {t1, t2, t3});
21 Pick up a vertex u such that {t1, t2, t3} ⊆ N[u];
22 if an edge (u, ti) joining u and a sink is not a bridge then
23 Convert a DFS tree Tti of G − (u, ti) rooted at ti into Ts;
24 return P ← 3-DPC in TCUBE(Ts, {s}, {t1, t2, t3});
25 return P ← BuildDPC(G, u, {s}, {t1, t2, t3}); // Fig. 3(b)

26 end
27 end

28 Function BuildDPC(G, x, {s}, {t1, t2, t3})
29 if s ∈ N[x] or v ∈ N[x] for some v whose degree is 1 then
30 Build a spanning tree containing the edges of H and (s, x), if any;
31 Convert the spanning tree into a tree Ts rooted at s;
32 return P ← 3-DPC in TCUBE(Ts, {s}, {t1, t2, t3});
33 (Tx, z)← DFS(G, x); // (z, x) is a back edge; assume s < V(Tt1 )
34 P← HP in TCUBE(Tt1 ,w, t1) for a child w of t1;
35 Convert Tx − Tt1 into a tree T ′s rooted at s;
36 if z , s then
37 P′ ← 3-DPC in TCUBE(T ′s, {s}, {z, t2, t3});
38 return P ← (P′ − P′) ∪ {P′ ◦ P}, where P′ is the s–z path in P′;
39 else
40 P′ ← HP in TCUBE(T ′s, t2, t3);
41 Transform P′ into a 2-DPC P′ joining {s} and {t2, t3};
42 return P ← P′ ∪ {〈s〉 ◦ P};
43 end
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Remark. For given terminal sets S = {s} and T = {t} in G, a one-to-one 3-DPC of G3 joining
S and T can also be built in linear time using 3-DPC in GCUBE(). According to the proof of
Theorem 2 in [12], it is possible to find two vertices t2 and t3 with (t2, t), (t3, t) ∈ E(G3) in linear
time such that G3 admits a one-to-many 3-DPC joining {s} and {t, t2, t3}. Then, it simply remains
to extend its s–t2 and s–t3 paths to t, respectively, to obtain a desired one-to-one 3-DPC.
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