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Figure 1: Comparison of rendering results inside the central pixel region (Interior). Sufficient pixel sampling is essential for
ray tracing, especially when the rendered images are displayed on head-mounted displays. We compared the image quality of
different sampling techniques within a field of view of 60.0◦ in diameter (indicated by the yellow circle) that included the foveal (6.6◦),
parafoveal (11.0◦), perifoveal (24.2◦), and near-peripheral (60.0◦) visual fields. The leftmost image was rendered by a Whitted-style
ray tracer that used 36 stratified samples per pixel to generate a ground truth image. We then evaluated the performance of three ray
tracers that were based on the regular sampling with one sample per pixel, the selective supersampling by Jin et al. [8], and our
selective foveated supersampling, respectively. The timings to render stereo images of 1280×1440 pixels per eye for an Oculus Rift S
headset were measured on a PC with two NVIDIA GeForce RTX 2080 Ti GPUs. Both Jin et al.’s and our techniques subdivided each
image pixel into 2×2 subpixels for adaptive supersampling. Jin et al.’s method always took four samples per subpixel selectively,
achieving a pixel sampling rate as effective as up to 16 samples per pixel. On the other hand, ours varied the selective subpixel
sampling rate from 9, 4, and 2, to 1 samples per subpixel in the four-component visual fields (enumerated from the innermost one)
so that effective pixel sampling rates as high as 36, 16, 8, and 4 were achieved accordingly. A comparison between the three
(cropped) difference images against the ground truth visually demonstrates the effectiveness of our method, where it was also
confirmed by measuring the peak signal-to-noise ratio (PSNR) against the ground truth, which resulted in (29.36,27.54,29.76,32.44),
(38.27,36.84,39.34,41.89), and (45.96,36.70,37.58,35.75), respectively, in the four visual fields (dB, enumerated from the innermost
one). As expected, our method could focus computational effort on the most important foveal (and parafoveal) region for minimizing
visual artifacts in the neighborhood of the fixation point while achieving high rendering speed (16.9 ms). On the other hand, Jin et
al.’s method offered uniform sampling quality across all visual fields, which tended to be better than ours with increasing eccentricity
outside the parafovea. However, it came at the cost of increased rendering time (72.4 ms), and the visual difference between the two
results outside the parafoveal visual field was hardly perceptible on the tested headset.

ABSTRACT

Although ray tracing produces significantly more realistic images
than traditional rasterization techniques, it is still considered compu-
tationally burdensome when implemented on a head-mounted dis-
play (HMD) system that demands both wide field of view and high
rendering rate. A further challenge is that to present high-quality
images on an HMD screen, a sufficient number of ray samples
should be taken per pixel for effective antialiasing to reduce visu-
ally annoying artifacts. In this paper, we present a novel foveated
real-time rendering framework that realizes classic Whitted-style
ray tracing on an HMD system. In particular, our method proposes
combining the selective supersampling technique by Jin et al. [8]
with the foveated rendering scheme, resulting in perceptually highly
efficient pixel sampling suitable for HMD ray tracing. We show that
further enhanced by foveated temporal antialiasing, our ray tracer
renders nontrivial 3D scenes in real time on commodity GPUs at
high sampling rates as effective as up to 36 samples per pixel (spp) in
the foveal area, gradually reducing to at least 1 spp in the periphery.

Index Terms: Computing methodologies—Computer graphics—
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tion—Visualization technique

1 INTRODUCTION

Achieving photorealistic rendering in real time on high-quality, head-
mounted displays (HMDs) with a wide field of view is a challenging
topic in the fields of virtual reality (VR) and augmented reality (AR).
In order to provide vivid immersive experiences for users of VR/AR
applications, a real-time renderer needs to satisfy the fundamental
requirements of photorealistic real-time rendering. First, it should
implement a methodology that is faithful to the theory of the render-
ing equation [9] (and, in fact, the volume rendering equation [10],
too), from which various realistic rendering techniques have been
derived in computer graphics. Second, the adopted rendering al-
gorithm should be efficient enough to guarantee sufficiently high
speeds to meet the display refresh rate of HMDs (e.g., 80 Hz or
above), which is particularly important for avoiding motion sickness.
Unfortunately, these two key elements of photorealistic VR/AR ren-
dering are mutually exclusive, demanding a balance between quality
and speed in developing a practical rendering algorithm.

Ray tracing is a good candidate for simulating the rendering equa-
tions, as it allows natural implementation of Monte Carlo methods
that may effectively simulate the light transportation within a given
scene. Unlike the rasterization-based renderers that only rely on
approximate, often inaccurate, algorithms, Monte Carlo ray tracers
compute various advanced rendering effects in a physically correct
manner, which is an essential element of photorealistic rendering.
However, due to the limited capability of current hardware technol-
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ogy, full Monte Carlo ray tracing is impractical for display systems
such as HMDs that require high pixel densities and frame rates. Even
the classic Whitted-style ray tracing [36], which is only capable of
creating such effects as shadow and specular reflection/refraction, is
still regarded as a highly expensive rendering mechanism for VR/AR
applications. This is truer if the image pixels must be supersampled
at high sampling rates to reduce visual artifacts in the rendering
results. To alleviate the computational burden of the rendering task
beyond available computing power, the idea of perception-driven
rendering has frequently been explored in computer graphics. It is
based on an understanding of the characteristics and limitations of
the human visual system. Above all, the acuity of human vision,
that is, the ability of the human eye to resolve the detail of what
it sees, is spatially variable around the center of the gaze. It is at
maximum level only inside a very small central foveal region, and
falls off dramatically as the visual eccentricity, that is, the angular
distance from the eye’s center of fixation, grows. Therefore, a variety
of image synthesis techniques exploiting such properties of human
vision have naturally been developed targeting display systems such
as HMDs or wide-screen projection systems, especially those inte-
grated with eye-tracking capability. In this computational scheme,
called the foveated rendering or the gaze-contingent rendering, the
computational resources are adaptively allocated to the image pixels
for a perceptually optimized rendering in such way that those in the
central vision are rendered with greater detail and quality than those
in the peripheral vision, which is largely imperceptible.

In this work, we present a novel framework for foveated ray
tracing that implements the full Whitted-style ray tracer. Our method
aims to provide spatial sampling rates on current commodity GPUs,
which are as effective as up to 36 samples per pixel (spp) in the foveal
region, progressively decreasing to at least 1 spp in the peripheral
region. To realize such high pixel sampling in real-time ray tracing,
we combine the selective supersampling technique by Jin et al. [8]
with the foveated rendering scheme. By coupling these two methods,
a perceptually very efficient pixel sampling suited well for high-
performance stereo HMD rendering becomes possible. We also
propose an antialiasing technique to reduce temporal visual artifacts
so that high-quality images can be presented on HMDs in real time.

By applying the selective foveated sampling technique to full
Whitted-style ray tracing, the proposed rendering scheme is capable
of creating such pleasant lighting effects as reflection and refraction
optically correctly with reduced visual artifacts, which is difficult
to produce using traditional rasterization-based methods. In particu-
lar, by adopting the selective supersampling scheme, it is possible
to emphasize the rendering features that should be rendered with
more care. More importantly, our method enables control of the
pixel sampling density intuitively across the visual field through a
user-defined foveal function. We demonstrate the effectiveness of
the proposed ray-tracing method by efficiently synthesizing stereo
images for nontrivial 3D scenes on consumer-grade HMD systems.

2 PREVIOUS WORK

Foveated rendering represents a class of gaze-contingent rendering
methods that achieve computational efficiency by exploring the es-
sential property of the human visual system, whose acuity is maximal
at the fixation and falls off rapidly with increasing eccentricity (refer
to the survey article [35] for notable approaches). One of the earliest
attempts at foveated rendering is found in the volume rendering
algorithm of Levoy and Whitaker [15], where the sampling density
in both image and volume space was determined adaptively as a
function of visual acuity. The gaze-aware, level-of-detail techniques
were also applied to the efficient rendering of polygonal models,
e.g., [18,21,33]. For effective foveated rendering on a raster graphics
system, Guenter et al. [7] rendered three layers of image with pro-
gressively larger visual fields but lower sampling rates, and blended
them into a final image. A more efficient, single-pass implemen-

tation of the method was possible through coarse pixel shading by
Vaidyanathan et al. [29], supporting variable shading rates in a raster-
ization pipeline while keeping the visibility sampling rate fixed. The
perceived visual quality from these methods was then improved by
Patney et al. [22] via a carefully designed temporal antialiasing tech-
nique. Applying an effective perceptually adaptive sampling pattern
is important in foveated rendering. Stengel et al. [28] proposed a
deferred-shading algorithm that performs costly shading only for the
pixel samples chosen by a gaze-contingent, stochastic probability
function and efficiently interpolates the colors for the remaining pix-
els. Meng et al. [16] also presented a two-pass rendering algorithm
using an easily controllable sampling pattern created by combining
a polynomial kernel function with the log-polar mapping.

Unlike the rasterization-based methods, an image-space rendering
algorithm such as a ray-tracing algorithm enables a more straight-
forward way of foveated pixel sampling and shading. Weier et
al. [34] cast rays through a set of pixels stochastically sampled using
a piecewise-linear function approximating the hyperbolic falloff of
visual acuity. The missing pixel colors in the screen were then re-
constructed using extra information from a lower-resolution, support
image or reprojected frames. Fujita and Harada [5] also distributed
sample points on the image plane using a simple acuity function,
and the ray-traced results from the k-nearest neighbor samples were
blended for each image pixel. Siekawa et al. [27] used a triangular
mesh generated from foveated ray samples, and reconstructed a final
image by drawing the triangles. In developing a real-time foveated
path tracer, Koskela et al. [13] improved the log-polar distribution
to better reflect the visual acuity function. In their method, the ray
sampling and denoising were performed in what is called the visual-
polar space, and the resulting rendering image was mapped to a final
image in Cartesian space. Recently, Peuhkurinen and Mikkonen [23]
showed the possibility of foveated ray tracing for a mixed-reality
headset, although only simple scenes were rendered.

While cost effective, the perception-driven, foveated rendering
method inevitably introduces noticeable aliasing artifacts in the pe-
riphery due to insufficient sampling. Reducing temporal flickering
is particularly necessary in the periphery because human peripheral
vision is especially sensitive to the temporal alias. Smooth blending
of shaded colors of neighboring pixels was basically used for filling
in missing areas or resampling between different spaces. In addi-
tion, applying a low-cost temporal filter such as those developed for
real-time path tracers, e.g., [12, 14, 25], was shown to be effective
in reducing temporal flickering in the peripheral vision [13]. The
idea of reprojection (also called image warping), whereby rendering
information is recycled from previous frames (refer to such applica-
tions as in, e.g., stereoscopic rendering [26,37]), was also effectively
applied in order to improve the perceived quality of rendering both
within the rasterization [4, 7] and ray-tracing [34] frameworks. Fi-
nally, a different approach of neural reconstruction was proposed by
Kaplanyan et al. [11] to reduce visual artifacts in the periphery.

3 SELECTIVE SUPERSAMPLING FOR RAY TRACING

In this section, we briefly explain the selective adaptive supersam-
pling technique that was proposed by Jin et al. [8] for efficient
real-time ray tracing. The key idea of this adaptive pixel sampling
method is to first gather both image- and object-space attributes of
image pixels at their centers in a preliminary ray-tracing step and
exploit them for determining where to take more ray samples in each
pixel region based on the criteria selectively set with respect to a
collection of rendering elements.

Table 1 lists the two groups of pixel attributes that were considered
in their implementation. The first group consists of a single image-
space attribute, which is the ray-traced, shaded color. This attribute
is the most fundamental, in that it is referred in the color disparity
test that finally decides if a subpixel area of pixel needs more ray
samples. The second group of attributes are called the geometry



attributes because they are collected at the surface locations in 3D
space that are hit by rays. In order to balance between maximizing
antialiasing effects and minimizing additional rendering costs, they
collected the geometry attributes only at the first hit points of the
primary rays of pixels and additionally, the surface points intersected
by the secondary, reflection/refraction rays if they are generated at
the first hits. Four different types of geometry attributes are gathered
at each surface point as shown in Table 1, each of which is deeply
related to the visual artifacts frequently generated by ray tracing.

Table 1: List of pixel attributes gathered during the presampling stage.
By adjusting the threshold values, precious computing time can selec-
tively and adaptively be distributed to desired rendering features for
effective antialiasing during ray tracing.

Sampling location Attribute Threshold

Image space Pixel center Color reference τcol

Object space

Primary ray
hit point

Object ID τpoid

Surface normal τpsn

Shadow count τpsc

Texture existence τpte

Secondary
ray hit
point

Object ID τsoid

Surface normal τssn

Shadow count τssc

Texture existence τste

(a) Test against three
neighboring pixels

(b) Adaptive supersampling
according to the disparity test

Figure 2: Subpixel disparity test and adaptive pixel sampling. (a) For
a subpixel, for instance, one marked by NW, the attributes of the pixel
that it belongs to are compared with those of the three surrounding
neighbor pixels. (b) Depending on the result of the test, extra rays are
shot in the problematic subpixel area. Whereas the shaded color at
the pixel center was simply transferred to the non-problematic subpixel
in the original work of Jin et al. [8], our implementation used the color
linearly interpolated from those of the four surrounding pixels, tending
to reduce visual artifacts further.

For efficient implementation on a GPU, each image pixel was
partitioned into four equal-sized subpixels, against each of which
a two-step disparity test was carried out independently to decide
if the corresponding subpixel region needs extra sampling. For
a test over a given subpixel, the attributes of the pixel it belongs
to were compared with those of three neighboring pixels whose
locations are determined with respect to the subpixel’s position (see
Fig. 2(a)). Depending on the test result, the presampled pixel color
was used for the current subpixel if no disparity was found, or four
additional samples were taken in the problematic subpixel by firing
corresponding rays otherwise (see Fig. 2(b)). After all extra ray-
tracing computations were completed, the resulting shaded colors
were blended with proper weights.

The key to this selective supersampling technique lies in the mech-
anism of the two-step disparity test. Before rendering starts, the user
selectively and adaptively sets the threshold values in Table 1 accord-

ing to the importance of respective rendering features to be reflected
in the process of supersampling. During rendering, the first step de-
termines the threshold τsel that will be actually employed in the color
disparity test in the next step. For a given subpixel, feature-to-feature
comparisons were first done between its pixel and three surrounding
neighbors. When discordance is detected for at least one geometry
attribute, τsel is set to the minimum value of the thresholds of the
disagreeing attributes. Otherwise, τcol , the threshold of the color
reference attribute, is simply used for τsel . In the second step, the
final color disparity test is carried out with respect to the color refer-
ence attribute using the selectively chosen threshold τsel , where the
contrast measure, adopted by Mitchell [17], was used for this color
comparison with threshold vector (τsel ·1.36,τsel ·1.02,τsel ·2.04).
Note that the two-step subpixel test enables the user to allocate rel-
atively more computational effort to selectively chosen rendering
features by setting their thresholds to smaller values, efficiently re-
ducing the visual artifacts as intended to the extent that time permits.

4 OUR SELECTIVE FOVEATED RAY TRACING ALGORITHM

The proposed ray-tracing scheme specially designed for high-quality
HMD rendering partitions the image space into two parts, called
the central and peripheral pixel regions. The central pixel region
corresponds to the visual field of about 60 degrees in diameter from
fixation, for which a sophisticated ray-tracing algorithm is applied
to create a high-quality foveated image sampled with rate of up to
36 rays per pixel around the fixation point. On the other hand, our
method guarantees the quality of the Whitted-style ray tracing taking
one sample per pixel in the peripheral pixel region, where visual
artifacts may occur due to insufficient pixel sampling, but they are
hardly perceptible on the HMDs. Before presenting our ray-tracing
scheme, we first describe how these two regions are defined.

4.1 Foveation-based image space partition
Light enters the eye through the pupil and projects onto the retina to
create an image. The (anatomical) macula or macula lutea is an oval-
shaped pigmented area near the center of the retina of the human
eye, providing central, high-resolution color vision for humans [6].
Located in the center of the macula, the fovea, approximately 1.5 mm
wide and corresponding to approximately 5.0◦ of the visual field, is
filled with closely packed cones, which are photoreceptor cells on
the retina surface linked to clear color vision under bright light. Most
densely packed with the cone cells, the fovea area is responsible
for the highest visual acuity in time and space. On the macula
region, it is surrounded by the parafovea (approx. 2.5 mm/9.0◦) and
the perifovea (approx. 5.5 mm/17.0◦). The retinal tissue extends
beyond the macula where another type of photoreceptor, i.e., rods,
provides peripheral vision, perceiving monochromatic shades of
gray and movement in low-light conditions.

The density of cones is closely related to visual acuity, which is a
measure of our ability to resolve small details. According to Curcio
et al.’s study on photoreceptor cells [3], the peak foveal cone density
falls off steeply on the macula with increasing visual eccentricity.
While the foveal center provides the maximum resolving power for
the eye, visual acuity is reduced by more than 75% at the boundary
of the fovea. Special effort should thus be made to prevent aliasing
in a ray-traced image in the pixel area corresponding to the foveal
vision field. Peripheral vision is also a vital part of our vision,
enabling us to sense objects and movement in the peripheral visual
field even under dim light. However, central visual acuity is clearly
more important than peripheral sensitivity when looking at a virtual
world through various display devices, including head-mounted
ones. Therefore, to achieve frame rates sufficient for the refresh
rate of current VR displays (80 Hz or above), it is necessary to
concentrate the computational effort for effective antialiasing in
the central visual field while maintaining a minimum quality of
rendering in the peripheral visual field.



Fig. 3 illustrates how the image space for each eye is subdivided
in our work with respect to increasing eccentricity. First, the pixel
regions corresponding to the fovea, parafovea, and perifovea in the
macula are defined by the three eccentricity parameters: e f , ep, and
em. According to the width of the three regions described above, they
match 2.5◦, 4.5◦, and 8.5◦, respectively. Note that the distribution of
cone and rod cells on the retina is variable between individuals [3],
and thus different sets of threshold values have been adopted in
related work. For instance, in the design of foveated contact lens
displays, Chen et al. [2] set e f , ep, and em to 3.3◦, 5.5◦, and 12.1◦,
respectively. Our foveated ray-tracing system also employs these
conservative parameters (unless mentioned otherwise) to guarantee
a minimum quality of ray tracing within the central visual field.

Figure 3: Partition of image space by visual eccentricity. For each eye
of the HMD device, the image space spans the visual field defined by
an eccentricity parameter emax. In our foveated ray tracing, the central
pixel region, on which computational effort is focused, conservatively
includes the near periphery in addition to the fovea, parafovea, and
perifovea of the macula. The remaining area in the image space for
an eye is treated as the peripheral pixel region.

Second, among the remaining image pixels corresponding to the
peripheral vision, those in the near periphery, determined by the
eccentricity parameter enp, are handled with more care for smooth
transition from the central to peripheral zones. enp is also control-
lable by a user where we find 30◦ (the visual field of 60◦ in diameter)
to be sufficient for preventing perceptually annoying artifacts in near-
peripheral vision. Note that for each eye, our ray-tracing system
renders an image with a square field of view circumscribing the vi-
sual field determined by another eccentricity parameter emax. For the
Oculus Rift S headset used for experiment in this work, an OpenVR
tool indicates that its field of view is 90◦ horizontally and 94◦ ver-
tically [30]. Therefore, we set emax to 45◦ for the full resolution
2560× 1440 of the device, meaning the pixel resolution of each
eye’s image space for ray tracing is 1280×1440.

4.2 An overview of our algorithm

Fig. 4 presents an overview of our selective foveated ray-tracing
pipeline, where stereo images are synthesized independently on a
GPU or GPUs for input camera poses detected in current time frame.
When the rendering starts for each eye, the image pixels are first
sampled at their centers to gather the necessary pixel attributes as
described in Section 3. Unlike the implementation of Jin et al. [8],
we take an approach of hybrid ray tracing such as [1], combining
deferred shading (Boxes A-1 and A-2) and ray tracing (Box A-3),
where the OpenGL rendering pipeline speeds up the first two sub-
steps markedly. Also, the shadow attributes are computed differently
in the central and peripheral pixel regions, as will be described
shortly. The obtained color reference attribute, which is the result
of Whitted-style ray tracing with one ray sample per pixel, forms
the rendering image for the peripheral pixel region. On the other
hand, further processing continues to enhance the image quality in
the central pixel region as follows. First, based upon the collected

pixel attributes, the pixel reusability test is performed (Box B) for
pixels in the central pixel region to speed up the rendering further,
where the surface point visible through each pixel, that is, the first
hit of each pixel in the scene, is back-projected to the image plane
of the immediately preceding time frame, determining if the pixel
color from the last frame may be reused for the current pixel without
incurring costly ray-tracing computation. For pixels that pass the
pixel reusability test (Box C), their colors are simply copied from
those of the corresponding pixels in the previous frame.

Figure 4: Our selective foveated ray tracing pipeline. The same ray
tracing computation is performed independently for each eye.

By contrast, for each image pixel that fails the test, the selective
foveated ray-tracing computation is carried out. First, the two-step
disparity test is performed for each of the four subpixel areas as in [8]
to find out if additional ray samples should be taken there (Box D-1).
In this inspection process, however, we use a modified threshold in
the color disparity test of the second substep so that the decision
can be made foveatedly, relaxing the test condition gradually with
increasing eccentricity. Next, extra rays are shot in a stratified jittered
fashion in each problematic subpixel area, where a different number
of ray samples per subpixel is employed in decreasing manner to
each of the four-component areas of the central pixel region (Box
D-2). Then, the shaded ray colors are accumulated with proper
weights to their respective pixels to complete an image. In the
final step, the shaded pixel colors of the image are blended with
those of the preceding frames to reduce any possible temporal visual
artifacts (Box E). For this temporal antialiasing, the current pixel is
again back-projected to a few previous frames, and the colors of the
corresponding pixels that satisfy a given condition are combined to
get the final pixel color of the current frame.

4.3 Step 1: Pixel attribute gathering

In order to efficiently collect the pixel attributes at their centers,
we perform a deferred-shading-assisted ray tracing in contrast to
the method of Jin et al. [8], which relied on the standard recursive
ray tracing. (Please see again the attributes handled in the selective
ray tracing in Table 1.) The input 3D scene is first rendered using
OpenGL with shadow mapping (Box A-2 in Fig. 4), storing into
four texture images the intermediate pixel information that describes
several rendering properties at the first hits of primary rays. In our
implementation, the pixel color due to local illumination is stored
in a uchar4 texture; the position (float3) and the object ID (float)
of the visible point in a float4 texture; the surface normal (float3)
and shadow count (float) in a float4 texture; and the reflection and
transmission coefficients (float2), the refractive index (float), and the
texture existence (float) in a float4 texture.

To refine the shadow from the OpenGL rendering and evaluate
the shadow count in the central pixel region, shadow rays are fired to-
ward lights from each first hit of the central pixels in a CUDA-based
ray tracer (Box A-3). (The shadow count is needed for shadow an-
tialiasing only for the pixels in the central region.) Also, if each first-
hit surface of both central and peripheral pixels is either reflective or



transmissive, the respective secondary ray is generated for recursive
ray tracing, computing the radiance of incoming light (for both the
central and peripheral pixels) as well as gathering the four geometry
attributes at the secondary ray-hit points in additional two float4
textures (for the central pixels only). The results of these additional
computations on CUDA are then reflected in the local colors, com-
pleting the color reference attributes of all pixels. Note that our
hybrid ray tracing accelerates the pixel-attribute gathering process
by handling the primary (for all pixels) and shadow (for peripheral
pixels) rays on the efficient rasterization pipeline of OpenGL, where
the shadow map generation is done in the preprocessing stage (Box
A-1) only when the lighting parameters change. See Fig. 5.

(a) Example 1 (b) Example 2

Figure 5: Hybrid generation of shadow effects (Interior). Two sam-
ple images of the color reference attribute collected with the eye
fixated at the center of the screen are shown, where the yellow circle
marks the boundary between the central and peripheral pixel regions.
The shadows were generated by the CUDA ray tracer in the central
region and by the OpenGL rasterization pipeline in the peripheral
region. (a) Usually, the shadows in the two parts were well aligned to
each other along the boundary circle, making it difficult to distinguish
them from each other. (b) Aliasing in the shadows was occasionally
observed in the peripheral pixel region due to the limited resolution
of the shadow maps. However, we rarely recognized such aliases on
the tested HMD, as they are outside the near-peripheral vision.

4.4 Step 2: Pixel reusability test
In the relatively less important peripheral pixel region, our renderer
shades the image pixels using both forward rasterization, enabled
with shadow mapping, plus backward reflection/refraction ray trac-
ing with a sampling rate of one ray per pixel, which guarantees
the minimum quality of foveated rendering. On the other hand, in
the central pixel region, a sophisticated ray-tracing calculation is
carried out, where the pixel sampling rate varies adaptively across
the image area. In fact, despite our efforts for efficient ray tracing,
the rendering in this inner area is inherently expensive, especially
when many rays need to be generated per pixel.

Sometimes when a user wearing a headset stares at a fixed point
in a 3D scene or moves his/her head slowly, the rendered colors
of some image pixels are very similar to those of matching pixels
between the current and immediately preceding frames. In order
to reuse the previous pixel colors for the current frame as much
as possible without incurring costly ray tracing, a CUDA kernel
in the following stage (Box B in Fig. 4) builds a pixel reusability
map that indicates which pixels of the current frame may simply
take pixel colors from the previous frame. Each (i, j)-th element
of the map consists of two fields: the pixel reuse flag freuse and the
coordinates preuse = (ireuse, jreuse) of pixel to reuse. Here, freuse is
set to zero if the ray tracing should be carried out for the current

pixel. Otherwise, if the previous pixel color is reusable, it stores a
positive number that shows how many times the pixel colors have
been successively reused including the current pixel. In our method,
we limit the number of successive reuses for a pixel to a fixed number
nmax

reuse to avoid excessive approximation in rendering a pixel color in
the central region (nmax

reuse is set to 5 in our current implementation).
On the other hand, preuse are the coordinates of the pixel on the
image plane of the immediately preceding frame, onto which the
first hit vcur ∈ R3 of a pixel pcur = (i, j) in the current frame is
back-projected. For each pixel pcur in the central region, the pixel
reusability test is carried out against the corresponding pixel preuse,
which fails if at least one of the following conditions is not satisfied:

• The value of freuse of pixel preuse in the pixel reusability map
of the immediately preceding frame is less than nmax

reuse.
• The primary ray for pcur intersects an object in the scene.
• The primary ray for preuse intersects an object in the scene.
• The difference between the distances to vcur from the respec-

tive cameras in the current and immediately preceding frames
is less than a given threshold.

• The two color reference attributes of pcur and pprev from the
respective frames pass the two-step disparity test (described in
Sect. 3) against the adjusted threshold τ∗sel = τreuse ·τsel , where
τreuse is a factor to control the degree of temporal pixel reuse.

Note that when all the conditions are met, the two first hits in the
scene corresponding to pcur and preuse in the two time frames are
almost identical in terms of rendering, allowing pixel color reuse.
If the test succeeds, freuse of pcur in the current pixel reusability
map is incremented by one from that of preuse in the preceding map.
Otherwise, freuse of pcur gets initialized to zero in the current map.
In this case, the field of preuse is ignored.

4.5 Step 3-1: Temporal pixel reuse
After the pixel reusability map is generated, a separate CUDA kernel
collectively copies the rendered colors of the matching pixels preuse
from the immediately preceding frame to the current pixels pcur with
nonzero flag freuse (Box C in Fig. 4). Refer to Fig. 6 to understand
how the temporal pixel reuse scheme works.

4.6 Step 3-2: Selective foveated ray tracing
Now, pixels in the central pixel region that may not reuse the ren-
dering results from the previous frame are rendered by a selective
foveated ray tracer, which performs a two-step computation (Boxes
D-1 and D-2 in Fig. 4).

4.6.1 Subpixel inspection
In the first substep, the four subpixels of the pixel demanding ac-
tual rendering are examined to determine if additional sampling is
necessary. As in Jin et al. [8], the same two-step disparity test is
applied over each subpixel area. However, we extend the mecha-
nism of determining the threshold value that is used in the color
disparity test (τsel in the selective ray tracing), in order to take into
consideration the acuity of human vision in the rendering of the
central pixels. Several mathematical models, either linear or nonlin-
ear, were proposed in the previous foveated rendering algorithms,
which approximated the hyperbolic falloff of the acuity in the vi-
sual field. In our approach, such a perceptual characteristic of the
eye is reflected indirectly by modifying the threshold vector in the
final color comparison as (τnew · 1.36,τnew · 1.02,τnew · 2.04) with
τnew = τ f ov(e) · τsel . Here, for the pixel’s eccentricity e with respect
to the fixation point, τ f ov(e) is aimed at controlling the strictness of
the color disparity test, eventually varying the pixel sampling rate
adaptively over the eccentricity.

Given a set of shape parameters (τ0,τ f ,τ
′
f ,τnp), the function

τ f ov(e) is defined by a pair of C1-continuous splines derived from



(a) Example 1 (τreuse = 0.01) (b) Example 2 (τreuse = 0.05)

Figure 6: Temporal pixel reuse for efficient rendering (Crytek Sponza).
These snapshot images with similar views were captured while the
user’s gaze was moving slowly. Two different thresholds were applied
to control the number of pixels that would be reused. By increasing
the value of τreuse, the ratio of reused pixels, marked in red, increased
accordingly, where 13.26% and 43.71% of the pixels in the central pixel
region were reused in (a) and (b), respectively. When the rendering
images generated with and without the temporal pixel reuse were
quantitatively compared, the peak signal-to-noise ratio (PSNR) in
dB was (43.95,47.46,48.44,54.24) and (40.12,40.34,42.36,45.18) in the
four areas of the central pixel region (enumerated from the innermost
one), respectively. While the PSNR values slightly dropped as more
pixels were reused, the actual difference between them was very
difficult to discern visually. The thresholds employed in the last two-
step disparity test were τcol = τpte = τsoid = τssn = τste = 0.02, τpoid =
0.05, and τpsn = τpsc = τssc = 0.06.

the two quadratic Bézier curves C1(t) = (x1(t),y1(t)) and C2(t) =
(x2(t),y2(t)), satisfying the following constraints: C1(0) = (0,τ0),
C1(1) = (e f ,τ f ),

y′1(0)
x′1(0)

= 0, and y′1(1)
x′1(1)

= τ ′f for C1(t), and C2(0) =

(e f ,τ f ), C2(1) = (enp,τnp),
y′2(0)
x′2(0)

= τ ′f , and y′2(1)
x′2(1)

= 0 for C2(t) (see

Fig. 7). More specifically, τ f ov is numerically defined as y1(x−1
1 (e))

for e ∈ [0,e f ] or y2(x−1
2 (e)) for e ∈ (e f ,enp], where the inverse func-

tions can be evaluated by solving the respective quadratic equations.

4.6.2 Selective foveated multisampling

After the subpixel inspection is finished, extra sample rays are gen-
erated in a stratified manner for each subpixel that is deemed to be
problematic. In contrast to Jin et al.’s work [8] that always took four
samples per subpixel (refer to Fig. 2(b) again), our method allows a
user to control the sampling density as a function of the eccentricity
through the vector parameter (n f

sd ,n
p
sd ,n

m
sd ,n

np
sd ), in which each com-

ponent indicates the number of samples to be taken per a subpixel
area in the respective region (see Fig. 3). Therefore, if the vector
is set to (9,4,2,1), for instance, the pixel sampling rates become
as effective as up to 36, 16, 8, and 4 spp in the fovea, parafovea,
perifovea, and near periphery, respectively. When the extra sampling
is finished for all problematic subpixels, the computed ray colors are
then accumulated to the respective pixels with proper weights. Refer
to Fig. 8 to see how effectively the image pixels in the central region
are supersampled by our selective foveated ray tracer, in which the
function of the temporal pixel reuse was turned off.

4.7 Step 4: Temporal pixel smoothing
Despite our efforts to achieve high effective sampling rates, temporal
flickering between successive time frames is inevitable, especially
in image areas with high spatiotemporal frequencies. The final step
in our rendering pipeline reduces temporal aliasing artifacts by com-
bining the rendered colors with those of preceding time frames (Box
E in Fig. 4). For geometrically faithful temporal antialiasing, each

pixel of a current frame is first back-projected onto the image planes
of nt pi immediately preceding frames, respectively (nt pi is limited to
4 at most in our implementation). Every matching pixel color is then
blended with the current one using the commonly used exponential
smoothing technique [19, 24] only if the two corresponding pixels
see a very close location in the 3D scene in that their respective
distances to the first hits are within a given small threshold.

The (truncated) recursive formulation of exponential smoothing
can be expressed in a closed form as C∗

t (p) = ∑
nt pi
i=0 α · (1−α)i ·

C(πt−i(p))/ ∑
nt pi
i=0 α · (1−α)i, where C∗

t (p) is the color output at
pixel p in time frame t, α the blending factor, and C(πt−i(p)) the ray-
traced color at the back-projected pixel πt−i(p) in time frame t − i
if the two corresponding depths are close enough or the null color
otherwise. However, unlike the previous approaches that applied a
fixed α across the image space, we use a blending factor that varies
as a function of the visual eccentricity. Note that with a larger α , the
antialiased pixel color depends more on the color of a current frame
and less on those of older frames. Since the effective pixel sampling
rate of our ray tracer decreases with increasing eccentricity, requiring
more aggressive antialiasing to compensate for the relatively lower
sampling rate, we usually set the blending factor to a monotonically
decreasing function α(e) of eccentricity e.

5 RESULTS

To evaluate the effectiveness of our rendering method, we first
generated ground-truth images using a Whitted-style ray tracer
that applied 36 stratified samples per pixel. Three ray tracers
that adopted a simple regular sampling, the selective supersam-
pling [8], and our selective foveated supersampling, respectively,
were then tested. Four nontrivial 3D scenes Crytek Sponza (CS),
Interior (IN), Rungholt (RU), and Power Plant (PP), respec-
tively made of 279K, 1,021K, 6,704K, and 12,749K triangles, were
used in the test, in which the kd-tree structure [32] was applied to
accelerate the ray-tracing computation. All timings were measured
on a PC with dual Nvidia GeForce RTX 2080 Ti GPUs, and included
the total time taken for both rendering stereo images of 1280×1440
pixels per eye and displaying them on an Oculus Rift S headset.

Fig. 1 and Fig. 9 compare the rendering results from the three ray
tracers against the ground truth with maximum ray bounce depth of
3, where the different pixel sampling strategies were applied inside
the central pixel region while they all used one sample per pixel
for ray tracing the peripheral pixel region. Then, Table 2 shows
the statistics that reveal the quantitative behavior of the tested ray
tracers. Clearly, our selective foveated ray tracer was highly efficient
in that it processed far fewer rays than the selective-only ray tracer,
leading to significant accelerations in the rendering computation.
Nevertheless, the PSNR values in the table strongly indicate that our
method provided rendering of a much better quality within the foveal
field of view, which is an essential requirement for effective foveated
rendering. Although the image quality of the selective foveated
sampling was often rather lower than that of the selective-only ray
tracer in the outer, perifoveal and near-peripheral visual fields, the
visual differences were largely imperceptible on the tested HMD.

In the experiment reported in Table 2, the feature of temporal
pixel reuse was turned off for fair comparisons with other methods.
With this feature on, the rendering time clearly improved at only
little loss of rendering quality. However, the degree of improve-
ment varied depending on the situation. For instance, the Crytek
Sponza scene was rendered for a camera view while the user’s gaze
was moving slowly, the rendering time reduced from 27.6 ms to
21.6 ms, in which the number of the total rays traced decreased from
8,502,017 to 8,434,997. On the other hand, the computation time for
the Interior scene only decreased from 19.1 ms to 18.3 ms, even
though far fewer rays were traced (5,158,702 versus 3,712,484). As
noted in Fig. 6, the images produced with and without the tempo-
ral pixel reuse were visually indistinguishable, with the differences



(a) Definition of τ f ov(e) (b) Two example functions (c) Result of τ1
f ov(e) (d) Result of τ2

f ov(e)

Figure 7: Reflection of visual acuity in the central pixel region (Interior). (a) By using two quadratic Bézier curves C1(t) and C2(t) defined by the
shape parameters (τ0,τ f ,τ

′
f ,τnp), a user can control the shape of the function τ f ov = τ f ov(e) with intuition and flexibility. Note that the smaller the

function value, the higher the pixel sampling rate during ray tracing. When the two functions τ1
f ov(e) and τ2

f ov(e) in (b), respectively defined by
(1,2,0.5,12) and (9,10,1.5,20), were applied for the foveated ray tracing, the supersampling pattern varied as expected, as shown in (c) and (d).
Here, we used the control vector of (n f

sd ,n
p
sd ,n

m
sd ,n

np
sd ) = (9,4,2,1), where the actual number of extra samples taken per pixel is shown in a rainbow

scheme from 36 (red) through purple (1) to black (0).

(a) Example 1 (b) Ours (c) Selective [8] (d) Example 2 (e) Ours (f) Selective [8]

Figure 8: Efficient distribution of ray samples (Interior). In these examples, we employed another control vector of (n f
sd ,n

p
sd ,n

m
sd ,n

np
sd ) = (4,3,2,1),

in which the number of extra samples taken per pixel is color-coded, decreasing from 16 (red) through purple (1) to black (0). To render the first
image (a), our ray tracer sampled most fovea area at the maximum possible density because the innermost region had very detailed rendering
features (b). Then the sampling rate progressively decreased with increasing eccentricity. On the other hand, the selective ray-tracing scheme [8],
which always took four ray samples per subpixel without taking into account the eccentricity, often spent large computational effort in the outer
region, which is less important perceptually (c). As also demonstrated in the second example (d), (e), and (f), our method automatically decided
where to consume the precious ray resources both foveatedly and selectively, therefore sampling more only in the pixels with details even in the
foveal region. Note that the selective ray tracing needed to process 6,335,413 and 4,487,153 extra rays in total (3.182 and 1.753 spp on average)
in the central pixel region to render the two example images, respectively. By contrast, our method required only 2,865,734 and 2,270,141 extra
rays (1.086 and 0.617 spp on average), respectively, which was not only markedly faster but also produced perceptually more effective images.

always exceeding 40 dB in PSNR in the central pixel region.
Finally, note that we had to carefully choose the blending factor α

during the last stage of temporal pixel smoothing. It was important
to preserve the high-quality rendering in the foveal area with a rather
large α and to perform more aggressive smoothing in the peripheral
area with a smaller α to reduce temporal noises due to relatively
lower sampling rates. In particular, we found experimentally that the
monotonically decreasing piecewise-linear function α(e), defined by
α(0) = 0.9, α(e f ) = 0.8, α(ep) = 0.7, α(em) = 0.5, α(enp) = 0.2,
and α(emax) = 0.1, is an effective choice (see Table 3).

6 CONCLUDING REMARKS

In this paper, we presented a novel, real-time ray-tracing scheme
specially designed for high-fidelity rendering on HMDs. Our method
achieved a sufficiently high perceptual rendering quality in real time
on commodity GPUs by cleverly deciding where to shoot more rays
into the scene through the proposed selective foveated ray-sampling
technique. As a result, our full Whitted-style foveated ray tracer
that enables the creation of optically correct shadow, reflection and
refraction provided high sampling rates as effective as 36 spp around

the fixation point, decreasing gradually to 1 spp in the outermost
peripheral vision.

The described foveated ray tracer is now limited to static geometry
mainly because its CUDA-based ray-tracing part adopts the kd-
tree [32] as an acceleration structure. For dynamic lighting that
requires rebuilding of the OpenGL shadow maps, shadow in the
peripheral pixel region could be generated by the CUDA-based ray
tracer, although it would lower the frame rate slightly. We are now
extending our renderer to support dynamic geometry using the ray-
tracing hardware (RT Cores) in the latest Nvidia GPUs [20]. Based
on the bounding volume hierarchy, which is better suited to dynamic
change of geometry [31], the dedicated hardware will make available
more CUDA processing power for extra rendering computations.
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Figure 9: Comparison of rendering results inside the central pixel region (Continued from Fig. 1). More comparisons for the Crytek Sponza,
Rungholt, and Power Plant scenes are given (from top to down in the left). In addition, the four magnified images from Power Plant (in the
right column) compare the three pixel sampling methods to the ground-truth ray tracer that applied 36 rays per pixel for rendering. While the
selective-only sampling technique provided effective sampling rates as high as up to 16 spp, subtle aliases were found occasionally in the foveal
visual field (indicated by arrows), which was frequently bothersome on an HMD. By contrast, our method produced a ray-tracing result in the foveal
area that compared very favorably with that of the ground-truth renderer. In summary, due to serious visual artifacts, ray tracing that traces one ray
per pixel was clearly unsuitable as a rendering method for HMDs. On the other hand, the presented selective foveated ray-tracing method was
highly competitive in terms of both perceptual quality and rendering speed. (Please refer to Fig. 1 and Table 2 again.)

Table 2: Quantitative comparison of four ray-tracing methods. The
three ray tracers are analyzed with respect to the ground-truth ren-
derer, where the camera views used for the four test scenes are shown
in Fig. 1 and Fig. 9. Again, “Time” shows the total time for generating
stereo images on the Oculus Rift S headset. “Rays” indicates the total
number of rays (in thousands) that were traced while rendering the
stereo images. For an explanation on “PSNR,” please refer to Fig. 1.

Regular 36 Regular 1 Selective Sel For

CS

Time (ms) 327.2 12.9 84.8 15.9
Rays (K) 426,806 11,856 133,762 7,400

PSNR (dB) – 24.0/25.6 36.4/37.3 47.5/36.2
25.4/28.6 36.9/38.8 32.3/33.2

IN

Time (ms) 221.3 10.3 72.4 16.9
Rays (K) 288,873 8,024 104,196 4,199

PSNR (dB) – 29.4/27.5 38.3/36.8 46.0/36.7
29.8/32.4 39.3/41.9 37.6/35.8

RU

Time (ms) 162.8 9.4 51.2 14.9
Rays (K) 329,086 9,142 88,287 7,570

PSNR (dB) – 23.8/25.1 31.3/34.4 41.8/34.8
27.8/30.6 35.3/37.9 34.4/33.8

PP

Time (ms) 232.9 10.7 42.9 28.6
Rays (K) 230,250 6,395 27,799 8,928

PSNR (dB) – 18.8/20.2 28.6/28.1 35.2/29.3
20.7/20.4 27.3/25.9 28.3/23.9

Table 3: Foveated selection of blending factor α for temporal pixel
smoothing (PSNR in dB). Temporal antialiasing is essential for HMD
rendering even if a user’s gaze remains still because of the temporal
noises in received HMD pose signals. The ray-traced images obtained
with and without temporal antialiasing for a view of the Crytek Sponza
scene in a given time frame are compared with the ground truths
produced by tracing 256 rays per pixel. “Off” indicates the case when
the temporal pixel smoothing step was turned off in our rendering
pipeline. When a fixed α was used (“0.1” to “0.9”), the effectiveness of
the antialiasing effort varied in different areas. Note that a small α was
needed to sufficiently reduce temporal noises in the peripheral areas
but tended to excessively blur the high quality of rendering in the foveal
area. Meanwhile, our foveated choice of α (“Ours”) automatically
adapted the temporal antialiasing process across the image area to
preserve the quality of rendering. Through temporal pixel smoothing,
the spatial quality of the image actually improved slightly and the
temporal flickering was reduced markedly, as expected.

Region Off 0.1 0.3 0.5 0.7 0.9 Ours

Fovea 40.53 37.82 38.83 40.20 41.33 41.09 41.33

Parafovea 36.74 36.11 36.60 37.11 37.33 36.96 37.25

Perifovea 34.11 33.59 33.82 34.04 34.14 34.04 34.09

Near-peri. 31.73 32.57 32.69 32.69 32.46 31.97 32.74

Mid-peri. 32.07 33.63 33.58 33.34 32.91 32.34 33.63
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[1] C. Barré-Brisebois, H. Halén, G. Wihlidal, A. Lauritzen, J. Bekkers,
T. Stachowiak, and J. Andersson. Hybrid rendering for real-time ray
tracing. In E. Haines and T. Akenine-Möller, eds., Ray Tracing Gems,
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[37] N. Wißmann, M. Mišiak, A. Fuhrmann, and M. E. Latoschik. Accel-
erated stereo rendering with hybrid reprojection-based rasterization
and adaptive ray-tracing. In Proceedings of the IEEE Conference on
Virtual Reality and 3D User Interfaces, pp. 828–835, 2020.

https://github.com/ValveSoftware/openvr/wiki/IVRSystem::GetProjectionRaw/
https://github.com/ValveSoftware/openvr/wiki/IVRSystem::GetProjectionRaw/
https://github.com/ValveSoftware/openvr/wiki/IVRSystem::GetProjectionRaw/

	Introduction
	Previous work
	Selective supersampling for ray tracing
	Our selective foveated ray tracing algorithm
	Foveation-based image space partition
	An overview of our algorithm
	Step 1: Pixel attribute gathering
	Step 2: Pixel reusability test
	Step 3-1: Temporal pixel reuse
	Step 3-2: Selective foveated ray tracing
	Subpixel inspection
	Selective foveated multisampling

	Step 4: Temporal pixel smoothing

	Results
	Concluding remarks



