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Abstract: Cluster computing has attracted much attention as an effective way of solving large-scale
problems. However, only a few attempts have been made to explore mobile computing clusters
that can be easily built using commodity smartphones and tablets. To investigate the possibility of
mobile cluster-based rendering of large datasets, we developed a mobile GPU ray tracer that renders
nontrivial 3D scenes with many millions of triangles at an interactive frame rate on a small-scale
mobile cluster. To cope with the limited processing power and memory space, we first present
an effective 3D scene representation scheme suitable for mobile GPU rendering. Then, to avoid
performance impairment caused by the high latency and low bandwidth of mobile networks, we
propose using a static load balancing strategy, which we found to be more appropriate for the
vulnerable mobile clustering environment than a dynamic strategy. Our mobile distributed rendering
system achieved a few frames per second when ray tracing 1024 × 1024 images, using only 16
low-end smartphones, for large 3D scenes, some with more than 10 million triangles. Through a
conceptual demonstration, we also show that the presented rendering scheme can be effectively
explored for augmenting real scene images, captured or perceived by augmented and mixed reality
devices, with high quality ray-traced images.

Keywords: mobile distributed computing; mobile GPU ray tracing; augmented and mixed reality;
space-efficient 3D scene representation; master/worker system

1. Introduction

Since the emergence of mobile devices such as smartphones and tablets, the com-
puting environment has been rapidly shifting from personal computers (PCs) to mobile
platforms. However, despite the remarkable improvements in computing power, it remains
a challenge to effectively solve a computationally intensive, large-scale problem on a single
mobile device, particularly when a fast response is needed. Whereas the use of high per-
formance compute servers is often suggested as a practical solution, only a little research
has been conducted on the idea of exploring mobile computing clusters that consist of
easily available mobile devices connected through mobile and wireless communication
networks. In particular, achieving interactive distributed rendering on mobile clusters for
generating high quality images from large three-dimensional (3D) scenes also remains a
difficult problem to be tackled with great effort.

In spite of its high computational cost, ray tracing has been popularly used to produce
significantly more realistic images than conventional rasterization methods [1]. In contrast
to the rasterization-based renderers that adopt only approximate (often inaccurate) render-
ing models, ray tracing is capable of creating various advanced rendering effects, such as
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shadow, reflection, refraction and diffuse interreflection, in a physically correct manner.
Note that such ray tracing effects could enhance immersive experiences markedly for aug-
mented reality (AR) or mixed reality (MR) users who utilize mobile extended reality (XR)
devices such as smartphones/tablets (for AR users) and a Microsoft HoloLens headset (for
MR users). This is possible by augmenting the real scene image, which is either captured
by the camera of an AR device or perceived via a see-through holographic lens of an MR
device, using optically-correct realistic ray-traced images. (Blending the real scene images
with carefully synthesized information is a key method to increasing spatial presence in
AR and MR applications. Please refer to related work, e.g., [2–4].) These days, the ded-
icated ray tracing hardware of the graphics processing unit (GPU) often allows efficient
acceleration of the ray tracing computation on the PC platform [5]. However, despite many
efforts to develop an effective mobile ray tracing accelerator (refer to, e.g., [6]), ray tracing
is still regarded as computationally burdensome on mobile platforms, mainly due to its
excessive power consumption and heating problems.

This work was concerned with exploring the possibility of mobile cluster-based dis-
tributed computing as an effective mechanism for ray tracing large 3D scenes that consist
of a few million to 12 million triangles. We were especially interested in investigating how
an interactive mobile distributed ray tracing technique can be combined with mobile XR
devices for improving the visual realism of the images that are acquired by them. More
specifically, this paper presents a mobile distributed GPU ray tracing scheme that is well
suited for rendering large 3D scenes with many millions of triangles, aiming at interactive
speeds on a small-scale mobile cluster. Note that to the best of the authors’ knowledge, this
was the first work to attempt to interactively ray trace large 3D scenes having more than
ten million triangles on a cluster system made of commodity mobile devices.

The main contributions of this paper are as follows. First, to allow a mobile device
to load as large a 3D scene as possible into GPU memory of limited size, we present a
space-efficient 3D scene representation technique that is specially designed for mobile GPU
ray tracing (Section 3). Note that sending bulky 3D scene data on the fly between mobile
processors during interactive distributed rendering is inappropriate on the current mobile
clusters because of the high transmission latency. Therefore, our mobile distributed ray
tracing system employs a tile-based rendering scheme in which a mobile device stores a
full copy of all needed 3D scene data encoded in space-efficient data structures. Then, each
mobile device that participates in distributed ray tracing renders repeatedly assigned tile
areas, returning the resulting tile images to the master device. To allow this, we present a
3D geometry encoding scheme that reduces the size of triangular meshes markedly at very
little extra decoding cost for repeated random access on mobile devices with low processing
power and memory bandwidth (Section 3.1). Combined with the kd-tree encoding scheme
that was proposed by Seo et al. [7] (Section 3.2), we show that both the triangular mesh and
the essential kd-tree structure of such a large Power Plant scene with more than 12 million
triangles can be successfully loaded onto the GPU memory of a low-end mobile device for
efficient distributed ray tracing.

Second, we evaluated two different distributed rendering mechanisms to find the best
model for effective mobile cluster-based ray tracing in the current mobile and wireless
network environment (Section 4). We found that the presented static load balancing scheme
is more efficient than the dynamic scheme in the mobile clustering environment, which
suffers from low bandwidth and high transmission latency. The performance of our mobile
distributed ray tracer is described in detail in the results section (Section 5). In particular,
we show that large 3D scenes with a few million to 12 million triangles can be rendered at a
few frames per second to create ray tracing images of 1024 × 1024 pixels on a small-scale
cluster made of 16 low-end smartphones. We also demonstrate via a proof-of-concept
implementation how the presented mobile cluster-based ray tracing method can be utilized
to enhance the visual realism of images that are displayed on the screens of wireless AR
and MR devices. Then, the paper is concluded in the final section (Section 6).
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2. Related Works

Thanks to the advances in mobile technology, mobile cluster computing has emerged
as a prospective distributed computing paradigm that can effectively be used to solve large-
scale problems [8]. Ray tracing of large-scale 3D scenes and/or scientific datasets is a good
option for mobile cluster computing that requires a nontrivial amount of computational
resources. Until several years ago, it was believed that mobile platforms could not be used to
directly run applications with intensive rendering workloads. Therefore, remote rendering
systems that rely on high performance servers were often explored (refer to previous
work, e.g., [9–13]), where hiding or reducing the high communication latency caused by
mobile and wireless networks between mobile clients and servers was an important issue.
Collaborative rendering systems that utilize multiple mobile GPUs were also built, e.g., [14],
but they were not appropriate for applying to mobile distributed ray tracing, which this
paper intends to address.

Ray tracing demands a large amount of computation, particularly for building spatial
acceleration structures and calculating ray–object intersections. Therefore, there have long
been attempts to develop dedicated hardware that accelerates the essential ray tracing
computations. Modern high-end PC GPUs often enable real-time ray tracing for nontrivial
3D scenes [5]. On the other hand, despite the endeavors dedicated to developing a mobile
accelerator for ray tracing [6,15–17], a single modern mobile GPU still does not provide
enough performance for real-time rendering of large 3D scenes.

Distributed ray tracing can be an effective way of solving this problem. Previous
research on interactive distributed ray tracing usually considered PC and/or worksta-
tion clusters (refer to, e.g., [18]). By contrast, very little work has been done to utilize
a computing cluster built using ubiquitous mobile devices. Choosing a proficient load
balancing strategy for parallel or distributed ray tracing is important, and dynamic load
balancing has often been preferred over static one [19]. Recently, the load balancing issue
was addressed in the mobile cloud computing environment [20]. A tile-based, distributed
ray tracing system was developed on a small-scale mobile cluster, where only six devices
were able to participate in the distributed rendering [7]. Unlike their approach, the method
presented in this paper uses a space-efficient 3D scene representation combining both
mobile GPU-friendly geometry and kd-tree encoding methods, which, as a result, allows
it to load larger 3D scenes into GPU memory for effective mobile distributed rendering.
Furthermore, our work employs a static load balancing strategy which turned out to be
more efficient for mobile distributed ray tracing. Thanks to this policy, we can expand
the number of participating worker devices up to 16 without significantly harming the
distributed rendering efficiency.

3. Space-Efficient Representation of 3D Geometry for Mobile Distributed Ray Tracing

In our mobile ray tracing, we adopt the indexed-face-set format to describe the geome-
try of a given scene. Here, the corresponding triangular mesh is represented in two arrays
that list vertex attributes and triangle vertex indices, respectively. The original scene data
that we have ray traced used eight 32-bit floats per vertex for vertex attributes (three for po-
sition, three for normal and two for texture coordinate), and three 32-bit unsigned integers
per triangle for triangle vertex indices, demanding 32nv + 12n f (= 8 × 4 × nv + 3 × 4 × n f )
bytes to represent a 3D geometry model with nv vertices and n f faces. In addition to
the triangular mesh, we also employ a kd-tree, which is an essential spatial acceleration
structure for real-time ray tracing. Coupled with the mesh data, this extra data structure
also must be loaded into memory, whose size is usually in the order of that of the mesh
data. For instance, for the Power Plant dataset with 10,960,555 vertices and 12,738,500 faces,
the necessary memory space amounts to 480.6 MB (for triangular mesh) plus 603.7 MB (for
kd-tree), which is quite burdensome to handle in mobile ray tracing (refer to Table 1).
Therefore, we must find an effective way of representing 3D geometry, enabling efficient
mobile distributed computing.
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Table 1. Memory spaces required by the 3D geometries of example 3D scenes. The sizes of the
kd-trees that are produced by the de facto standard algorithm, based on combinations of the tree
construction and representation methods [21,22], are compared to those of the actual triangular mesh
data, stored in the indexed-face-set format. As expected, the essential kd-tree structure usually
introduces significant memory overhead because of the inevitable replication of triangles in the
resulting accelerating tree structure.

No.’s of
Triangles

No.’s of
Vertices

Size of
Mesh
(MB)

Size of
kd-Tree

(MB)

Sponza 279,163 193,372 9.1 13.1
Soda Hall 2,167,474 4,192,793 152.8 86.0

San Miguel 9,963,191 9,278,776 397.2 621.1
Power Plant 12,748,510 10,960,555 480.4 603.7

3.1. Reducing the Size of the Triangular Mesh

The mobile device is generally not able to hold the extensive 3D scene data in its
memory space for real-time ray tracing. Therefore, it requires the usage of a space-efficient
3D geometry representation scheme. For the real-time rendering, particularly on a mobile
device, a prospective space-reduction method should keep the extra cost of data fetching
incurred by its data encoding scheme very low. There exist several 3D geometry com-
pression methods in the literature that achieve substantial space reduction while offering
rapid random accessibility [23]. For our application, however, we put more weight on
minimizing the geometry decoding cost rather than raising the degree of space reduction.
That is because the mobile device, on which the ray tracing computation is already not fast
enough, is more vulnerable to a complicated decoding calculation than a PC due to the
low processing power and memory bandwidth. In particular, after an experiment with
existing compression techniques on the target smartphone, we found it more appropriate
to quantize only the vertex attributes listed in the indexed-face-set representation. This
decreases the space requirement markedly at very little extra decoding cost for repetitive
random accesses.

3.1.1. Quantization of Vertex Attributes

Construction of a cell index table. The first step toward our space-efficient mesh
representation is to partition the (slightly enlarged) axis-aligned bounding box (AABB) of a
given scene into equal-sized cubic cells, and find those cells, called the geometry cells, that
are intersected by the scene’s triangular mesh (see Figure 1a). A key factor in partitioning
the scene space is to set the size of the cubic cell to be as small as possible while the resulting
number of geometry cells cannot exceed 65,536 (=216). This can be done by subdividing
the longest side of the AABB repeatedly, in which the desired number of subintervals
is decided in a bisection manner from an initial range, say, [25, 210]. After a proper cell
size is determined, the geometry cells are then enumerated, storing their indices (i, j, k) in
increasing order in a table, called the cell index table. Since the size of table is at most 65,536,
a geometry cell can be indexed using a 16-bit unsigned integer.

Quantization of the position attribute. Once the scene space is tessellated as finely
as possible using cubic cells, each side of the geometric cell is quantized into 1024 (=210)
levels, at which the location of a vertex position within a cell is described. Since the exact
location of the cell in the AABB is known through its index, this quantization allows us
to represent a vertex position (x, y, z) using a cell index of two bytes plus three offsets
(X, Y, Z) of 10 bits each, reducing the memory requirement from 12 bytes to 6 bytes (see
Figure 1b). Note that the resolution of this space quantization method, i.e., the quantization
step size, becomes lc

1024 , where the cell size lc is the length of the longest side of the scene
AABB divided by the number of the corresponding interval partition (refer to Table 2).
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x

y
Geometry Selected cells

(a) Finding geometry cells of proper size for effective quantization.

x y z nx ny nz s t

12 bytes 12 bytes 8 bytes

2 bytes

cell index X Y Z table index S T

4 bytes 2 bytes 2 bytes

(b) Quantization of vertex attributes.

Figure 1. Quantization of 3D geometry data.

Table 2. Partitioning the scene’s AABB into cubic cells. The scene’s AABB is subdivided into cubic
cells whose size is chosen to be as fine as possible, while the number of geometry cells, which intersect
with an object (“# of geom. cells”), cannot exceed 65,536 (=216). In the table, “Cell resolution” shows
how finely the scene space is tessellated in cubic cells. The found geometry cell is further subdivided
into 10243 voxels, and "Precision” indicates the voxel size relative to the length of the longest axis of
the AABB.

Scene Cell
Resolution

# of Geom.
Cells Precision

Sponza 991 × 610 × 415 65,532 9.85 · 10−7

Soda Hall 358 × 317 × 203 65,319 2.73 · 10−6

San Miguel 278 × 203 × 318 65,065 3.07 · 10−6

Power Plant 616 × 250 × 187 65,472 1.59 · 10−6

Quantization of the normal attribute. Contrary to the vertex position each component
of which is quantized within a cell, the vertex normal is quantized as a whole. For run-time
access during rendering, we adopt a simple table-based quantization technique where a pre-
processed lookup table, indexed with a 16-bit unsigned integer, provides up to 65,536 (=216)
discrete unit normal samples. To fill the table, we use the normal encoding/decoding
method of Smith et al. [24], which exhibits the lowest mean and maximum angular errors
among a variety of 16-bit unit normal representation techniques [25]. Once a lookup table
is prepared, the original 12-byte unit normal (nx, ny, nz) of a vertex is transformed into a
two-byte index whose corresponding direction is closest to that of the original vector.

Quantization of the texture-coordinate attribute. The texture coordinates have often
been compressed successfully using the predictive schemes developed for the vertex posi-
tion, with a few variations (e.g., [26–28]). Unfortunately, however, such rather complicated
methods are not well suited for mobile computing platforms. In fact, when the coordinates
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are normalized between 0 to 1, we find that a 16-bit unsigned integer that can quantize each
component uniformly into 65,536 levels is sufficient for mobile ray tracing because most
texture images have resolution smaller than 2048 × 2048 pixels. Note that for some scenes
such as San Miguel, however, the texture coordinates may be in any range, permitting
textures to be repeated. Even in such cases, however, the three texture coordinates from
a triangle can usually be transformed safely into the range [0, 2]× [0, 2]. Therefore, we
quantize each component of a texture coordinate (s, t) into two bytes of memory: the most
significant bit stores the integer part, and the remaining 15 bits store the fractional part in
32,768 (=215) levels.

3.1.2. Analysis of Triangular-Mesh Compression

Size reduction ratio. Note that for a triangular mesh in the indexed-face-set representa-
tion with nv vertices and n f faces, the original mesh dataset actually needs 32nv + 12n f + 8
bytes of memory, among which the 8 additional bytes are for storing the values of nv and
n f (a four-byte unsigned int each). On the other hand, the presented quantization method
requires 12nv + 12n f bytes (for the lists of quantized vertex attributes and triangle vertex
indices) plus 3 · 2 · 216 bytes (for the cell index table in which each index component is
saved as a two-byte short integer), 3 · 4 · 216 bytes (for the normal lookup table in which
each normal component is saved as a four-byte float) and 24 bytes (for the values of nv(4),
n f (4), the xyz coordinates of AABB’s anchor point(12), and the cell size(4)). This leads to

the size reduction ratio of
32nv+12n f +8

12nv+12n f +18·216+24 =
8nv+3n f +2

3(nv+n f )+294918 ≈ 3 + 5
1+n f /nv

÷ 3 + 294918
nv+n f

,

which will generally increase when the size of mesh—i.e., nv + n f increases. Furthermore,

the ratio gets higher as the ratio between nv and n f , i.e.,
n f
nv

, decreases. As reported in
Table 3, the quantization method achieves the ratios of 1.69 (Sponza) and 2.10 (Soda Hall)
for the four test scenes, for which the ratios are more affected by the parameter

n f
nv

(refer to
Table 1 again for the numbers of vertices and faces).

Table 3. Size reduction for a triangular mesh in the the indexed-face-set format. The ratio achieved
by the presented quantization method is dependent on both the size of mesh and the ratio between
the numbers of faces and vertices. See the text for detail.

Scene Original
(MB)

Qunatized
(MB)

Compression
Ratio

Sponza 9.1 5.4 1.69
Soda Hall 152.8 72.8 2.10

San Miguel 397.2 220.2 1.80
Power Plant 480.4 271.3 1.77

Visual artifacts in ray tracing. Whereas the presented quantization method effectively
improves the space efficiency, it inevitably decreases the image quality due to the quanti-
zation errors caused when the size-reduced triangular mesh is ray traced. To reveal how
the geometry quantization negatively affects the rendering quality on the mobile device,
we compare the ray-traced images of 1024 × 1024 pixels against the corresponding ground
truth images obtained by ray tracing the original geometry. As shown in Table 4, when
only the positional attribute is quantized (“POS” in the table), the resulting PSNR values
are quite high, and it is very difficult to visually distinguish between those images.
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Table 4. Image quality comparison (PSNR in dB). The ray-traced images from the quantized meshes
are compared to the ground truth images obtained by ray tracing the original meshes, where three
combinations of quantizations are examined. The “- no refl/refr” row indicates the PSNR values
achieved when the images are produced with the reflection/refraction feature off. All images are
rendered at 1024 × 1024 pixels. See Figure 2 for the adopted camera views.

Scene POS POS/NORM POS/NORM/TEX

Sponza 42.80 42.59 33.39

Soda Hall 38.57 36.29 N/A

San Miguel 34.94 29.17 28.69
- no refl/refr 35.17 35.13 33.50

Power Plant 43.23 32.63 N/A
- no refl/refr 43.23 41.10 N/A

When the normal attribute is additionally quantized (“POS/NORM”), the PSNR
values start to decrease. However, the degree of reduction varies among the tested scenes.
For the Sponza and Soda Hall datasets, whose scene complexity is relatively low (279,163
and 2,167,474 triangles, respectively), this additional quantization does not accumulate
noticeable visual artifacts in the ray-traced images (from 42.80 dB to 42.59 dB for Sponza
and from 38.57 dB to 36.20 dB for Soda Hall). Note the the normal vector is the key
element needed for local shading. More importantly for ray tracing, it is used to calculate
the directions of secondary, reflection and refraction rays. When such scenes with high
geometric complexity as San Miguel and Power Plant (9,963,191 and 12,748,510 triangles,
respectively) are rendered, the small quantization error in the normal direction, and thus
in the direction of secondary rays results in marked decreases in the PSNR value (from
34.94 dB to 29.17 dB for San Miguel and from 43.23 dB to 32.63 dB for Power Plant). This is
because, for complex scenes with highly detailed geometry, the reflection/refraction rays,
whose directions are slightly perturbed, often hit the surface points whose geometry is
somewhat different from that for the correct secondary rays. This phenomenon is clearly
shown in the difference images in Figures 2i,l, where the visual artifacts exist mostly on the
reflective surfaces. (In the San Miguel scene, we set the bluish window glasses to reflective.)
On the other hand, for the Soda Hall scene with relatively simpler geometry, the slightly
changed secondary rays do not produce significant aliases in the ray-traced image (see
the floor surface in Figure 2f). The effect of the slightly perturbed reflection/refraction
rays can clearly be ascertained when those rays are not traced (“- no refl/refr” in Table 4).
With these rendering features turned off, the resulting image quality is almost the same
even though the normal attribute is quantized (from 35.17 dB to 35.13 dB for San Miguel
and from 43.23 dB to 41.10 dB for Power Plant).

Finally, the negative effect of the additional texture-coordinate quantization on the
image quality appears differently depending on the scene complexity and the texture
properties (“POS/NORM/TEX”). If the scene geometry is rather simple but the applied
textures are quite detailed, the additional quantization causes a considerable decrease in
the PSNR value (e.g., from 42.59 dB to 33.39 dB for Sponza). On the other hand, if the
scene geometry is complex but the textures are relatively less complicated, such as San
Miguel, only a small decrease will be observed (from 29.17 dB to 28.69 dB). This means
that the rendering artifacts are mainly due to the quantization errors from the position and
normal attributes.



Sensors 2022, 22, 491 8 of 21

(a) Sponza (ground truth) (b) Sponza (POS/NORM/TEX) (c) Sponza (PSNR 33.39 dB)

(d) Soda Hall (ground truth) (e) Soda Hall (POS/NORM/TEX) (f) Soda Hall (PSNR 36.29 dB)

(g) San Miguel (ground truth) (h) San Miguel (POS/NORM/TEX) (i) San Miguel (PSNR 28.69 dB)

(j) Power Plant (ground truth) (k) Power Plant (POS/NORM/TEX) (l) Power Plant (PSNR 32.63 dB)

Figure 2. Comparison with ground truths. The left and middle columns display the images rendered
by ray tracing the original and quantized triangular meshes, respectively. The right column then
shows their differences with achieved PSNR values.



Sensors 2022, 22, 491 9 of 21

Overall, we achieved PSNRs of 28.69–36.29 dB for the four example scenes when the
fully quantized triangular meshes were ray traced. On the tested mobile devices, the visual
difference between the rendering results and the ground truths was usually negligible at
best both spatially and temporally. As compared in Figure 3, even in the most troublesome
areas, the actual difference is hardly discernible.

(a) Sponza

(b) San Miguel

(c) Power Plant

Figure 3. Comparison with ground truth images (partially enlarged). For each triplet of images,
the ground truth image (middle) is compared with our result (right), obtained by ray tracing the
original and quantized triangular meshes, respectively. Even in the most problematic areas, the visual
difference is quite negligible.

3.2. Reducing the Size of the Spatial Acceleration Structure
3.2.1. Enhancement of Memory-Space Efficiency of the kd-Tree

As mentioned before, the kd-tree is an efficient spatial data structure that provides
fast ray–object intersection during ray tracing. However, when it is constructed from a
triangular mesh using a standard recursive algorithm, a great number of triangles that
intersect with splitting planes are repeatedly duplicated into a large number of leaf nodes.
This frequently results in inefficient, large and tall trees with high triangle redundancy,
which are burdensome to handle, particularly on mobile platforms (see Table 1 again).
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To improve the memory-space efficiency of kd-trees, Choi et al. [29] extended the de
facto standard kd-tree construction and representation algorithms [21,22] in such a way
that an inner node of the tree may optionally keep a pointer to a triangle that would
otherwise be repeated in an excessive number of leaf nodes. Coupled with a modified
kd-tree traversal algorithm, the new kd-tree scheme was shown to significantly decrease
the memory requirements for representing the kd-tree structure with only a slight increase
in the tree traversal cost during ray tracing.

Reducing the kd-tree size further was necessary for mobile devices with limited
GPU memory space. Therefore, Seo et al. [7] proposed to allow an inner node to store
up to two triangle references when excessive triangle duplication is found. This simple
modification is possible because in the extension by Choi et al., each inner node is stored
with 8 byte alignment for efficient caching, and therefore the lower 4 bytes of the inner
node that refer to a triangle are not used. In fact, allowing an additional triangle reference
in an inner node may cause more frequent calculations of early ray–triangle intersection
during the kd-tree traversal, although many of them are actually unnecessary. Since they
naturally increase divergent branches during ray tracing, the strategy of allowing up to
two triangles per inner node may slow down the ray tracing computation significantly
on a PC GPU. Therefore, in Choi et al.’s method targeting high performance PC GPUs,
at most one triangle reference is allowed per inner node. In contrast, mobile platforms
suffer from limited graphics memory and memory bandwidth, in addition to insufficient
parallel processing capabilities. Therefore, the advantage of saving memory space by
storing two triangle references outweighs the disadvantage of slowing down the rendering
computation, as will be shown shortly.

3.2.2. Analysis of kd-Tree Compression

In this subsection, we briefly describe the performances of the three kd-tree construc-
tion methods: standard [21,22], Choi et al. [29] and Seo et al. [7]. For a fair comparison
of the two modification algorithms by Choi et al. and Seo et al., we applied the same
occupancy and frequency parameters (τoccu, τf req) = (0.5, 0.4) during the kd-tree construc-
tion for the four nontrivial example scenes. (Please refer to [29] to understand how these
parameters control the properties of generated kd-trees.) In addition, we allowed up to
eight triangle references in total along the inner nodes on the path from every leaf node to
the root node, which compromises well between the tree size reduction and ray tracing
speed. Table 5a first compares the performances in view of size reduction of the kd-trees
generated. Seo et al.’s method, which is included in our system, exhibited a compression
ratio of 1.98 to 3.03 with respect to the standard method. Considering the compression
ratio of Choi et al.’s method, which ranged between 1.58 and 2.18, we notw that the idea of
allowing an inner node to point to another redundant triangle is quite effective at reducing
the size of kd-trees further. When Seo et al.’s method is applied, the size of the indexing
data also decreases slightly, as removing redundant triangles from leaves improves spatial
coherence in the triangle index lists.

Note that, among the four test scenes, Seo et al.’s method had the greatest size reduc-
tion for the San Miguel scene in comparison to both the standard method and Choi et al.’s
method. The San Miguel dataset contained a significant number of ill (possibly long and
skinny) triangles that were intersected repeatedly with the splitting planes during kd-tree
construction. Therefore, moving a next most redundant triangle from leaf nodes to an inner
node still resulted in a substantial amount of size reduction. Refer to Table 5b to see how
effectively the number of kd-tree nodes decreases when the new extension is applied in
addition to Choi et al.’s method.

As noted before, an additional triangle reference at an inner node inevitably causes the
ray tracing frame rates to drop to some extent because of the extra computation for early,
possibly unnecessary, ray–triangle intersection. However, the timing results in Table 5c
reveal only a slight decrease in rendering speed compared to Choi et al.’s method, which is
quite encouraging considering the increased complexity of the kd-tree traversal algorithm.
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Table 5. Performances of three kd-tree construction methods. The effectiveness of Seo et al.’s
method [7], which is used in the proposed mobile distributed ray tracing system, is compared on the
mobile platform to the two previous methods: “standard” [21,22] and “Choi et al.” [29]. (a) Size of kd-
trees (unit: MB). The figures in parentheses represent the respective compression ratios with respect
to the sizes of the “standard” kd-trees. (b) Number of kd-tree nodes (unit: thousand). Each triplet
of numbers reveals the frequencies of the inner nodes without triangle references, the inner nodes
with triangle references and the leaf nodes in the kd-tree. The reduction effect is most evident for the
San Miguel scene, leading to the greatest kd-tree compression among the four scenes. (c) Ray tracing
time (unit: ms). The time for rendering an image of 1024 × 1024 pixels was measured on a single LG
G5 smartphone. As the original triangular meshes were used without quantization in this test, the San
Miguel and Power Plant scenes could not be rendered with the standard kd-trees due to the lack of
GPU memory space. The percentages in parentheses show how seriously the slight modification of
the kd-tree structure affects the ray tracing speed in comparison to Choi et al.’s method.

(a)

Scene Standard Choi et al. Seo et al.

Sponza 13.1 8.3 (1.58) 6.6 (1.98)
Soda Hall 86.0 50.1 (1.72) 41.8 (2.06)

San Miguel 621.1 285.3 (2.18) 205.3 (3.03)
Power Plant 603.7 321.0 (1.88) 252.7 (2.39)

(b)

Scene Choi et al. Seo et al.

Sponza 211/281/351 203/172/289
Soda Hall 1193/1537/1961 1170/1030/1685

San Miguel 9696/6392/12,892 5183/3014/8197
Power Plant 7066/10,300/12,216 6934/6553/10,210

(c)

Scene Standard Choi et al. Seo et al.

Sponza 2632.4 2711.6 2776.6 (+2.4%)
Soda Hall 2788.1 2801.5 2936.9 (+4.8%)

San Miguel * - 3489.5 3661.1 (+4.9%)
Power Plant - 3091.1 3203.0 (+3.6%)

* No texture maps were applied.

4. Distributed Ray Tracing Framework for Mobile Cluster Computing

The proposed mobile distributed ray tracing system is based on a master/worker
model, in which a master device (client) controls multiple wirelessly-connected worker
devices (servers) that perform actual distributed rendering. An important key in this system
is to make each worker node hold all necessary scene data, including the triangular mesh
and the kd-tree structure, in its graphic memory to minimize data transmission during
distributed rendering. This is possible thanks to the presented space-efficient representation
of 3D geometry and kd-tree structure. As is frequently done, the entire image space is
partitioned into a grid of two-dimensional (2D) tiles, which becomes a pool of rendering
tasks. In each time frame, the master first sends 6-degree-of-freedom camera poses and
then tile indices on the fly to respective workers. It also collects rendered tile images from
the workers to build the final ray-traced image. All rendering calculations are carried out
on the GPUs of the workers against the tile indices assigned by the master.

Usually, remote rendering assumes a high-performance server system whose comput-
ing power well outperforms that of the client device. In contrast, the distributed rendering
system in this work comprised a set of worker devices whose computing power was as
limited compared to that of the master device. Therefore, it is important to carefully design
an appropriate architectural and interaction model for efficient mobile distributed render-
ing. This will effectively cope with such constraints as the limited processor power and
memory space of mobile devices, and the high latency and low bandwidth on networks in
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mobile environments. In this section, we describe two different models and show how they
performed in the experiments.

4.1. Strategy I: Dynamic Load Balancing

Our distributed rendering system may be designed in such a way that only one thread
on each side of the master and worker devices processes all tasks, such as communication
and rendering. However in the mobile environment, the communication latency between
wirelessly connected devices is significantly high and often hard to predict, causing a major
bottleneck in the resulting distributed rendering system. Note that with a single thread on
each side, the GPU ray tracing must halt while the rendered tile image is sent to the master.
This leads to a substantial inefficiency in the usage of computational resources, suggesting
that hiding the latency of mobile communication must be one of the most important factors
in designing an effective mobile distributed rendering system.

Figure 4 illustrates the interaction model that was previously proposed by Seo et al. [7].
Here, in order to overlap the tasks of data transmission and rendering, two extra threads
per worker device are run on the master device along with the main thread (Thread Main).
The first one (Thread 2i) is aimed at sending a tile index when the ith worker node is
ready to render the next tile, whereas the second one (Thread 2i+1) is responsible for
collecting the ray-traced tile images that the ith worker device sends. On the other hand,
the corresponding ith worker node uses an extra thread (Thread Sub) so that the rendered
tile image is transmitted, while the main thread (Thread Main) renders the next tile image on
the GPU simultaneously. By performing the GPU ray tracing and the data communication
in parallel as much as possible, the frame rate of the mobile distributed rendering increases
markedly, as shown by Seo et al. [7]. In this distributed rendering scheme, the image tiles
are distributed among the worker processors dynamically and adaptively according to
their rendering capability, which may vary device by device.

Figure 4. Master–worker interaction model I ([7]). This framework, based on dynamic load balancing,
significantly improves the computational efficiency of mobile distributed rendering by separating the
tasks of image transmission and GPU ray tracing in the master and worker nodes.
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4.2. Strategy II: Static Load Balancing

The distributed rendering model in the previous subsection aims to offer a flexible
way of dynamic load balancing, which is effective for a small group of workers. However,
the high latency and low bandwidth nature of mobile and wireless network connection
often decrease its efficiency rapidly as more worker devices participate in the rendering.
To overcome the problem, it is quite important to reduce the frequency of data commu-
nications between the master and workers as much as possible to avoid the transmission
efficiency from deteriorating due to the high latency. Our preliminary experiment exhibits
that, for the worker side, keeping rendered tile images and sending them together at once
to the master is markedly more efficient on a mobile or wireless network than sending
each image separately right after it is rendered. Therefore, in the second distributed render-
ing model, whose master–worker interaction model is illustrated in Figure 5, we have the
workers wait until all assigned tiles are rendered, transferring the collected tile images once.

A problem with this approach is that the low bandwidth of the master device greatly
reduces the efficiency in data transmission when multiple workers attempt to send the
rendered images concurrently. For the tested mobile phone, the data transmission from
multiple workers tended to get serialized, incurring a significant overhead during tile
image collection. Paradoxically, balancing the rendering workload evenly often limits
the efficiency of the distributed computing system because most of worker nodes try to
transmit the tile images back to the master simultaneously. Interestingly, we found that
disturbing the workload balance between the workers often increases the overall frame
rate of the distributed rendering. This is because the rendering computation and the data
transmission tend to get overlapped at least partially, amortizing the data transmission cost
over the distributed rendering computation (refer to Figure 6).

Figure 5. Master–worker interaction model II. As more workers participate, the increased communi-
cation between mobile devices becomes the dominating factor that harms the efficiency of distributed
rendering. To overcome the problem, we propose adopting a simpler approach using static load
balancing. Interestingly, the uneven load distribution across workers paradoxically improves the
efficiency by effectively overlapping the tasks of image transmission and GPU ray tracing.
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Figure 6. The situation in which static load balancing is faster than dynamic load balancing. For mo-
bile wireless networks where the communication overhead is quite high compared to the workload,
the static load balancing method turns out to be often faster in distributed rendering.

Note that, particularly for mobile distributed rendering, the inefficient data transfer
acts as a critical factor that degrades system performance more than rendering calculations
do. In fact, we observed that even the trivial task of the master that distributes tile indices
dynamically to the respective workers causes unignorable degradation in performance due
to the high latency in data transfer. Hence, to maximize the throughput of the rendering
system, the second distributed rendering model adopts a static load balancing strategy in
which each worker sends back the tile images together once the whole rendering assignment
is taken care of. In this scheme, however, to avoid overloading a few workers excessively,
the entire image is subdivided into a collection of small tiles of given size, and assigned
statically to the respective workers in round-robin manner.

5. Results

To demonstrate the effectiveness of the presented mobile distributed ray tracing
scheme, we first implemented a full ray tracer that enables one to support the respective
size-reduction methods for the triangular mesh and kd-tree. The ray tracer was then
optimized on the mobile GPU with the OpenCL 2.0 API, in which work-groups of 8 × 8
work-items were applied for measuring timings. The tested mobile cluster of worker
devices (servers) was made of a LG G5 smartphones, each of which used the Qualcomm
Snapdragon 820 chipset equipped with the Adreno 530 GPU and was connected to an IEEE
802.11ac-based wireless network. On the other hand, an LG V50 smartphone adopting
the Qualcomm Snapdragon 855 chipset and the Adreno 640 GPU was used as the master
device (client).

For the worker device, a graphics memory allocation error is encountered when
trying to load rendering data larger than roughly 950 MB. Therefore, it would not have
been possible to ray trace the San Miguel and Power Plant scenes without applying the
presented size reduction techniques. In particular, San Miguel required the extra 226 MB
of memory space for loading its texture images. Therefore, in the experiment, this scene
was rendered without textures when needed. For consistent evaluation, all rendering times
were measured at a resolution of 1024 × 1024 pixels with respect to the camera views in
Figure 7.
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(a) Sponza (279K) (b) Soda Hall (2167K)

(c) San Miguel (9963 K) (d) Power Plant (12,749 K)

Figure 7. Example scenes and camera views tested. The figures in parentheses indicate the numbers
of triangles in the respective scenes.

5.1. Spatial and Temporal Performances of Size Reduction Methods

Table 6 summarizes how much the size of the original triangular mesh and kd-tree
was reduced for effective mobile ray tracing. As explained before, the vertex attributes of
the triangular mesh in the indexed-face-set format were compressed uniformly, storing
each of 32 bytes in 12 bytes. In contrast, since the face information, i.e., the list of the
vertex indices of triangles, was not compressed to minimize the decoding cost for random
accesses, the degree of triangle mesh compression depended on the scene data (refer
again to Table 3). On the other hand, the size reduction effect for the kd-tree was greater
when, as in San Miguel (see Table 5a,b), the scene contained more triangles that frequently
intersect with the axis-aligned splitting planes selected during the kd-tree construction.
Combined together, our size reduction methods achieved compression ratios of over 2:1 for
the three nontrivial scenes, permitting us to load the San Miguel and Power Plant scenes
into the GPU memory of the tested smartphone for effective distributed rendering.
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Table 6. Size reduction effect by the presented scene compression method.

Scene Original
(MB)

Ours
(MB)

Compression
Ratio

Sponza 22.2 12.0 1.85
Soda Hall 238.8 114.6 2.08

San Miguel 1018.3 425.5 2.39
Power Plant 1084.1 524.0 2.07

As emphasized before, rather than maximizing the compression ratio, we focused
more on keeping the extra cost for accessing the compressed triangular mesh and kd-tree
from increasing significantly after compression. This is particularly critical for efficient ray
tracing on a mobile device with limited processing power and memory bandwidth. Table 7
reveals the additional cost incurred by the geometry compression during distributed ray
tracing. When one worker device participates in rendering, the combination of the two size
reduction methods leads to up to a 15.7% of increase in computation time compared to the
uncompressed case (Table 7a).

Interestingly, this decreased significantly from 10.4% and 15.7% to 6.3% and 8.2%
for Sponza and Soda Hall, respectively, when 16 worker devices take part in distributed
rendering (Table 7b). Although we can not render the San Miguel and Power Plant scenes
without compression, such a trend is also found clearly from the measured timings for
these large scenes. This improvement in efficiency is presumed to have been because the
extra cost of handling the compressed geometry was amortized with other computations
of the distributed rendering. To wrap up, we confirm that the presented size reduction
methods impose only a small burden (less than 10%) on the mobile distributed ray tracing.

Table 7. Increases in rendering times due to scene compression. The ray tracing times taken for
producing images of 1024× 1024 pixels are reported in milliseconds. “T-mesh” and “Kd-tree” indicate
the cases when the respective size reduction techniques were applied, and "Both” indicates both
techniques were applied.

(a) One worker node participated

Original T-Mesh Kd-Tree Both

Sponza 2632.4 2832.2 2776.6 2905.4
(+7.6%) (+5.5%) (+10.4%)

Soda Hall 2788.1 2893.4 2936.9 3224.5
(+3.8%) (+5.3%) (+15.7%)

San Miguel – 3487.6 3661.1 4257.8
Power Plant – 3102.2 3203.0 3862.6

(b) 16 worker nodes participated

Original T-mesh Kd-tree Both

Sponza 358.1 366.8 361.9 380.6
(+2.4%) (+1.1%) (+6.3%)

Soda Hall 321.5 343.1 342.3 347.8
(+6.7%) (+6.5%) (+8.2%)

San Miguel – 409.2 428.5 433.4
Power Plant – 368.0 378.1 393.8

5.2. Performances of Mobile Distributed Ray Tracing

The size of the tile in the tile-based distributed ray tracing affects the rendering time
significantly, particularly in a mobile environment. In an effort to find an optimal size,
we measured the ray tracing times with varying sizes of tiles (see Figure 8). As shown in
Table 8, the tile of 128 × 128 pixels usually produced the best performance, although not al-
ways: when the tile was subdivided further into 64 × 64 and 32 × 32 pixels, the distributed
rendering time tended to increase rapidly. When more smaller tiles were assigned to a
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worker node, the ray tracing kernel needed to be launched on the GPU more frequently; rel-
atively higher overhead of launching kernels on the mobile GPU suggests not using tiles of
a size smaller than 128 × 128. Furthermore, in our tile-based distributed rendering, the tiles
are enumerated row by row and then distributed to the workers in round-robin manner.
Therefore, the locality of reference to scene geometry during ray tracing becomes worse for
smaller sizes of tiles, which also negatively affects the distributed rendering performance.

Table 8. Distributed ray tracing times for varying tile sizes. The rendering times for producing a
1024 × 1024 image using tiles of given pixel sizes are reported in milliseconds. In this experiment,
the static load balancing scheme was adopted for distributed ray tracing, which outperformed the
dynamic load balancing scheme, as will be explained shortly.

(a) One worker node participated

256×256 128×128 64×64 32×32

Sponza 3030.6 2905.4 3903.6 5754.2
Soda Hall 3107.8 3224.5 3839.0 5639.8

San Miguel 6208.7 6128.5 6744.9 8162.8
Power Plant 3939.7 3862.6 4682.2 6845.1

(b) 16 worker nodes participated

256×256 128×128 64×64 32×32

Sponza 374.4 380.6 396.6 522.7
Soda Hall 368.6 347.8 408.2 563.5

San Miguel 678.1 647.5 660.6 698.7
Power Plant 427.4 393.8 459.0 689.8

Finally, Table 9 compares the two load balancing schemes that are proposed in this
work. This experimental result where five runs were repeated to get each average rendering
time reveals how efficiently the distributed rendering time reduces while increasing the
number of participating worker machines. Here, the numbers in parentheses show the
efficiency that is defined as τ1

SτS
, in which τ1 and τS represent the execution times with one

worker and with S workers, respectively.
As shown in the tables, the achieved efficiencies were observed to be similar between

the two load balancing schemes until up to four worker nodes were used. However, as eight
nodes participated in the distributed rendering, the static strategy started to outperform
the dynamic one. When the number was doubled to 16, the difference in the efficiency
turned out to be significant among the two strategies. Particularly for the nontrivial scenes
other than Sponza, the efficiency value from the dynamic load balancing strategy is less
than a half of that from the static one. This is because the communication overheads grow
very fast as image tiles of smaller sizes are transmitted more frequently on the fly through
a mobile network. On the other hand, the static load balancing scheme was able to achieve
better efficiency by amortizing the data communication cost over the distributed rendering
computation, as explained before. Specifically, the static model was able to get efficiencies
of 57.9% to 61.3% for the large scenes with 2167 K to 12,749 K triangles when 16 commodity
smartphones participated in the distributed rendering. Considering the low-performance
of the consumer-grade mobile devices with limited memory space and bandwidth and the
high communication latency found in the mobile network environment, we believe the
the presented ray tracing scheme provides an effective computational model for mobile
distributed computing.
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Table 9. Mobile distributed ray tracing times for two load balancing strategies. The times to render
an image of 1024× 1024 pixels using 128× 128 tiles are reported in milliseconds for different numbers
of worker nodes that participate in distributed computing. The efficiency numbers in parentheses
measure the scalability of our mobile distributed ray tracer.

(a) Dynamic load balancing

1 2 4 8 16

Sponza 2763.2 1526.9 892.9 682.4 621.7
(1.000) (0.905) (0.774) (0.506) (0.278)

Soda Hall 3184.5 1711.2 937.2 720.8 698.7
(1.000) (0.930) (0.849) (0.552) (0.285)

San Miguel 5129.6 2883.7 1658.9 1293.2 1077.3
(1.000) (0.889) (0.761) (0.496) (0.298)

Power Plant 3218.5 1799.4 951.3 759.5 724.1
(1.000) (0.894) (0.846) (0.530) (0.278)

(b) Static load balancing

1 2 4 8 16

Sponza 2905.4 1680.9 896.4 546.5 380.6
(1.000) (0.864) (0.810) (0.665) (0.477)

Soda Hall 3224.5 1621.2 876.9 553.1 347.8
(1.000) (0.994) (0.919) (0.729) (0.579)

San Miguel 6128.5 3283.8 1828.7 1145.3 647.5
(1.000) (0.933) (0.838) (0.669) (0.592)

Power Plant 3862.6 2218.0 1364.9 704.6 393.8
(1.000) (0.871) (0.707) (0.685) (0.613)

(a) Distributed system with 16 worker nodes (b) Tile rendering

Figure 8. Our mobile distributed ray tracing system in action. (a) Sixteen worker devices participated
in the distributed rendering of the San Miguel scene with high complexity. (b) Tile images that were
produced by different worker nodes are overlaid in different colors to show the work distribution.

5.3. Augmenting Images Produced by Mobile AR and MR Sensors Using Ray Tracing

Handheld devices such as a smartphone and a tablet PC, and head-mounted displays
such as Microsoft HoloLens , are routinely used to capture or perceive real scene images in
augmented-reality (AR) and mixed-reality (MR) environments. The 6-degree-of-freedom (6-
DOF) pose in real 3D space can be effectively tracked for the handheld devices using
installed sensors such as an inertial measurement unit and/or a software toolkit such
as Apple ARKit and Vuforia. In addition, the camera pose of the HoloLens headset can
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also be estimated faithfully in the 3D space using its built-in tracking system. In the
previous experiment, the camera pose was selected using fingers on the touch screen of the
smartphone. Addition, the capability of real-time tracking of camera poses enables one
to combine these AR and MR devices with the presented mobile distributed ray tracing
system to render high-quality ray-traced images on their displays.

Figure 9 shows our proof-of-concept implementation in which an LG G5 smartphone
and a HoloLens headset functioned as master devices in the AR and MR environments,
respectively, whose tracked camera poses were continuously sent wirelessly to the mobile
cluster of worker devices. Then, the ray-traced images were sent back to the AR/MR
devices for the display on their respective screens. Although the resulting frame rates were
not sufficiently high for real-time rendering in the current test environments, we were
able to successfully augment the real scene images via the advanced rendering scheme at
interactive frame rates in the mobile AR and MR environments. Through the conceptual
demonstration, we showed the possibility of mobile ray tracing where the ubiquitous
mobile devices can help enhance the real scene images, either captured by the AR sensor or
perceived by the MR sensor, using high-quality rendering images.

(a) A smartphone in the AR environment (b) View from the smartphone display

(c) A HoloLens headset in the
MR environment

(d) View from the HoloLens headset

Figure 9. Mobile distributed ray tracingin AR and MR environments. Using the proposed mobile
rendering system, it is possible to display ray-traced images at interactive frame rates on the displays
of the tested AR and MR devices. By creating the optically-correct rendering effects such as shadow,
reflection and refraction on these AR and MR devices, we can enhance the real scene images either
captured by the AR device or perceived by the MR device, effectively augmenting the reality with
3D graphics.
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6. Concluding Remarks

In this paper, we have described a distributed ray tracing framework that is well suited
to a mobile compute cluster made of consumer-grade mobile devices. The experimental
results indicate that we can achieve a few frames per second on a small-scale mobile
cluster in which 16 low-end smartphones participate when creating high quality images of
1024 × 1024 pixels against large 3D scenes having a few million to 12 million triangles. This
is possible through the presented space-efficient scene representation scheme. For instance,
both the triangular mesh and kd-tree of such a large 3D scene as Power Plant having more
than 12 million triangles can be loaded onto 1 GB of GPU memory of a low-end smartphone.
We have also shown how our mobile ray tracing scheme can be effectively coupled with
XR applications where the images captured or perceived by AR and MR devices are nicely
augmented with realistic ray tracing effects.

Currently, the frame rates achieved by the presented method are not high enough for
real-time mobile ray tracing, which requires more than 30 frames per second. The most
serious bottleneck that hinders faster rendering is the limited transmission speed of the
wireless network we used in the experiment, which slows down drastically when more
than 16 workers are added to the compute cluster. We believe that this problem will be
alleviated soon as next-generation mobile networks that offer faster data transfer speed
are available in the near future. Then, a more sophisticated approach may be required,
in which, for example, multiple small-scale mobile clusters alternatively render interleaved
frames, effectively increasing the scalability of the presented mobile distributed rendering
system. To the best of our knowledge, this work is the first effort to explore a computing
cluster made of ubiquitous, easily available mobile devices, for interactively ray tracing
large 3D scenes. We believe that the proposed mobile distributed computing scheme can
easily be modified or extended for visualizing other kinds of large-scale scientific datasets.
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