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Abstract
Immersive video stored in multiview video-plus-depth format can provide viewers with vivid immersive experiences. How-
ever, rendering such video in real time in immersive environments remains a challenging task due to the high resolution and 
refresh rate demanded by recent extended reality displays. An essential issue in this immersive rendering is the disocclusion 
problem that inevitably occurs when virtual views are synthesized via the de facto standard 3D warping technique. In this 
paper, we present a novel virtual view synthesis framework that, from a live immersive video stream, renders stereoscopic 
images in real time for a freely moving virtual viewer. The main difference from previous approaches is that the surround-
ing background environment of the immersive video’s virtual scene is progressively reproduced on the fly directly in the 
3D space while the input stream is being rendered. To allow this, we propose a new 3D background modeling scheme that, 
based on GPU-accelerated real-time ray tracing, efficiently and incrementally builds the background model in compact 3D 
triangular mesh. Then, we demonstrate that the 3D background environment can effectively alleviate the critical disocclu-
sion problem in the immersive rendering, eventually reducing spatial and temporal aliasing artifacts. It is also suggested 
that the 3D representation of background environment enables extension of the virtual environment of immersive video by 
interactively adding 3D visual effects during rendering.

Keywords Immersive video · Real-time stereoscopic rendering · Disocclusion · 3D background model · Ray tracing · 
Virtual reality

1 Introduction

In computer graphics and computer vision, the so-called 
immersive video in the multiview video-plus-depth format  
(Vadakital et al. 2022; Müller et al. 2011), originated from 
3DTV and free-viewpoint video  (Fehn 2004; Smolic 2011), 
has attracted considerable attention in recent years. This 
is partially due to its potential ability to create immersive 
experiences in virtual reality, augmented reality, and mixed 
reality environments (hereinafter collectively referred to as 
extended reality (XR) environments). Commonly available 
consumer-grade head-mounted displays (HMDs) are capable 
of tracking in real time the viewer’s position and orientation 
in 3D space. These XR devices provide tools for a viewer 
to freely navigate the real or virtual 3D scene, captured in 
immersive video, with vivid immersive experiences.

The multiple depth-augmented reference views of immer-
sive video have been rendered or synthesized for an arbitrary 
virtual view using the traditional depth-image-based render-
ing (DIBR) method  (Fehn 2004). Although it will continue 
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to play a key role in rendering of immersive video, the real-
time task of synthesizing stereoscopic free-viewpoint images 
becomes more challenging in immersive environments. 
First, its computation must be fast enough to satisfy the high 
refresh rates of the HMDs (e.g.,, 80 Hz on the Oculus Rift 
S headset) to avoid any potential motion sickness. Efficient 
stereoscopic rendering is essential also because the display 
resolution of the recent XR headsets has become higher than 
ever. Second, the effective handling of the disocclusions that 
occur when a viewer moves away from reference views is 
one of the most critical issues in DIBR. In many XR appli-
cations, the viewer is basically allowed to move freely in a 
3D workspace, leading to camera motions that are usually 
larger than typically assumed in the conventional 3D video 
systems. The disocclusion problem becomes worse with 
increasing viewing baselines between the virtual and refer-
ence cameras, often resulting in visually annoying artifacts 
from larger holes. This is the case in the situation assumed 
in the present work in which the disocclusions must be filled 
very quickly in real time during rendering. Third, when an 
XR application is developed for a streaming immersive 
video, it is highly desirable to represent the progressively 
increasing 3D geometrical information in the video in an 
appropriate form and make effective use of it. For example, 
the extracted 3D geometry may be utilized for implementing 
such important 3D graphics operations as collision detection 
and delivering a realistic haptic response, helping increase 
immersiveness in the virtual environment.

In this paper, we present a novel real-time framework 
for interactively rendering a streaming immersive video in 
an immersive XR environment. Specifically, we develop a 
virtual view synthesis system that, from a live immersive 
video stream, generates stereoscopic images in real time for 
presenting on a freely moving HMD. The main contribution 
of our work is to progressively reconstruct a 3D background 
model on the fly from an immersive video stream. The idea 
of building a background model to reduce disocclusions dur-
ing virtual view synthesis has also been proposed (refer to 
Sect. 2 for discussion on related work). However, the previ-
ous approaches usually represented the extracted background 
information in the form of RGB or RGB-D images, which 
restricts their applicability to the development of 3D applica-
tions. In addition, due to the complexity of their algorithms, 
they often do not allow fast computations. By contrast, the 
proposed real-time method incrementally reconstructs 3D 
triangular meshes for probable background surfaces so that 
the created background model can immediately be applied 
in 3D graphics rendering pipelines for effective rendering 
of immersive video. In particular, our approach differs from 
previous work in that it utilizes the GPU-assisted real-time 
ray tracing technology  (NVIDIA 2021) to efficiently and 
progressively refine the background model directly in 3D 
space.

Figure 1 overviews how effectively our approach of uti-
lizing the 3D background model enhances the real-time 
rendering of live immersive video. The image (b) shows 
an OpenGL rendering of the 3D background environment 
that was progressively built in 3D triangular mesh up to the 
176th video frame. In this test, a rather large movement of a 
virtual camera from the reference cameras was used, which 
is visible in the image (c) that was rendered for the left eye 
using only one closest reference camera. The two images (d) 
and (e) compare the 3D warping results produced using five 
closest reference cameras without and with an application of 
the 3D background environment built thus far. Clearly, the 
disoccluded regions were diminished significantly thanks to 
the use of the 3D background model.

When the holes were finally filled using a real-time 
disocclusion filling method, the eventual effect of the pre-
sented 3D background modeling scheme is clearly observed 
through the corresponding two images (f) and (g) that were 
produced respectively from the previous two images. The 
last image (h) illustrates how easily such an interesting pro-
jector effect can be created interactively with the 3D back-
ground model during rendering, effectively augmenting the 
virtual environment in the video stream.

Using experiments with several immersive videos, we 
show that the proposed 3D background model can signifi-
cantly reduce disocclusions during rendering before apply-
ing an inherently incomplete real-time hole-filling algorithm. 
This is particularly important in developing XR applications 
because it allows the use of more ground-truth information 
inherent in immersive video, thereby eventually suppressing 
visually annoying artifacts in the final rendering despite rela-
tively large movements of a viewer in the 3D workspace. In 
addition to the enhancement of the rendering quality, we also 
show that the use of the 3D background model enables us 
to feed only a few reference views into our real-time virtual 
view synthesis pipeline, significantly reducing the compu-
tational burden for nontrivial immersive videos and high-
resolution HMDs. Finally, we suggest through an example 
how effectively the triangular mesh representation of the 3D 
background environment may easily create interesting 3D 
effects in immersive environments.

2  Previous work

First of all, this work focuses on the disocclusion-reduced, 
real-time rendering of immersive videos in the multiview 
plus depth video representation which is the main target 
format of the MPEG Immersive Video Standard  (Vadakital 
et al. 2022). Therefore, other video representation and ren-
dering strategies such as the multiplane image (e.g.,,  Zhou 
et  al. (2018); Flynn et  al. (2019)) and the multisphere 
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image (e.g.,,  Broxton et al. (2020)) are outside the scope 
of this work.

Immersive video, which is rooted in such visual media as 
3DTV, 3D video, and free-viewpoint video  (Müller et al. 
2011; Smolic 2011), effectively provides a viewer with a 
3D depth impression on captured sceneries. To render or 
synthesize arbitrary virtual views from multiple depth-
augmented reference views of immersive video, the DIBR 
scheme  (Fehn 2004; Zhu et al. 2013) has conventionally 
been applied, in which 3D image warping (or simply 3D 
warping)  (Mark et al. 1997) and disocclusion filling (or hole 
filling) are two essential components. In particular, the ulti-
mate goal of disocclusion filling is to reproduce the ground-
truth views against the missing image regions. It is, however, 
difficult or often impossible to accomplish due to incomplete 
information from input video streams.

To achieve faithful view synthesis results, it is important 
to effectively exploit the inherent information that exists 
spatially and temporally in the captured 3D scenes. In the 
spatial domain, since the introduction of the exemplar-based 
inpainting technique by Criminisi et al. (2004), a variety of 
image-based and geometry-based approaches for recovering 
the disoccluded regions have been proposed. On the other 
hand, temporal correlation between different time frames 
has been exploited to acquire more in-depth insights into the 
disoccluded regions and also alleviate the temporal flicker-
ing artifacts in the view synthesis results. For instance, in 
Huang and Zhang (2008), the uncovered background infor-
mation was extracted on the fly from temporally neighboring 
frames through a disparity analysis. Motion vectors were 
also approximated from preceding frames in Chen et al. 
(2010) to fill disoccluded regions in the virtual view.

Fig. 1  Rendering of live 
immersive video using a 
3D background model. The 
RGB-D views of this Hijack 
sequence (Doré 2018) were 
generated by 10 fixed reference 
cameras at 30 Hz where each 
view had 2048 × 2048 pixels

(a) A VR user in action (b) 3D background model (c) Current virtual view

(d) After 3D warping 1 (e) After 3D warping 2

(f) Final rendering 1 (g) Final rendering 2 (h) 3D projector effect
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A notable approach in the temporal domain is to incre-
mentally model or reconstruct the background of the scene 
from temporally neighboring frames, onto which foreground 
elements are composited. Such background information 
allows the use of more ground-truth data for synthesizing 
the background area for a virtual view, thereby reducing the 
disoccluded regions effectively. Criminisi et al. (2007) repre-
sented a temporal background model in terms of a disparity 
map and two color images for synthesizing virtual views 
from synchronized stereo video streams. A background 
image was incrementally updated from streaming 3D videos 
for a pair of static cameras in Schmeing and Jiang (2010), 
where pixels that are determined to depict static objects 
contributed to the background image. A temporally updated 
sprite model was used by Ndjiki-Nya et al. (2011) to store 
the background pixels with depth values below a content-
adaptive threshold. A background update method with scene 
adaptivity was also presented by Sun et al. (2012), in which 
the switchable Gaussian model improved both accuracy and 
efficiency in building a background model. In addition, to 
enhance the stability of the background update process, Yao 
et al. (2014) proposed another probabilistic technique that 
combines the Gaussian mixture model (GMM) and fore-
ground depth correlation. Then, Rahaman and Paul (2018) 
presented an improved GMM method to separate back-
ground and foreground pixels. Luo et al. (2020) compared 
three different background reconstruction models including 
their own modified GMM method  (Luo et al. 2016) in a 
general framework that enables moving cameras.

While effective, these previous approaches reproduced 
the background information basically in image space, which 
limited the applicability of their methods to the development 
of immersive 3D applications. Moreover, due to the com-
plexities of their algorithms, real-time processing was hardly 
possible. Recently, an interesting approach was proposed 
by Lee et al. (2021), where the 3D surfaces of the scene 
background were constructed from RGB-D video streams in 
terms of a point cloud in 3D world space. This 3D geometry 
was efficiently processed in the current 3D real-time render-
ing pipeline to markedly alleviate the disocclusion problem. 
However, their scheme needed considerable preprocessing 
time to build the 3D geometry, making it difficult to apply 
to live immersive video streams.

3  Our method

3.1  Problem specification

The proposed real-time stereoscopic virtual view synthesis 
system takes two asynchronous input streams in parallel. 
The first is an immersive video stream that is produced by 
multiple calibrated and synchronized reference cameras, 

capturing a given 3D scene at the video input rate of fvin 
fps. The second is an independent stream of six degrees-of-
freedom (6DoF) poses of a virtual stereo camera that moves 
freely in a 3D workspace defined around the reference cam-
eras. Then, the problem to solve is how to effectively render 
virtual stereoscopic views on the fly against these two input 
streams.

In the present work, our rendering scheme targets the 
dimension of immersive video that amounts to the nontrivial 
test sequences provided in the MPEG Test Model for Immer-
sive Video (TMIV) dataset  (Boyce et al. 2021), in which 
each time frame consists of 10–25 reference views of 2–8 
megapixels in RGB-D format each.

To achieve high efficiency in rendering, it is often 
required to restrict the number of reference views of high 
resolution that participate in the actual virtual view synthesis 
process. Therefore, our renderer dynamically selects nrender

rv
 

views from the entire reference views of the current time 
frame whose field of view overlaps the most with that of 
the virtual camera. Although the selection algorithm must 
be adapted to the specific camera constellation structure, it 
was often enough for the tested immersive videos to choose 
the reference cameras whose view directions are the most 
similar (in terms of inner product) to that of the virtual cam-
era. Using fewer cameras, however, would aggravate the dis-
occlusion problem further as less geometry information is 
utilized in the rendering process (see Fig. 2). To ease this 
problem, we apply the proposed 3D background model to 
prevent disocclusions from occurring as much as possible 
before filling them later in a rather incomplete manner.

Fig. 2  Occurrence of disocclusions. When only two reference cam-
eras RC7 and RC8 are chosen for view synthesis, the surfaces marked 
in red curve become uncovered against the virtual camera VC . The 
unselected reference view of RC6 of the current time frame would 
provide surface information on some part of the hole regions, or some 
of them may be visible by one of the selected cameras in a past video 
frame before a moving foreground object occluded them. The holes 
would decrease significantly if we could use all the reference views 
captured up to the current time by the entire reference cameras



Virtual Reality           (2024) 28:17  Page 5 of 17    17 

3.2  Overview of our virtual view synthesis system

Figure 3 illustrates the computational pipeline of the pre-
sented real-time rendering system that is performed entirely 
on the GPU. In the back end (3D Background Model 
Update), a double buffering framework is employed to 
perform data acquisition and rendering in parallel where 
the front buffer, swapped every 1

fvin
 second, always holds 

current views streaming from nrc reference cam-
eras  (Update Current Reference Views). Before the 
RGB-D images in the front buffer are used for view syn-
thesis, they are preprocessed to update a 3D geometry 
structure called the probable background sur-
face (PBS) (Update PBS). This is our 3D background 
model that aims to decrease disoccluded regions in the 3D 
warped images. This geometry structure is then rendered 
with respect to an imaginary camera whose view volume 
tightly covers the current view volumes of the virtual stereo 
camera of the XR headset, producing an RGB-D image 
called the probable background image  (PBI)  (Render 

PBI). Once the new PBS and PBI are prepared, the front 
buffer is ready for use in rendering for the next time period.

Meanwhile, the front end (Stereoscopic Image Ren-
dering), repeatedly synthesizes stereoscopic virtual views 
against the current 6DoF pose of a viewer. Each of the left 
and right views are rendered basically using the conven-
tional 3D warping (Perform 3D Warping) followed by a 
hole inpainting process (Fill Disocclusions). In this com-
putational pipeline, triangular meshes are first reconstructed 
in 3D world space from dynamically selected reference 
views (Select Subset of Ref. Cameras) using depth val-
ues, and then projected to each view plane of the stereo-
scopic virtual camera. The resulting stereo images are then 
sent to the virtual camera for immersive display (Present 
Stereo Images on HMD).

Two major issues in developing our rendering system 
were (i) how to progressively extract and accumulate the 
background environment information from a streaming 
immersive video (via the PBS), and (ii) how to efficiently 
exploit the incremental PBS to prevent holes appearing dur-
ing rendering as much as possible (via the PBI). In the next 

Fig. 3  Real-time stereoscopic rendering pipeline. A video frame, 
made of nrc reference views in RGB-D format, is repeatedly produced 
at the rate of fvin fps. In parallel, responding to a freely moving XR 
headset with display frame rate of fren fps, stereoscopic virtual views 
are rendered using (partially selected) reference views of the current 
video frame. The main contribution of our work, highlighted in red, 
is to incrementally build a triangular mesh, called the probable back-

ground surface (PBS) and exploit it for generating an RGB-D image, 
called the probable background image  (PBI) in every video frame. 
Thanks to the backdrop image, created from the PBI in every ren-
dering frame, the disocclusions that occur in the 3D warping stage 
decrease significantly, eventually leading to markedly improved ren-
dering results. To allow fast computation for handling the PBS and 
PBI, we exploit the ray tracing hardware provided by the latest GPUs
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two subsections, we discuss our solutions in detail. Note 
that the presented rendering pipeline is implemented pri-
marily on the CUDA platform while the OpenGL rendering 
system is exploited for optimized 3D warping and disocclu-
sion filling. Notably, the ray tracing operations, which are 
essential for real-time manipulation of the PBS and PBI, 
are accelerated using the NVIDA OptiX GPU ray tracing 
engine  (NVIDIA 2021). (This work exploits the ray tracing 
capability provided by the recent GPUs for fast computation. 
However, it should be noted that the ray tracing operations 
employed in the presented algorithms can equally be imple-
mented using the CUDA capability).

3.3  Progressive update of 3D background 
environment

For now, we only consider static reference cameras. Our 
method is then extended to also handle moving reference 
cameras in Sect. 4.2.

3.3.1  Hybrid structure for PBS

Although possibly incomplete, the triangular mesh of the 
PBS aims to represent the surrounding background of the 3D 
scene captured by the input immersive video stream received 
up to the current time frame. In our scheme, this is made up 
of two submeshes: the first, denoted by S-PBS (‘S’ in static), 
is built once in the initialization stage from the reference 
views of the first input frame, and remains unchanged during 
the entire period of video streaming. The second, denoted 
by P-PBS (‘P’ in progressive), is dynamically updated for 
each video input frame, thereby progressively refining the 
background information with the incoming reference views. 
These two triangular meshes, respectively stored in bound-
ing volume hierarchy (BVH), constitute an instance accel-
eration structure (IAS)  (NVIDIA 2021) on the NVIDIA 
OptiX ray tracing framework that allows effective GPU-
assisted ray tracing against immersive video data.

3.3.2  Initialization of PBS with S‑PBS

The function of the S-PBS is to offer a base triangular mesh 
for the surrounding 3D environment of a given scene, which 
is employed not only for view synthesis but also for updating 
the P-PBS subsequently. It is built in two steps by selecting 
proper triangles from those created by the input reference 
views of the first time frame. First, triangles are gathered in 
the world space by back-projecting the 2D triangular grid 
of the RGB-D image of each reference view based on its 
intrinsic and extrinsic parameters (see Fig. 4 for the triangle 
generation).

Note that the view frustums of the reference cameras 
usually overlap with each other, often making this process 

produce highly redundant triangles around the same surface 
areas. In order to prevent the size of the resulting S-PBS 
from growing excessively, we usually choose a subset of 
reference cameras of size ninit

rv
 whose views overlap as little 

as possible while covering the entire view space. The cam-
era selection procedure is done as follows. Starting from an 
arbitrarily selected reference camera, the 2D triangular grids 
of the cameras selected thus far are 3D warped respectively 
to the remaining reference camera spaces, and one with the 
smallest number of projected pixels are chosen next. This 
process is repeated until all needed reference cameras are 
selected.

Even with such selection of reference cameras, however, 
multiple triangles are still often mapped to the same surface 
regions if they are collected carelessly. To decrease such 
redundancy further, we add a triangle to the collection only 
if it represents a surface area farther than those of previously 
added triangles. This computation can easily be parallelized 
on the CUDA platform by first transforming each triangle 
from the current reference view to the respective image 
spaces of previously processed reference views, and accept-
ing it only if the transformed depths of the three vertices are 
sufficiently greater than those of the corresponding pixels.

Now, the collected triangles largely represent the sur-
rounding background surfaces in the 3D scene although 
some of them may be from foreground objects. Culling such 
foreground triangles from the S-PBS is important because 
the foreground objects may move unpredictably as time 
proceeds, possibly causing a ghost-like effect in view syn-
thesis results. Therefore, we take another step, namely fore-
ground culling, to remove the foreground triangles as much 
as possible. In this procedure, the gathered triangle set is 

Fig. 4  Generation of triangles from reference views. The depth values 
enable to generate triangular meshes in 3D world space by back-pro-
jecting the 2D triangles in the pixel grid, where each pixel is respon-
sible for two triangles in the northeastern quadrant. The invalid, long 
and thin, back-projected triangles along the borders of objects are 
culled in OpenGL geometry shader based on the depths of incident 
vertices
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first organized in a BVH on the NVIDIA OptiX framework 
for efficient ray tracing against them. Then, the participat-
ing reference cameras are visited one by one, casting two 
rays through each pixel of their view planes. (The two rays 
are generated by slightly offsetting the pixel center toward 
the two 2D triangles for which the pixel is responsible. See 
Fig. 4.) Here, in contrast to standard ray tracing, each ray is 
traced in an opposite direction starting from a location out-
side the scene’s bounding volume, marking the closest-hit 
triangle, if any, as valid. Then, all triangles except the valid 
ones are culled from the triangle collection (refer to Fig. 5).

While the above foreground culling algorithm catches 
most of the background triangles from the triangle collec-
tion, it often misses some due to error-prone depth values 
of immersive video. To cope with this numerical problem, 
another complementary ray is cast from just before each 
closest-hit point to search for any missing background tri-
angles in the vicinity of the closest-hit point (refer to Fig. 6a 
for details on this extra computation). After the follow-up 
ray tracing is finished, all valid triangles are compacted and 
reorganized in a BVH for the S-PBS. Then, together with 
a null P-PBS, it forms the IAS of the initial PBS. This is 
our 3D representation of the background environment of 

the scene observed by the reference cameras in the first time 
frame.

3.3.3  Update of the PBS through P‑PBS

Once the PBS is initialized, our system starts processing 
the immersive video stream. Given input reference views of 
the current time frame, if there has been a movement of a 
foreground object since the last time frame, parts of surfaces 
that were not originally visible may become disoccluded 
in some relevant reference views. The newly visible farther 
surfaces can be used to improve the PBS either by extend-
ing the surfaces of the surrounding 3D background or by 
culling existing foreground surfaces therefrom. However, 
restructuring the entire PBS every video frame to reflect 
small differences between successive time frames is not fea-
sible because the large size of the S-PBS component would 
hinder fast update. Therefore, our method utilizes another 

Fig. 5  Foreground culling. For each participating reference cam-
era, rays are cast from outside the scene toward the pixels of its view 
plane, marking the closest-hit triangles as valid. When all refer-
ence cameras are processed, the unmarked, foreground triangles are 
removed from the initial collection. For example, the two rays R� and 
R� , generated by the reference camera RCp , successfully cull the fore-
ground triangles T� to T� . Due to imperfect information from the input 
immersive video stream, however, some rays, e.g.,, R� and R� , fail to 
identify foreground triangles T� and T� , often making them remain 
after the foreground culling. They are culled in a later stage when the 
occluded background regions become uncovered by some reference 
cameras

Fig. 6  Two ray tracing operations for manipulating the PBS. a Ide-
ally, the background triangles generated from a reference view must 
be hit by the rays cast by its camera during the foreground culling 
process. For example, the triangle T� must be hit by the ray R� cast 
by the reference camera RC� . However, due to imprecise depth val-
ues of immersive video, a wrong triangle (e.g.,, T� ) is often hit by R� , 
leading to visually annoying, irregular holes on the surfaces of back-
ground geometry. To handle such z-fighting problem, after a closest-
hit point is found by a ray, we move the point back a short distance �

2
  , 

and cast another complementary ray along the same direction. Then, 
all triangles hit in the short interval [0, �] are additionally marked as 
valid. This follow-up ray casting can easily be implemented using the 
any-hit program of the recent ray tracing engines such as NVIDIA 
OptiX. b When new triangles (e.g.,, T� and T� ) are to be added in the 
current 3D background model, a ray is first cast from the reference 
camera through the center of each of them and intersected with the 
current PBS, represented by blue triangles. Then, a candidate trian-
gle is added in the current PBS via the P-PBS update only when it 
is more than distance � behind the closest-hit point (e.g.,, T� ). Other-
wise, it is simply removed from consideration (e.g.,, T� ). This ensures 
that only necessary triangles are to be added to the 3D background 
model
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BVH of (usually) small size, i.e., the P-PBS, to process the 
differential changes that occur over time.

For efficient implementation, each reference camera is 
associated with an RGB-D image of the same resolution, 
called the maximum depth image. Each pixel of this image, 
initially set to that of the reference view of the first time 
frame, stores the color and depth to the farthest surface 
observed through the pixel from the camera up to now. For 
every video input frame, each pixel of the maximum depth 
image is modified with the color and depth of the current 
reference view only if the new depth is farther by a nontrivial 
amount. The modified pixels indicate the regions in the refer-
ence view where farther surfaces become disoccluded. Such 
newly visible surfaces can be reconstructed in the 3D world 
space by generating triangles through the back-projection 
from the 2D triangles with at least one updated pixel (refer to 
Fig. 4 again). Note that some of the new triangles may rep-
resent background surfaces that are already represented by 
the current PBS. Thus, to prevent the size of the PBS from 
growing excessively, the unnecessary triangles are filtered 
out as described in Fig. 6b. The cost of this additional ray 
tracing operation is quite low because the number of newly 
visible triangles in each time frame is rather limited.

Now, after all the triangles of the disoccluded surfaces 
are gathered from the current reference views, they are 
merged with those in the current P-PBS, creating a tempo-
rary P-PBS in the BVH format. Then, the ray tracing-based 
foreground-culling procedure is carried out on the NVIDIA 
OptiX framework with respect to reference cameras using 
the IAS made of the S-PBS and the temporary P-PBS. As 
noted, we do not restructure the S-PBS part of the PBS due 
to its large size. Instead, the triangles in the S-PBS that are 
found to be foreground triangles are simply marked as inva-
lid in the triangle list so that they are simply ignored during 

ray tracing in the later stage. Meanwhile, foreground trian-
gles are culled from the triangle list of the P-PBS, and the 
survived triangles in the P-PBS are reorganized in a P-PBS 
again. Then, the new P-PBS replaces the old P-PBS part in 
the IAS, completing the PBS update (refer to the Update 
PBS component in Fig. 3).

Finally, when there are a rather large number of reference 
cameras in the system, updating the PBS with all of the 
high-resolution reference views in each video input frame 
would slow down the entire rendering process. In this case, 
we partition the reference views into groups of acceptable 
size of nupdaterv  , and use one group for each PBS update in a 
circular manner. (The workload of our renderer could also 
be reduced by performing the PBS update every few frames.) 
Note that even if a reference view does not participate in the 
PBS update of the current time frame, its maximum depth 
image is still updated in the background so that newly disoc-
cluded surfaces are eventually considered in the PBS update 
in a later time frame (see Fig. 7). Refer to Fig. 8 to take a 
look at the examples of the 3D background model built dur-
ing rendering.

3.4  Rendering with 3D background environment

3.4.1  Generation of PBI from PBS

The main usage of the PBS is to help effectively create 
backdrop images during rendering, on which virtual views 
are generated with reduced holes. The PBS could be used 
directly to render the background images for current stereo-
scopic virtual cameras. However, it is not very efficient to 
render the BVH data structure, which is often very large in 
size and managed by the NVIDIA OptiX platform, on the 
OpenGL system for every rendering frame. (Note that we 

Fig. 7  Possible lag in the PBS update (Hijack). In this test, only one 
reference frame out of 10 was used alternatively in the PBS update 
every video frame. This implies that there might be some delay in 
reflecting newly uncovered farther surfaces in the PBS. When the 
woman (marked by an arrow) started moving after the 0th frame (a), 

some parts of her body (marked by a circle) remained in the render-
ing images for a short period of some video frames  (b). However, 
they disappeared quickly as their triangles were removed eventually 
during the PBS update a few frames later (c). In general, it was dif-
ficult to notice such ghost-like effect on the tested HMD
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assume the frame rate of demanded rendering to be higher 
than that of video input.) Therefore, we generate an inter-
mediate RGB-D image, i.e., the PBI, from the updated PBS 
once per every video input frame, transfer it to the OpenGL 
pipeline as a light 2D texture, and use the 3D background 
information for creating the backdrop images during render-
ing that occurs for the next video input period.

To produce the PBI, we place in the virtual 3D space an 
imaginary camera just behind the current virtual camera of 
the XR headset. The view frustum of the imaginary camera 
is set up to be slightly larger than those of the stereoscopic 
view frustums of the virtual camera in order to consider a 
possible movement of the viewer until the next PBI update. 
Then, ray tracing is performed against the PBS by casting 
rays from outside the 3D scene toward the view plane, find-
ing the farthest hits seen from the imaginary camera. The 
resulting PBI is then a compact representation of the 3D 
background information that is actually needed for synthe-
sizing virtual views for the next video input period. Once 
the PBI rendering is finished (Render PBI in Fig. 3), the 
entire update for the current video frame is completed in 
the CUDA and OptiX platforms, and the current reference 
views and the PBI are handed to the OpenGL pipeline for 
rendering.

3.4.2  Creation of backdrop images with PBI

Now, the actual rendering begins against the current 6DoF 
pose of the viewer, whose procedure is basically the same 
as the conventional virtual view synthesis except for the use 
of the 3D background information compacted in the PBI. In 
the initial step, the RGB-D image of the PBI is 3D warped 
to each view plane of the stereoscopic virtual camera to cre-
ate the respective backdrop images (Render Backdrops 
in Fig. 3). Then, a selected set of current reference views 
are 3D warped onto these background images. Note that the 

z-fighting problem can occur during the 3D warping process. 
Therefore, the depth values of the original backdrop images 
are offset in the framebuffer so that the visible surfaces are 
moved slightly backward.

As noted, the use of the PBI and the backdrops result-
ing therefrom enables us to reduce the occurrence of disoc-
clusion holes, which significantly enhances the quality of 
rendering images. Just as importantly, it also allows for the 
use of fewer reference views even with a nontrivial baseline 
between the virtual and reference cameras, which markedly 
decreases the computational burden on the GPU.

3.4.3  Fast disocclusion filling by inpainting

In the final stage of rendering, the disocclusions that occur 
despite the use of the backdrop images need to be filled by 
a fast inpainting algorithm (Fill Disocclusions in Fig. 3). 
Because the aim of this work is focused on reducing occur-
rence of disocclusions during virtual view synthesis, we 
apply a simple pixel-based technique for hole filling that 
is well suited when the sizes of holes are rather small, as 
in the case of our renderer. More specifically, an OpenGL 
fragment shader is run on the image area in which the color 
of each fragment in a hole area is blended from the colors 
of neighboring pixels in nonhole areas, with those having 
farther depths more weighted.

Note that numerous approaches, ranging from the tradi-
tional patch- or diffusion-based to the newer deep learning-
based, have been reported in the literature for image inpaint-
ing (Elharrouss et al. 2020; Jam et al. 2021; Qin et al. 2021). 
Although these methods usually outperform our simple hole 
filling algorithm, they are often inappropriate for use in our 
real-time immersive video renderer because their complex-
ities are far beyond the computational budget allowed in 
this last stage. Finding an appropriate one for the presented 
immersive rendering is left as a future work.

Fig. 8  Progressive update of the 
PBS (Museum). The OpenGL 
renderings in a and b display 
the PBS in the virtual 3D space. 
As foreground persons move 
over time, either newly visible 
farther surfaces are added or 
falsely existing foreground sur-
faces are removed. The image 
c shows the actual triangular 
meshes in the PBS
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4  Experimental results

To evaluate the effectiveness of the 3D background model, 
we implemented the presented real-time stereoscopic view 
synthesis pipeline in Fig. 3 on a PC with dual NVIDIA 
GeForce RTX 3090 GPUs that provide dedicated ray trac-
ing hardware. While rendering, our system generated stereo 
images of 1280 × 1440 pixels per eye to display on an Oculus 
Rift S headset with 80 Hz refresh rate.

4.1  Test for scenarios of fixed reference cameras

Table  1 summarizes the video sequences from the 
TMIV (Boyce et al. 2021) that were used for performance 
evaluation. All these sequences were captured with fixed ref-
erence cameras. For the Hijack sequence, we used a down-
sampled version of the original data that had 4096 × 4096 
pixels per reference view. Note that the depth values of the 
Painter and Frog sequences were estimated on the respec-
tive natural contents with an image-based depth estimation 
method, and were thereby contaminated by noises.

In the presented experiment, the five nearest reference 
cameras were dynamically selected for rendering (nrender

rv
= 5 

in Sect. 3.1). Here, a rather large baseline between the virtual 
viewer and the reference cameras was tested to see the effect 
of the proposed 3D background model. Then, six reference 
views were used to initially build the S-PBS (ninit

rv
= 6 in 

Sect. 3.3.2). One reference view was selected for updat-
ing the P-PBS in a circular manner in each video input 
frame (nupdaterv = 1 in Sect. 3.3.3). In addition, the threshold � , 
used in the foreground culling process (see Fig. 6 again), was 
set to 0.2. This corresponds to 0.2 m as the depth ranges are 
[0.5 m, 25 m] (Hijack and Museum), [1 m, 10 m] (Painter), 
and [0.3 m, 1.62 m] (Frog).

We first compared the presented technique with the con-
ventional DIBR approach that simply uses all current refer-
ence views for virtual view synthesis. Figure 9 demonstrates 
how effectively the disocclusion artifacts in the 3D warped 
images were decreased with an application of the 3D back-
ground model. Then, the timing results in Table 2 show that 
the use of the 3D background model significantly reduces 

Table 1  Test immersive videos 
created from fixed reference 
cameras

Museum and Hijack are computer-generated contents with close-to-perfect depth maps. By contrast, 
Painter and Frog are natural contents with estimated depth. All these videos were generated at the rate of 
30 Hz. Refer to Jung and Kroon (2022) for the details of these sequences

Dataset Views Resolution Projection Content Ref

Museum 24 2048 × 2048 Omnidirectional CG  Doré (2018)
Hijack 10 2048 × 2048 Omnidirectional CG  Doré (2018)
Painter 16 2048 × 1088 Perspective Natural  Doyen et al. (2017)
Frog 13 1920 × 1080 Perspective Natural  Salahieh et al. 

(2018)

Fig. 9  Comparison of 3D warping results with the conventional 
DIBR approach. These images were created for the left eye in the ren-
dering frame just after the 299th frame of video input. a The tradi-
tional 3D warping method was first tested against all reference views 
of the video frame. b The 3D warping process was extended with the 
3D background model scheme and tested using only five selected 
views. Thanks to the 3D data structure, the disocclusion artifacts usu-
ally decreased noticeably, although our method used fewer reference 
views. Despite the overhead of handling the 3D background model, 
our method turned out to be markedly faster
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the view synthesis time despite the overhead of manipu-
lating the 3D data structure. Note that, for the scene with 
only fixed reference cameras, the effect of applying the 3D 
background model becomes greater when foreground objects 
move extensively. In the Museum scene, however, the people 
move only slightly in their places, thereby preventing new 
background surfaces from being added to the 3D background 
model. In this scene, the conventional approach using all 
reference views may result in fewer disocclusion artifacts. 
Even in such a case, our method using only five views was 
able to achieve much faster frame rates that are appropriate 

for stereoscopic display on the VR headset while reducing 
the hole areas as much as possible using the 3D background 
model.

Figures 1 and 10 demonstrate how effectively the 3D 
background model enhances the view synthesis process 
when only five closest reference views were selected for 
rendering. The backdrops, generated using our 3D back-
ground model in each rendering frame, greatly helped 
mitigate the occurrence of disocclusion holes in the 3D 
warping stage. This means that the areas in the rendering 
image that had to be filled by the subsequent real-time 
inpainting process were reduced significantly, eventually 
leading to improved rendering results.

Figure  11 then analyzes the computational cost for 
our renderer. The graphs in (a) and (b) reveal the over-
heads incurred when including the 3D background model 
scheme in the conventional virtual view synthesis pipe-
line (Museum, Hijack, Painter, and Frog from top to bot-
tom). In the beginning, it took 1.27, 0.33, 0.26, and 0.30 s 
to build the initial S-PBS structures that contained 32.82, 
9.05, 6.30, and 5.39 million triangles, respectively. Then, 
each pair of curves in (a) indicates, in millions, the size 
of newly exposed triangles simply accumulated without 
the foreground culling and the actual size of the P-PBS 
resulted from the foreground culling, respectively. For the 
Museum sequence, the two curves were almost the same. 
This was because almost all newly exposed surfaces actu-
ally turned out to be background surfaces, with only a few 
triangles removed by the foreground culling process. For 
Museum and Hijack with reliable depth values, reason-
able numbers of triangles were newly uncovered in every 

Table 2  Comparison of stereoscopic view synthesis times with the 
conventional DIBR approach

 For each test case, we provide two rendering times in milliseconds. 
The first is the pure computing time taken when the Oculus headset 
was not synced. The second in parentheses was taken when the head-
set was synced, in which the frame rate slowed down markedly due to 
the synchronization overhead. These results indicate that our method 
using five reference views performed rendering more efficiently with 
fewer disocclusion artifacts. Equally importantly, it progressively 
reconstructs the 3D background environment in triangular mesh from 
live immersive video stream, enabling the creation of 3D effects in 
immersive environments

Method Museum Hijack Painter Frog

(a) Up to 3D warping
DIBR 15.98 (28.84) 9.10 (16.04) 7.64 (15.63) 6.91 (13.30)
Ours 4.70 (12.99) 6.23 (14.63) 3.52 (11.86) 3.93 (11.86)
(b) Final rendering with disocclusion filling
DIBR 16.28 (33.59) 9.77 (17.78) 8.28 (17.53) 7.77 (15.60)
Ours 5.13 (13.13) 6.94 (15.84) 4.87 (12.20) 4.50 (12.22)

Fig. 10  Effect of 3D back-
ground model (3DBM) in 
virtual view synthesis. These 
images were generated for 
the left eye in the immer-
sive rendering frames just 
after the 260th (Museum), 
249th (Painter), and 
300th (Frog) frames of video 
input
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video input frame. By contrast, for Painter and Frog with 
estimated depths, more new triangles were involved in the 
P-PBS update, mainly due to the noise in the depth map. 
In both cases, however, our culling method was able to 
effectively remove foreground surfaces from the 3D back-
ground environment as expected. As shown in (b), this 
led to the PBS update time that stably fell below one time 
interval of video frames (1/30 sec).

On the other hand, the graphs in (c) presents the time 
for the entire stereoscopic rendering, where two adjacent 
columns indicate the times respectively taken when the 
sync on the Oculus headset was turned on and off. Here, 
the two pairs A & B and C & D compare the average 
rendering times spent when five closest reference cam-
eras were used without and with an application of the 

3D background model, respectively. The two in each pair 
respectively represent the times consumed without and 
with an application of disocclusion filling, indicating that 
only a little extra time was needed for the applied real-time 
hole-filling operation. Overall, we could almost achieve 
the highest possible frame rate on the tested HMD (80 Hz 
= 12.5 ms) although the GPU resources had to be shared 
between the PBS update and rendering tasks.

Finally, when three reference views were used with the 
3D background model (E & F), the average rendering time 
decreased slightly. Depending on the camera constellation, 
the use of the 3D background model often produced the ren-
dering quality that almost matches that of the five view case.

Note that a large portion of the PBS update time was 
spent on rebuilding the P-PBS into a BVH after the 

Fig. 11  Computational cost. The graphs in a and b indicate the spatial and temporal overheads of handling the proposed 3D background model. 
On the other hand, the graphs in c compare the total stereoscopic rendering times. Please see the text for details
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foreground culling, which had to be carried out through the 
time-consuming acceleration structure build operation of 
the OptiX ray tracing engine. In our implementation, we 
split the P-PBS into multiple BVHs, one per reference cam-
era, where the update task was performed to the correspond-
ing tree. Although this might slightly slow down the ray 
tracing performance due to a possible deterioration in the 
BVH quality, it effectively prevented an excessive delay in 
the rebuild operation. As a result, the PBS update time was 
shown to stably fall below one time interval of video frames 
for the four test sequences. This implies that, at most, one 
time interval lag was incurred in the video input, which was 
in fact hardly noticeable.

4.2  Extension for moving reference cameras

So far, we have only considered static reference cameras. To 
allow for a dynamic movement of reference camera during 
the generation of immersive video, the P-PBS update pro-
cess described in Sect. 3.3.3 needs to be extended slightly. 
When a reference camera has moved since the last frame, 
its maximum depth image is first reset with the depth of the 
current reference view. Then, we examine if there are newly 
visible surfaces in the current view that can be added to the 
3D background model as follows. Each pixel of the current 
view is back-projected to a 3D surface point in the world 
space, which is then projected onto the 2D image plane of 
the previous time frame. Then, using the depth of the maxi-
mum depth image of the previous frame, we check if the 
projected 2D pixel sees the same 3D surface point as the 
current pixel. If this is the case, no further processing is 
necessary (this occurs for most pixels because the move-
ments of the camera and/or objects between two sequential 
frames are differential).

If this is not the case, it is possible that the current pixel 
sees a new surface point that may augment the current 3D 

background model. To establish this, a ray is cast through the 
pixel of the current view, locating the farthest hit against the 
current PBS. (Note that this farthest hit is the surface point 
observed through the current pixel in the background envi-
ronment built thus far.) Only if the depth of the current pixel 
is greater than the distance to the farthest hit, it is marked 
as newly visible. After all the pixels in the current view are 
examined, the triangles reconstructed via back-projection 
from the marked pixels are merged with those in the current 
P-PBS, from which the subsequent foreground culling is car-
ried out to build the final P-PBS (refer to Sect. 3.3.3 again).

To evaluate the extended P-PBS update algorithm, we 
synthesized a video sequence, Gymnasium-a, made of 250 
frames using four fixed and one moving reference cam-
eras (see Fig. 12a). Each of the omnidirectional cameras 
produced an RGB-D image of 2048 × 2048 pixels per refer-
ence view. During visualizing the immersive video, we used 
two dynamically selected fixed cameras for rendering (nrender

rv
 

= 2), four fixed cameras for initially building the S-PBS (ninit
rv

 
= 4), and 0.2 m for the foreground culling (� = 0.2 ). Then, 
one reference view was selected from the participating cam-
eras for the P-PBS update in a circular manner in each video 
input frame (nupdaterv = 1 ). Here, two views were selected for 
rendering from the four fixed cameras whereas the views 
from the moving camera were used only for the P-PBS 
update.

When the moving camera was used, large numbers of 
triangles were newly exposed by the moving camera during 
every period of five video input frames as indicated by the 
blue curve in Fig. 12b. (The moving camera was selected 
every fifth frame among the five participating cameras for 
the P-PBS update as nupdaterv  was set to 1.) In fact, large por-
tions of such triangles actually corresponded to foreground 
surfaces with respect to some fixed reference cameras. Our 
foreground culling method was very effective in preventing 
such triangles from being added to the P-PBS as implied 

Fig. 12  Enabling a moving 
reference camera for immersive 
video. a In this video sequence, 
four fixed reference cameras 
were located near the center of 
the 3D scene looking around 
in the four orthogonal direc-
tions. In addition, one reference 
camera moved linearly in the air 
looking down the gymnasium. 
b When the moving camera was 
used, the presented foreground 
culling method was very effec-
tive in keeping the size of the 
P-PBS from growing exces-
sively
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by the orange curve. This eventually suppressed the exces-
sive (and unnecessary) growth of the 3D background model, 
allowing us to keep the PBS update time stably under 1/30 
sec.

In our experiment, we tested two situations where the 
reference views from the moving camera were not utilized 
and utilized for rendering the Gymnasium-a video (refer to 
Fig. 13a, b). As clearly seen, the effect of using the mov-
ing camera was substantial. It continuously scanned the 
3D scene from a different viewpoint to those of the fixed 
reference cameras. These extra views allowed us to effec-
tively augment the 3D background model, leading to 3D 
warping with markedly reduced hole areas. When only the 
fixed cameras were used for rendering (a), considerable 
holes remained even after the 249th input frame despite the 
use of the 3D background model. With the extra moving 
camera overlooking the scene (b), the disoccluded regions 
effectively diminished particularly as time proceeded. On 

average, it took 3.51 ms (13.22 ms) and 4.6 ms (15.57 ms) 
for the entire rendering without and with the additional mov-
ing camera. (Again, the figures in parentheses indicate tim-
ings taken when the Oculus headset was synced.)

To further test the presented P-PBS update algo-
rithm against the dynamic scene, we generated another 
video sequence, Gymnasium-b, where the Gymnasium-a 
sequence was slightly modified in such a way that a male 
runner moves faster than others. Interestingly enough, the 
effect of using the 3D background model was more observ-
able around the fast runner as can be identified in Fig. 13c. 
That was because, around the fast moving object, larger 
surface regions often became newly visible more quickly 
to a reference camera, whether static or dynamic, in each 
frame. As a result, those newly visible surfaces, added to 
the 3D background model, reduced the hole areas more 
effectively.

Before we wrap up, it should be noted that the sizes 
of the 3D scene spaces of the Gymnasium and Museum 
sequences are similar to each other, whereas five and 

Fig. 13  Effect of using a 
moving reference camera for 
immersive video. The images in 
(a) and (b) show the 3D warp-
ing results produced with the 
presented 3D background model 
for two different virtual views 
just after the 4th and 249th 
frames of video input. Unlike 
as in a, the moving reference 
camera that was added during 
generating the immersive video 
b allowed to effectively reduce 
the disoccluded regions (marked 
in light blue) during 3D warp-
ing. Each pair of images in c 
compare the 3D warping results 
generated without and with 
the 3D background model. 
They suggest that the effect of 
employing the 3D background 
model in this dynamic scene 
can be stronger around a fast 
moving object as larger surface 
areas may become newly vis-
ible to a reference camera per 
each frame, leading to a faster 
buildup of the 3D background 
model. Please watch the 
attached videos

After 4th frame After 249th frame
(a) After 3D warping with the fixed cameras only (Gymnasium-a)

After 4th frame After 249th frame
(b) After 3D warping with the extra moving camera (Gymnasium-a)

After 143rd frame After 170th frame
(c) After 3D warping with the extra moving camera (Gymnasium-b)
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24 reference cameras were employed for generating the 
respective videos. This test suggests that a moving refer-
ence camera can be a useful tool for reducing the size of 
immersive video as it significantly decreases the demand 
for fixed cameras even at improved rendering quality.

5  Concluding remarks

In this paper, we have demonstrated that the progressively 
refined 3D background model that is built on the fly in the 
virtual 3D space of immersive video enables us to effec-
tively exploit more ground-truth image data in the vir-
tual view synthesis process. This eased the burden of the 
inevitably incomplete real-time hole-filling task, thereby 
significantly alleviating both spatial and temporal aliasing 
artifacts in the final immersive rendering. Thanks to the 
3D background model, we were able to produce improved 
view synthesis results using a subset of input reference 
views in each time frame, which is important when a vir-
tual view is to be synthesized from reference views of high 
resolution. Unlike the previous view synthesis methods 
that usually assumed static reference cameras only, e.g.,, 
Vadakital et al. (2022), we demonstrated that our scheme 
of 3D background model is well suited for immersive vid-
eos made of both static and dynamic reference cameras. 
In addition, we also showed that the compact 3D repre-
sentation of the background environment allows us to eas-
ily create traditional 3D effects, at least partially, in the 
immersive 3D world.

Another possible GPU-based method for producing 
the 3D background information would be to exploit the 
OpenGL functionality on the GPUs. If depth buffering with 
GL_GREATER option is used, the resulting model would 
become quite dependent on the camera views and image 
resolutions selected for this OpenGL computation. (Multiple 
camera views would be necessary for spanning the entire 3D 
space.) In this case, it is more possible that foreground sur-
faces falsely remain as background surfaces. For instance, in 
Fig. 5, if the camera for building the 3D background model 
is placed in the middle of RCp and RCq , and the OpenGL 

rendering is carried out for finding back-most surfaces, the 
triangle such as T� easily remains as a background surface as 
there is no surface behind T� relative to the selected camera 
view. In addition, the depth values of immersive videos are 
often imperfect due to insufficient precision and/or inaccu-
rate estimation. If the OpenGL framework is employed, the 
inevitable z-fighting problem will produce a probable back-
ground image, PBI, of poor quality with annoying visual 
artifacts.

By contrast, the developed ray tracing-based method 
keeps the triangles in the vicinity of background surfaces, 
as implied by Fig. 6, as a part of 3D background model. This 
enables a more effective blending operation when the PBI 
is created using ray tracing from the probable background 
surface, PBS. Furthermore, the current hardware-accelerated 
ray tracing allows us to perform a more sophisticated fore-
ground culling process against reference cameras to remove 
false background triangles more effectively. Through the 
GPU-assisted ray tracing capability, the triangles of 3D 
background model are also organized easily and quickly into 
a BVH tree during foreground culling, in turn enabling effi-
cient 3D graphics operations in immersive 3D environment.

The developed method may appear limited in applicabil-
ity in that it demands GPUs that support hardware-assisted 
ray tracing. However, because such GPUs have recently 
become increasing common, this requirement will not be a 
problem. Table 3 compares the computational cost to ren-
der the Museum sequence with disocclusion filling on three 
recent GPUs (refer to Table 2b again). As these statistics 
show, the newest GPU (‘4090’ in the table) provides signifi-
cantly better ray tracing (CUDA and OpenGL also) perfor-
mance, which strongly implies that the presented framework 
for the real-time stereoscopic rendering of immersive video 
will be easily implementable on commodity GPUs in the 
very near future.

Currently, the presented immersive rendering scheme 
assumes static lighting only in input video as in many studies 
that exploit the temporal correlation between video frames 
for background modeling. This may cause temporal aliasing 
when the lighting condition varies over time. To overcome 
this problem, we are going to investigate how to efficiently 

Table 3  Immersive rendering 
performance on three selected 
GPUs

To further investigate the computational burden for including the 3D background model in the rendering 
of immersive video, we tested with three recent NVIDIA GPUs supporting hardware-accelerated ray trac-
ing for synthesizing stereoscopic views for the Museum sequence. Here, ‘3090’ and ‘4090’ represent the 
NVIDIA GeForce RTX 3090 and 4090 GPUs, respectively, while ‘A6000’ represents the NVIDIA Quadro 
RTX A6000 GPU. (Please refer to Table 2 again to understand what these figures in milliseconds indicate).

DIBR Ours

Single GPU Dual GPUs Single GPU Dual GPUs

3090 (2020) 30.36 (46.32) 16.28 (33.59) 8.93 (15.31) 5.13 (13.13)
A6000 (2020) 31.46 (41.03) 16.57 (27.06) 9.10 (14.14) 5.51 (12.79)
4090 (2022) 16.26 (25.00) – 4.33 (12.50) –
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reflect dynamic lighting changes during the PBS update for 
rendering natural images. A possible solution would be to 
partially replace the colors of visible vertices in the BVH of 
the PBS with those of 3D warped reference views of a new 
time frame.

Furthermore, the constructed 3D background model may 
contain some foreground surfaces, often temporally, during 
rendering without being removed by the foreground cull-
ing process. This problem is partially due to the numerical 
inaccuracy encountered in the GPU-assisted real-time ray 
tracing or, more seriously, the insufficient scene information 
provided by video streams. An additional application of a 
more sophisticated foreground removal algorithm, at least 
periodically, to the PBS structure would be helpful. Last 
but not least, the developed method tries to store only the 
farthest surfaces in the 3D background model, which may 
result in disocclusions on the surfaces of objects in the mid-
dle of scene. While it is quite desirable to keep multi-layers 
of surfaces in the 3D background model, the development 
of such a method that spends only a little time in the real-
time immersive rendering pipeline remains for future work.
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