
Vol.:(0123456789)

Virtual Reality (2024) 28:17
https://doi.org/10.1007/s10055-023-00921-w

ORIGINAL ARTICLE

Ray tracing‑based construction of 3D background model for real‑time
stereoscopic rendering of live immersive video

Youngwook Kim1 · Jehyeong Yun2 · Joungil Yun3 · Sangwoon Kwak3 · Insung Ihm1

Received: 15 January 2023 / Accepted: 7 December 2023
© The Author(s) 2024

Abstract
Immersive video stored in multiview video-plus-depth format can provide viewers with vivid immersive experiences. How-
ever, rendering such video in real time in immersive environments remains a challenging task due to the high resolution and
refresh rate demanded by recent extended reality displays. An essential issue in this immersive rendering is the disocclusion
problem that inevitably occurs when virtual views are synthesized via the de facto standard 3D warping technique. In this
paper, we present a novel virtual view synthesis framework that, from a live immersive video stream, renders stereoscopic
images in real time for a freely moving virtual viewer. The main difference from previous approaches is that the surround-
ing background environment of the immersive video’s virtual scene is progressively reproduced on the fly directly in the
3D space while the input stream is being rendered. To allow this, we propose a new 3D background modeling scheme that,
based on GPU-accelerated real-time ray tracing, efficiently and incrementally builds the background model in compact 3D
triangular mesh. Then, we demonstrate that the 3D background environment can effectively alleviate the critical disocclu-
sion problem in the immersive rendering, eventually reducing spatial and temporal aliasing artifacts. It is also suggested
that the 3D representation of background environment enables extension of the virtual environment of immersive video by
interactively adding 3D visual effects during rendering.

Keywords Immersive video · Real-time stereoscopic rendering · Disocclusion · 3D background model · Ray tracing ·
Virtual reality

1 Introduction

In computer graphics and computer vision, the so-called
immersive video in the multiview video-plus-depth format
(Vadakital et al. 2022; Müller et al. 2011), originated from
3DTV and free-viewpoint video (Fehn 2004; Smolic 2011),
has attracted considerable attention in recent years. This
is partially due to its potential ability to create immersive
experiences in virtual reality, augmented reality, and mixed
reality environments (hereinafter collectively referred to as
extended reality (XR) environments). Commonly available
consumer-grade head-mounted displays (HMDs) are capable
of tracking in real time the viewer’s position and orientation
in 3D space. These XR devices provide tools for a viewer
to freely navigate the real or virtual 3D scene, captured in
immersive video, with vivid immersive experiences.

The multiple depth-augmented reference views of immer-
sive video have been rendered or synthesized for an arbitrary
virtual view using the traditional depth-image-based render-
ing (DIBR) method (Fehn 2004). Although it will continue

 * Insung Ihm
 ihm@sogang.ac.kr

 Youngwook Kim
 kimyu7@sogang.ac.kr

 Jehyeong Yun
 yjh1121@midasit.com

 Joungil Yun
 sigipus@etri.re.kr

 Sangwoon Kwak
 s.kwak@etri.re.kr

1 Department of Computer Science and Engineering, Sogang
University, Seoul, Republic of Korea

2 CIM Dev. 1 Team, MIDAS Information Technology,
Seongnam, Republic of Korea

3 Media Research Division, Electronics
and Telecommunications Research Institute, Daejeon,
Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-023-00921-w&domain=pdf
http://orcid.org/0000-0002-5611-925X

 Virtual Reality (2024) 28:17 17 Page 2 of 17

to play a key role in rendering of immersive video, the real-
time task of synthesizing stereoscopic free-viewpoint images
becomes more challenging in immersive environments.
First, its computation must be fast enough to satisfy the high
refresh rates of the HMDs (e.g.,, 80 Hz on the Oculus Rift
S headset) to avoid any potential motion sickness. Efficient
stereoscopic rendering is essential also because the display
resolution of the recent XR headsets has become higher than
ever. Second, the effective handling of the disocclusions that
occur when a viewer moves away from reference views is
one of the most critical issues in DIBR. In many XR appli-
cations, the viewer is basically allowed to move freely in a
3D workspace, leading to camera motions that are usually
larger than typically assumed in the conventional 3D video
systems. The disocclusion problem becomes worse with
increasing viewing baselines between the virtual and refer-
ence cameras, often resulting in visually annoying artifacts
from larger holes. This is the case in the situation assumed
in the present work in which the disocclusions must be filled
very quickly in real time during rendering. Third, when an
XR application is developed for a streaming immersive
video, it is highly desirable to represent the progressively
increasing 3D geometrical information in the video in an
appropriate form and make effective use of it. For example,
the extracted 3D geometry may be utilized for implementing
such important 3D graphics operations as collision detection
and delivering a realistic haptic response, helping increase
immersiveness in the virtual environment.

In this paper, we present a novel real-time framework
for interactively rendering a streaming immersive video in
an immersive XR environment. Specifically, we develop a
virtual view synthesis system that, from a live immersive
video stream, generates stereoscopic images in real time for
presenting on a freely moving HMD. The main contribution
of our work is to progressively reconstruct a 3D background
model on the fly from an immersive video stream. The idea
of building a background model to reduce disocclusions dur-
ing virtual view synthesis has also been proposed (refer to
Sect. 2 for discussion on related work). However, the previ-
ous approaches usually represented the extracted background
information in the form of RGB or RGB-D images, which
restricts their applicability to the development of 3D applica-
tions. In addition, due to the complexity of their algorithms,
they often do not allow fast computations. By contrast, the
proposed real-time method incrementally reconstructs 3D
triangular meshes for probable background surfaces so that
the created background model can immediately be applied
in 3D graphics rendering pipelines for effective rendering
of immersive video. In particular, our approach differs from
previous work in that it utilizes the GPU-assisted real-time
ray tracing technology (NVIDIA 2021) to efficiently and
progressively refine the background model directly in 3D
space.

Figure 1 overviews how effectively our approach of uti-
lizing the 3D background model enhances the real-time
rendering of live immersive video. The image (b) shows
an OpenGL rendering of the 3D background environment
that was progressively built in 3D triangular mesh up to the
176th video frame. In this test, a rather large movement of a
virtual camera from the reference cameras was used, which
is visible in the image (c) that was rendered for the left eye
using only one closest reference camera. The two images (d)
and (e) compare the 3D warping results produced using five
closest reference cameras without and with an application of
the 3D background environment built thus far. Clearly, the
disoccluded regions were diminished significantly thanks to
the use of the 3D background model.

When the holes were finally filled using a real-time
disocclusion filling method, the eventual effect of the pre-
sented 3D background modeling scheme is clearly observed
through the corresponding two images (f) and (g) that were
produced respectively from the previous two images. The
last image (h) illustrates how easily such an interesting pro-
jector effect can be created interactively with the 3D back-
ground model during rendering, effectively augmenting the
virtual environment in the video stream.

Using experiments with several immersive videos, we
show that the proposed 3D background model can signifi-
cantly reduce disocclusions during rendering before apply-
ing an inherently incomplete real-time hole-filling algorithm.
This is particularly important in developing XR applications
because it allows the use of more ground-truth information
inherent in immersive video, thereby eventually suppressing
visually annoying artifacts in the final rendering despite rela-
tively large movements of a viewer in the 3D workspace. In
addition to the enhancement of the rendering quality, we also
show that the use of the 3D background model enables us
to feed only a few reference views into our real-time virtual
view synthesis pipeline, significantly reducing the compu-
tational burden for nontrivial immersive videos and high-
resolution HMDs. Finally, we suggest through an example
how effectively the triangular mesh representation of the 3D
background environment may easily create interesting 3D
effects in immersive environments.

2 Previous work

First of all, this work focuses on the disocclusion-reduced,
real-time rendering of immersive videos in the multiview
plus depth video representation which is the main target
format of the MPEG Immersive Video Standard (Vadakital
et al. 2022). Therefore, other video representation and ren-
dering strategies such as the multiplane image (e.g.,, Zhou
et al. (2018); Flynn et al. (2019)) and the multisphere

Virtual Reality (2024) 28:17 Page 3 of 17 17

image (e.g.,, Broxton et al. (2020)) are outside the scope
of this work.

Immersive video, which is rooted in such visual media as
3DTV, 3D video, and free-viewpoint video (Müller et al.
2011; Smolic 2011), effectively provides a viewer with a
3D depth impression on captured sceneries. To render or
synthesize arbitrary virtual views from multiple depth-
augmented reference views of immersive video, the DIBR
scheme (Fehn 2004; Zhu et al. 2013) has conventionally
been applied, in which 3D image warping (or simply 3D
warping) (Mark et al. 1997) and disocclusion filling (or hole
filling) are two essential components. In particular, the ulti-
mate goal of disocclusion filling is to reproduce the ground-
truth views against the missing image regions. It is, however,
difficult or often impossible to accomplish due to incomplete
information from input video streams.

To achieve faithful view synthesis results, it is important
to effectively exploit the inherent information that exists
spatially and temporally in the captured 3D scenes. In the
spatial domain, since the introduction of the exemplar-based
inpainting technique by Criminisi et al. (2004), a variety of
image-based and geometry-based approaches for recovering
the disoccluded regions have been proposed. On the other
hand, temporal correlation between different time frames
has been exploited to acquire more in-depth insights into the
disoccluded regions and also alleviate the temporal flicker-
ing artifacts in the view synthesis results. For instance, in
Huang and Zhang (2008), the uncovered background infor-
mation was extracted on the fly from temporally neighboring
frames through a disparity analysis. Motion vectors were
also approximated from preceding frames in Chen et al.
(2010) to fill disoccluded regions in the virtual view.

Fig. 1 Rendering of live
immersive video using a
3D background model. The
RGB-D views of this Hijack
sequence (Doré 2018) were
generated by 10 fixed reference
cameras at 30 Hz where each
view had 2048 × 2048 pixels

(a) A VR user in action (b) 3D background model (c) Current virtual view

(d) After 3D warping 1 (e) After 3D warping 2

(f) Final rendering 1 (g) Final rendering 2 (h) 3D projector effect

 Virtual Reality (2024) 28:17 17 Page 4 of 17

A notable approach in the temporal domain is to incre-
mentally model or reconstruct the background of the scene
from temporally neighboring frames, onto which foreground
elements are composited. Such background information
allows the use of more ground-truth data for synthesizing
the background area for a virtual view, thereby reducing the
disoccluded regions effectively. Criminisi et al. (2007) repre-
sented a temporal background model in terms of a disparity
map and two color images for synthesizing virtual views
from synchronized stereo video streams. A background
image was incrementally updated from streaming 3D videos
for a pair of static cameras in Schmeing and Jiang (2010),
where pixels that are determined to depict static objects
contributed to the background image. A temporally updated
sprite model was used by Ndjiki-Nya et al. (2011) to store
the background pixels with depth values below a content-
adaptive threshold. A background update method with scene
adaptivity was also presented by Sun et al. (2012), in which
the switchable Gaussian model improved both accuracy and
efficiency in building a background model. In addition, to
enhance the stability of the background update process, Yao
et al. (2014) proposed another probabilistic technique that
combines the Gaussian mixture model (GMM) and fore-
ground depth correlation. Then, Rahaman and Paul (2018)
presented an improved GMM method to separate back-
ground and foreground pixels. Luo et al. (2020) compared
three different background reconstruction models including
their own modified GMM method (Luo et al. 2016) in a
general framework that enables moving cameras.

While effective, these previous approaches reproduced
the background information basically in image space, which
limited the applicability of their methods to the development
of immersive 3D applications. Moreover, due to the com-
plexities of their algorithms, real-time processing was hardly
possible. Recently, an interesting approach was proposed
by Lee et al. (2021), where the 3D surfaces of the scene
background were constructed from RGB-D video streams in
terms of a point cloud in 3D world space. This 3D geometry
was efficiently processed in the current 3D real-time render-
ing pipeline to markedly alleviate the disocclusion problem.
However, their scheme needed considerable preprocessing
time to build the 3D geometry, making it difficult to apply
to live immersive video streams.

3 Our method

3.1 Problem specification

The proposed real-time stereoscopic virtual view synthesis
system takes two asynchronous input streams in parallel.
The first is an immersive video stream that is produced by
multiple calibrated and synchronized reference cameras,

capturing a given 3D scene at the video input rate of fvin
fps. The second is an independent stream of six degrees-of-
freedom (6DoF) poses of a virtual stereo camera that moves
freely in a 3D workspace defined around the reference cam-
eras. Then, the problem to solve is how to effectively render
virtual stereoscopic views on the fly against these two input
streams.

In the present work, our rendering scheme targets the
dimension of immersive video that amounts to the nontrivial
test sequences provided in the MPEG Test Model for Immer-
sive Video (TMIV) dataset (Boyce et al. 2021), in which
each time frame consists of 10–25 reference views of 2–8
megapixels in RGB-D format each.

To achieve high efficiency in rendering, it is often
required to restrict the number of reference views of high
resolution that participate in the actual virtual view synthesis
process. Therefore, our renderer dynamically selects nrender

rv

views from the entire reference views of the current time
frame whose field of view overlaps the most with that of
the virtual camera. Although the selection algorithm must
be adapted to the specific camera constellation structure, it
was often enough for the tested immersive videos to choose
the reference cameras whose view directions are the most
similar (in terms of inner product) to that of the virtual cam-
era. Using fewer cameras, however, would aggravate the dis-
occlusion problem further as less geometry information is
utilized in the rendering process (see Fig. 2). To ease this
problem, we apply the proposed 3D background model to
prevent disocclusions from occurring as much as possible
before filling them later in a rather incomplete manner.

Fig. 2 Occurrence of disocclusions. When only two reference cam-
eras RC7 and RC8 are chosen for view synthesis, the surfaces marked
in red curve become uncovered against the virtual camera VC . The
unselected reference view of RC6 of the current time frame would
provide surface information on some part of the hole regions, or some
of them may be visible by one of the selected cameras in a past video
frame before a moving foreground object occluded them. The holes
would decrease significantly if we could use all the reference views
captured up to the current time by the entire reference cameras

Virtual Reality (2024) 28:17 Page 5 of 17 17

3.2 Overview of our virtual view synthesis system

Figure 3 illustrates the computational pipeline of the pre-
sented real-time rendering system that is performed entirely
on the GPU. In the back end (3D Background Model
Update), a double buffering framework is employed to
perform data acquisition and rendering in parallel where
the front buffer, swapped every 1

fvin
 second, always holds

current views streaming from nrc reference cam-
eras (Update Current Reference Views). Before the
RGB-D images in the front buffer are used for view syn-
thesis, they are preprocessed to update a 3D geometry
structure called the probable background sur-
face (PBS) (Update PBS). This is our 3D background
model that aims to decrease disoccluded regions in the 3D
warped images. This geometry structure is then rendered
with respect to an imaginary camera whose view volume
tightly covers the current view volumes of the virtual stereo
camera of the XR headset, producing an RGB-D image
called the probable background image (PBI) (Render

PBI). Once the new PBS and PBI are prepared, the front
buffer is ready for use in rendering for the next time period.

Meanwhile, the front end (Stereoscopic Image Ren-
dering), repeatedly synthesizes stereoscopic virtual views
against the current 6DoF pose of a viewer. Each of the left
and right views are rendered basically using the conven-
tional 3D warping (Perform 3D Warping) followed by a
hole inpainting process (Fill Disocclusions). In this com-
putational pipeline, triangular meshes are first reconstructed
in 3D world space from dynamically selected reference
views (Select Subset of Ref. Cameras) using depth val-
ues, and then projected to each view plane of the stereo-
scopic virtual camera. The resulting stereo images are then
sent to the virtual camera for immersive display (Present
Stereo Images on HMD).

Two major issues in developing our rendering system
were (i) how to progressively extract and accumulate the
background environment information from a streaming
immersive video (via the PBS), and (ii) how to efficiently
exploit the incremental PBS to prevent holes appearing dur-
ing rendering as much as possible (via the PBI). In the next

Fig. 3 Real-time stereoscopic rendering pipeline. A video frame,
made of nrc reference views in RGB-D format, is repeatedly produced
at the rate of fvin fps. In parallel, responding to a freely moving XR
headset with display frame rate of fren fps, stereoscopic virtual views
are rendered using (partially selected) reference views of the current
video frame. The main contribution of our work, highlighted in red,
is to incrementally build a triangular mesh, called the probable back-

ground surface (PBS) and exploit it for generating an RGB-D image,
called the probable background image (PBI) in every video frame.
Thanks to the backdrop image, created from the PBI in every ren-
dering frame, the disocclusions that occur in the 3D warping stage
decrease significantly, eventually leading to markedly improved ren-
dering results. To allow fast computation for handling the PBS and
PBI, we exploit the ray tracing hardware provided by the latest GPUs

 Virtual Reality (2024) 28:17 17 Page 6 of 17

two subsections, we discuss our solutions in detail. Note
that the presented rendering pipeline is implemented pri-
marily on the CUDA platform while the OpenGL rendering
system is exploited for optimized 3D warping and disocclu-
sion filling. Notably, the ray tracing operations, which are
essential for real-time manipulation of the PBS and PBI,
are accelerated using the NVIDA OptiX GPU ray tracing
engine (NVIDIA 2021). (This work exploits the ray tracing
capability provided by the recent GPUs for fast computation.
However, it should be noted that the ray tracing operations
employed in the presented algorithms can equally be imple-
mented using the CUDA capability).

3.3 Progressive update of 3D background
environment

For now, we only consider static reference cameras. Our
method is then extended to also handle moving reference
cameras in Sect. 4.2.

3.3.1 Hybrid structure for PBS

Although possibly incomplete, the triangular mesh of the
PBS aims to represent the surrounding background of the 3D
scene captured by the input immersive video stream received
up to the current time frame. In our scheme, this is made up
of two submeshes: the first, denoted by S-PBS (‘S’ in static),
is built once in the initialization stage from the reference
views of the first input frame, and remains unchanged during
the entire period of video streaming. The second, denoted
by P-PBS (‘P’ in progressive), is dynamically updated for
each video input frame, thereby progressively refining the
background information with the incoming reference views.
These two triangular meshes, respectively stored in bound-
ing volume hierarchy (BVH), constitute an instance accel-
eration structure (IAS) (NVIDIA 2021) on the NVIDIA
OptiX ray tracing framework that allows effective GPU-
assisted ray tracing against immersive video data.

3.3.2 Initialization of PBS with S‑PBS

The function of the S-PBS is to offer a base triangular mesh
for the surrounding 3D environment of a given scene, which
is employed not only for view synthesis but also for updating
the P-PBS subsequently. It is built in two steps by selecting
proper triangles from those created by the input reference
views of the first time frame. First, triangles are gathered in
the world space by back-projecting the 2D triangular grid
of the RGB-D image of each reference view based on its
intrinsic and extrinsic parameters (see Fig. 4 for the triangle
generation).

Note that the view frustums of the reference cameras
usually overlap with each other, often making this process

produce highly redundant triangles around the same surface
areas. In order to prevent the size of the resulting S-PBS
from growing excessively, we usually choose a subset of
reference cameras of size ninit

rv
 whose views overlap as little

as possible while covering the entire view space. The cam-
era selection procedure is done as follows. Starting from an
arbitrarily selected reference camera, the 2D triangular grids
of the cameras selected thus far are 3D warped respectively
to the remaining reference camera spaces, and one with the
smallest number of projected pixels are chosen next. This
process is repeated until all needed reference cameras are
selected.

Even with such selection of reference cameras, however,
multiple triangles are still often mapped to the same surface
regions if they are collected carelessly. To decrease such
redundancy further, we add a triangle to the collection only
if it represents a surface area farther than those of previously
added triangles. This computation can easily be parallelized
on the CUDA platform by first transforming each triangle
from the current reference view to the respective image
spaces of previously processed reference views, and accept-
ing it only if the transformed depths of the three vertices are
sufficiently greater than those of the corresponding pixels.

Now, the collected triangles largely represent the sur-
rounding background surfaces in the 3D scene although
some of them may be from foreground objects. Culling such
foreground triangles from the S-PBS is important because
the foreground objects may move unpredictably as time
proceeds, possibly causing a ghost-like effect in view syn-
thesis results. Therefore, we take another step, namely fore-
ground culling, to remove the foreground triangles as much
as possible. In this procedure, the gathered triangle set is

Fig. 4 Generation of triangles from reference views. The depth values
enable to generate triangular meshes in 3D world space by back-pro-
jecting the 2D triangles in the pixel grid, where each pixel is respon-
sible for two triangles in the northeastern quadrant. The invalid, long
and thin, back-projected triangles along the borders of objects are
culled in OpenGL geometry shader based on the depths of incident
vertices

Virtual Reality (2024) 28:17 Page 7 of 17 17

first organized in a BVH on the NVIDIA OptiX framework
for efficient ray tracing against them. Then, the participat-
ing reference cameras are visited one by one, casting two
rays through each pixel of their view planes. (The two rays
are generated by slightly offsetting the pixel center toward
the two 2D triangles for which the pixel is responsible. See
Fig. 4.) Here, in contrast to standard ray tracing, each ray is
traced in an opposite direction starting from a location out-
side the scene’s bounding volume, marking the closest-hit
triangle, if any, as valid. Then, all triangles except the valid
ones are culled from the triangle collection (refer to Fig. 5).

While the above foreground culling algorithm catches
most of the background triangles from the triangle collec-
tion, it often misses some due to error-prone depth values
of immersive video. To cope with this numerical problem,
another complementary ray is cast from just before each
closest-hit point to search for any missing background tri-
angles in the vicinity of the closest-hit point (refer to Fig. 6a
for details on this extra computation). After the follow-up
ray tracing is finished, all valid triangles are compacted and
reorganized in a BVH for the S-PBS. Then, together with
a null P-PBS, it forms the IAS of the initial PBS. This is
our 3D representation of the background environment of

the scene observed by the reference cameras in the first time
frame.

3.3.3 Update of the PBS through P‑PBS

Once the PBS is initialized, our system starts processing
the immersive video stream. Given input reference views of
the current time frame, if there has been a movement of a
foreground object since the last time frame, parts of surfaces
that were not originally visible may become disoccluded
in some relevant reference views. The newly visible farther
surfaces can be used to improve the PBS either by extend-
ing the surfaces of the surrounding 3D background or by
culling existing foreground surfaces therefrom. However,
restructuring the entire PBS every video frame to reflect
small differences between successive time frames is not fea-
sible because the large size of the S-PBS component would
hinder fast update. Therefore, our method utilizes another

Fig. 5 Foreground culling. For each participating reference cam-
era, rays are cast from outside the scene toward the pixels of its view
plane, marking the closest-hit triangles as valid. When all refer-
ence cameras are processed, the unmarked, foreground triangles are
removed from the initial collection. For example, the two rays R� and
R� , generated by the reference camera RCp , successfully cull the fore-
ground triangles T� to T� . Due to imperfect information from the input
immersive video stream, however, some rays, e.g.,, R� and R� , fail to
identify foreground triangles T� and T� , often making them remain
after the foreground culling. They are culled in a later stage when the
occluded background regions become uncovered by some reference
cameras

Fig. 6 Two ray tracing operations for manipulating the PBS. a Ide-
ally, the background triangles generated from a reference view must
be hit by the rays cast by its camera during the foreground culling
process. For example, the triangle T� must be hit by the ray R� cast
by the reference camera RC� . However, due to imprecise depth val-
ues of immersive video, a wrong triangle (e.g.,, T�) is often hit by R� ,
leading to visually annoying, irregular holes on the surfaces of back-
ground geometry. To handle such z-fighting problem, after a closest-
hit point is found by a ray, we move the point back a short distance �

2
 ,

and cast another complementary ray along the same direction. Then,
all triangles hit in the short interval [0, �] are additionally marked as
valid. This follow-up ray casting can easily be implemented using the
any-hit program of the recent ray tracing engines such as NVIDIA
OptiX. b When new triangles (e.g.,, T� and T�) are to be added in the
current 3D background model, a ray is first cast from the reference
camera through the center of each of them and intersected with the
current PBS, represented by blue triangles. Then, a candidate trian-
gle is added in the current PBS via the P-PBS update only when it
is more than distance � behind the closest-hit point (e.g.,, T�). Other-
wise, it is simply removed from consideration (e.g.,, T�). This ensures
that only necessary triangles are to be added to the 3D background
model

 Virtual Reality (2024) 28:17 17 Page 8 of 17

BVH of (usually) small size, i.e., the P-PBS, to process the
differential changes that occur over time.

For efficient implementation, each reference camera is
associated with an RGB-D image of the same resolution,
called the maximum depth image. Each pixel of this image,
initially set to that of the reference view of the first time
frame, stores the color and depth to the farthest surface
observed through the pixel from the camera up to now. For
every video input frame, each pixel of the maximum depth
image is modified with the color and depth of the current
reference view only if the new depth is farther by a nontrivial
amount. The modified pixels indicate the regions in the refer-
ence view where farther surfaces become disoccluded. Such
newly visible surfaces can be reconstructed in the 3D world
space by generating triangles through the back-projection
from the 2D triangles with at least one updated pixel (refer to
Fig. 4 again). Note that some of the new triangles may rep-
resent background surfaces that are already represented by
the current PBS. Thus, to prevent the size of the PBS from
growing excessively, the unnecessary triangles are filtered
out as described in Fig. 6b. The cost of this additional ray
tracing operation is quite low because the number of newly
visible triangles in each time frame is rather limited.

Now, after all the triangles of the disoccluded surfaces
are gathered from the current reference views, they are
merged with those in the current P-PBS, creating a tempo-
rary P-PBS in the BVH format. Then, the ray tracing-based
foreground-culling procedure is carried out on the NVIDIA
OptiX framework with respect to reference cameras using
the IAS made of the S-PBS and the temporary P-PBS. As
noted, we do not restructure the S-PBS part of the PBS due
to its large size. Instead, the triangles in the S-PBS that are
found to be foreground triangles are simply marked as inva-
lid in the triangle list so that they are simply ignored during

ray tracing in the later stage. Meanwhile, foreground trian-
gles are culled from the triangle list of the P-PBS, and the
survived triangles in the P-PBS are reorganized in a P-PBS
again. Then, the new P-PBS replaces the old P-PBS part in
the IAS, completing the PBS update (refer to the Update
PBS component in Fig. 3).

Finally, when there are a rather large number of reference
cameras in the system, updating the PBS with all of the
high-resolution reference views in each video input frame
would slow down the entire rendering process. In this case,
we partition the reference views into groups of acceptable
size of nupdaterv , and use one group for each PBS update in a
circular manner. (The workload of our renderer could also
be reduced by performing the PBS update every few frames.)
Note that even if a reference view does not participate in the
PBS update of the current time frame, its maximum depth
image is still updated in the background so that newly disoc-
cluded surfaces are eventually considered in the PBS update
in a later time frame (see Fig. 7). Refer to Fig. 8 to take a
look at the examples of the 3D background model built dur-
ing rendering.

3.4 Rendering with 3D background environment

3.4.1 Generation of PBI from PBS

The main usage of the PBS is to help effectively create
backdrop images during rendering, on which virtual views
are generated with reduced holes. The PBS could be used
directly to render the background images for current stereo-
scopic virtual cameras. However, it is not very efficient to
render the BVH data structure, which is often very large in
size and managed by the NVIDIA OptiX platform, on the
OpenGL system for every rendering frame. (Note that we

Fig. 7 Possible lag in the PBS update (Hijack). In this test, only one
reference frame out of 10 was used alternatively in the PBS update
every video frame. This implies that there might be some delay in
reflecting newly uncovered farther surfaces in the PBS. When the
woman (marked by an arrow) started moving after the 0th frame (a),

some parts of her body (marked by a circle) remained in the render-
ing images for a short period of some video frames (b). However,
they disappeared quickly as their triangles were removed eventually
during the PBS update a few frames later (c). In general, it was dif-
ficult to notice such ghost-like effect on the tested HMD

Virtual Reality (2024) 28:17 Page 9 of 17 17

assume the frame rate of demanded rendering to be higher
than that of video input.) Therefore, we generate an inter-
mediate RGB-D image, i.e., the PBI, from the updated PBS
once per every video input frame, transfer it to the OpenGL
pipeline as a light 2D texture, and use the 3D background
information for creating the backdrop images during render-
ing that occurs for the next video input period.

To produce the PBI, we place in the virtual 3D space an
imaginary camera just behind the current virtual camera of
the XR headset. The view frustum of the imaginary camera
is set up to be slightly larger than those of the stereoscopic
view frustums of the virtual camera in order to consider a
possible movement of the viewer until the next PBI update.
Then, ray tracing is performed against the PBS by casting
rays from outside the 3D scene toward the view plane, find-
ing the farthest hits seen from the imaginary camera. The
resulting PBI is then a compact representation of the 3D
background information that is actually needed for synthe-
sizing virtual views for the next video input period. Once
the PBI rendering is finished (Render PBI in Fig. 3), the
entire update for the current video frame is completed in
the CUDA and OptiX platforms, and the current reference
views and the PBI are handed to the OpenGL pipeline for
rendering.

3.4.2 Creation of backdrop images with PBI

Now, the actual rendering begins against the current 6DoF
pose of the viewer, whose procedure is basically the same
as the conventional virtual view synthesis except for the use
of the 3D background information compacted in the PBI. In
the initial step, the RGB-D image of the PBI is 3D warped
to each view plane of the stereoscopic virtual camera to cre-
ate the respective backdrop images (Render Backdrops
in Fig. 3). Then, a selected set of current reference views
are 3D warped onto these background images. Note that the

z-fighting problem can occur during the 3D warping process.
Therefore, the depth values of the original backdrop images
are offset in the framebuffer so that the visible surfaces are
moved slightly backward.

As noted, the use of the PBI and the backdrops result-
ing therefrom enables us to reduce the occurrence of disoc-
clusion holes, which significantly enhances the quality of
rendering images. Just as importantly, it also allows for the
use of fewer reference views even with a nontrivial baseline
between the virtual and reference cameras, which markedly
decreases the computational burden on the GPU.

3.4.3 Fast disocclusion filling by inpainting

In the final stage of rendering, the disocclusions that occur
despite the use of the backdrop images need to be filled by
a fast inpainting algorithm (Fill Disocclusions in Fig. 3).
Because the aim of this work is focused on reducing occur-
rence of disocclusions during virtual view synthesis, we
apply a simple pixel-based technique for hole filling that
is well suited when the sizes of holes are rather small, as
in the case of our renderer. More specifically, an OpenGL
fragment shader is run on the image area in which the color
of each fragment in a hole area is blended from the colors
of neighboring pixels in nonhole areas, with those having
farther depths more weighted.

Note that numerous approaches, ranging from the tradi-
tional patch- or diffusion-based to the newer deep learning-
based, have been reported in the literature for image inpaint-
ing (Elharrouss et al. 2020; Jam et al. 2021; Qin et al. 2021).
Although these methods usually outperform our simple hole
filling algorithm, they are often inappropriate for use in our
real-time immersive video renderer because their complex-
ities are far beyond the computational budget allowed in
this last stage. Finding an appropriate one for the presented
immersive rendering is left as a future work.

Fig. 8 Progressive update of the
PBS (Museum). The OpenGL
renderings in a and b display
the PBS in the virtual 3D space.
As foreground persons move
over time, either newly visible
farther surfaces are added or
falsely existing foreground sur-
faces are removed. The image
c shows the actual triangular
meshes in the PBS

 Virtual Reality (2024) 28:17 17 Page 10 of 17

4 Experimental results

To evaluate the effectiveness of the 3D background model,
we implemented the presented real-time stereoscopic view
synthesis pipeline in Fig. 3 on a PC with dual NVIDIA
GeForce RTX 3090 GPUs that provide dedicated ray trac-
ing hardware. While rendering, our system generated stereo
images of 1280 × 1440 pixels per eye to display on an Oculus
Rift S headset with 80 Hz refresh rate.

4.1 Test for scenarios of fixed reference cameras

Table 1 summarizes the video sequences from the
TMIV (Boyce et al. 2021) that were used for performance
evaluation. All these sequences were captured with fixed ref-
erence cameras. For the Hijack sequence, we used a down-
sampled version of the original data that had 4096 × 4096
pixels per reference view. Note that the depth values of the
Painter and Frog sequences were estimated on the respec-
tive natural contents with an image-based depth estimation
method, and were thereby contaminated by noises.

In the presented experiment, the five nearest reference
cameras were dynamically selected for rendering (nrender

rv
= 5

in Sect. 3.1). Here, a rather large baseline between the virtual
viewer and the reference cameras was tested to see the effect
of the proposed 3D background model. Then, six reference
views were used to initially build the S-PBS (ninit

rv
= 6 in

Sect. 3.3.2). One reference view was selected for updat-
ing the P-PBS in a circular manner in each video input
frame (nupdaterv = 1 in Sect. 3.3.3). In addition, the threshold � ,
used in the foreground culling process (see Fig. 6 again), was
set to 0.2. This corresponds to 0.2 m as the depth ranges are
[0.5 m, 25 m] (Hijack and Museum), [1 m, 10 m] (Painter),
and [0.3 m, 1.62 m] (Frog).

We first compared the presented technique with the con-
ventional DIBR approach that simply uses all current refer-
ence views for virtual view synthesis. Figure 9 demonstrates
how effectively the disocclusion artifacts in the 3D warped
images were decreased with an application of the 3D back-
ground model. Then, the timing results in Table 2 show that
the use of the 3D background model significantly reduces

Table 1 Test immersive videos
created from fixed reference
cameras

Museum and Hijack are computer-generated contents with close-to-perfect depth maps. By contrast,
Painter and Frog are natural contents with estimated depth. All these videos were generated at the rate of
30 Hz. Refer to Jung and Kroon (2022) for the details of these sequences

Dataset Views Resolution Projection Content Ref

Museum 24 2048 × 2048 Omnidirectional CG Doré (2018)
Hijack 10 2048 × 2048 Omnidirectional CG Doré (2018)
Painter 16 2048 × 1088 Perspective Natural Doyen et al. (2017)
Frog 13 1920 × 1080 Perspective Natural Salahieh et al.

(2018)

Fig. 9 Comparison of 3D warping results with the conventional
DIBR approach. These images were created for the left eye in the ren-
dering frame just after the 299th frame of video input. a The tradi-
tional 3D warping method was first tested against all reference views
of the video frame. b The 3D warping process was extended with the
3D background model scheme and tested using only five selected
views. Thanks to the 3D data structure, the disocclusion artifacts usu-
ally decreased noticeably, although our method used fewer reference
views. Despite the overhead of handling the 3D background model,
our method turned out to be markedly faster

Virtual Reality (2024) 28:17 Page 11 of 17 17

the view synthesis time despite the overhead of manipu-
lating the 3D data structure. Note that, for the scene with
only fixed reference cameras, the effect of applying the 3D
background model becomes greater when foreground objects
move extensively. In the Museum scene, however, the people
move only slightly in their places, thereby preventing new
background surfaces from being added to the 3D background
model. In this scene, the conventional approach using all
reference views may result in fewer disocclusion artifacts.
Even in such a case, our method using only five views was
able to achieve much faster frame rates that are appropriate

for stereoscopic display on the VR headset while reducing
the hole areas as much as possible using the 3D background
model.

Figures 1 and 10 demonstrate how effectively the 3D
background model enhances the view synthesis process
when only five closest reference views were selected for
rendering. The backdrops, generated using our 3D back-
ground model in each rendering frame, greatly helped
mitigate the occurrence of disocclusion holes in the 3D
warping stage. This means that the areas in the rendering
image that had to be filled by the subsequent real-time
inpainting process were reduced significantly, eventually
leading to improved rendering results.

Figure 11 then analyzes the computational cost for
our renderer. The graphs in (a) and (b) reveal the over-
heads incurred when including the 3D background model
scheme in the conventional virtual view synthesis pipe-
line (Museum, Hijack, Painter, and Frog from top to bot-
tom). In the beginning, it took 1.27, 0.33, 0.26, and 0.30 s
to build the initial S-PBS structures that contained 32.82,
9.05, 6.30, and 5.39 million triangles, respectively. Then,
each pair of curves in (a) indicates, in millions, the size
of newly exposed triangles simply accumulated without
the foreground culling and the actual size of the P-PBS
resulted from the foreground culling, respectively. For the
Museum sequence, the two curves were almost the same.
This was because almost all newly exposed surfaces actu-
ally turned out to be background surfaces, with only a few
triangles removed by the foreground culling process. For
Museum and Hijack with reliable depth values, reason-
able numbers of triangles were newly uncovered in every

Table 2 Comparison of stereoscopic view synthesis times with the
conventional DIBR approach

 For each test case, we provide two rendering times in milliseconds.
The first is the pure computing time taken when the Oculus headset
was not synced. The second in parentheses was taken when the head-
set was synced, in which the frame rate slowed down markedly due to
the synchronization overhead. These results indicate that our method
using five reference views performed rendering more efficiently with
fewer disocclusion artifacts. Equally importantly, it progressively
reconstructs the 3D background environment in triangular mesh from
live immersive video stream, enabling the creation of 3D effects in
immersive environments

Method Museum Hijack Painter Frog

(a) Up to 3D warping
DIBR 15.98 (28.84) 9.10 (16.04) 7.64 (15.63) 6.91 (13.30)
Ours 4.70 (12.99) 6.23 (14.63) 3.52 (11.86) 3.93 (11.86)
(b) Final rendering with disocclusion filling
DIBR 16.28 (33.59) 9.77 (17.78) 8.28 (17.53) 7.77 (15.60)
Ours 5.13 (13.13) 6.94 (15.84) 4.87 (12.20) 4.50 (12.22)

Fig. 10 Effect of 3D back-
ground model (3DBM) in
virtual view synthesis. These
images were generated for
the left eye in the immer-
sive rendering frames just
after the 260th (Museum),
249th (Painter), and
300th (Frog) frames of video
input

 Virtual Reality (2024) 28:17 17 Page 12 of 17

video input frame. By contrast, for Painter and Frog with
estimated depths, more new triangles were involved in the
P-PBS update, mainly due to the noise in the depth map.
In both cases, however, our culling method was able to
effectively remove foreground surfaces from the 3D back-
ground environment as expected. As shown in (b), this
led to the PBS update time that stably fell below one time
interval of video frames (1/30 sec).

On the other hand, the graphs in (c) presents the time
for the entire stereoscopic rendering, where two adjacent
columns indicate the times respectively taken when the
sync on the Oculus headset was turned on and off. Here,
the two pairs A & B and C & D compare the average
rendering times spent when five closest reference cam-
eras were used without and with an application of the

3D background model, respectively. The two in each pair
respectively represent the times consumed without and
with an application of disocclusion filling, indicating that
only a little extra time was needed for the applied real-time
hole-filling operation. Overall, we could almost achieve
the highest possible frame rate on the tested HMD (80 Hz
= 12.5 ms) although the GPU resources had to be shared
between the PBS update and rendering tasks.

Finally, when three reference views were used with the
3D background model (E & F), the average rendering time
decreased slightly. Depending on the camera constellation,
the use of the 3D background model often produced the ren-
dering quality that almost matches that of the five view case.

Note that a large portion of the PBS update time was
spent on rebuilding the P-PBS into a BVH after the

Fig. 11 Computational cost. The graphs in a and b indicate the spatial and temporal overheads of handling the proposed 3D background model.
On the other hand, the graphs in c compare the total stereoscopic rendering times. Please see the text for details

Virtual Reality (2024) 28:17 Page 13 of 17 17

foreground culling, which had to be carried out through the
time-consuming acceleration structure build operation of
the OptiX ray tracing engine. In our implementation, we
split the P-PBS into multiple BVHs, one per reference cam-
era, where the update task was performed to the correspond-
ing tree. Although this might slightly slow down the ray
tracing performance due to a possible deterioration in the
BVH quality, it effectively prevented an excessive delay in
the rebuild operation. As a result, the PBS update time was
shown to stably fall below one time interval of video frames
for the four test sequences. This implies that, at most, one
time interval lag was incurred in the video input, which was
in fact hardly noticeable.

4.2 Extension for moving reference cameras

So far, we have only considered static reference cameras. To
allow for a dynamic movement of reference camera during
the generation of immersive video, the P-PBS update pro-
cess described in Sect. 3.3.3 needs to be extended slightly.
When a reference camera has moved since the last frame,
its maximum depth image is first reset with the depth of the
current reference view. Then, we examine if there are newly
visible surfaces in the current view that can be added to the
3D background model as follows. Each pixel of the current
view is back-projected to a 3D surface point in the world
space, which is then projected onto the 2D image plane of
the previous time frame. Then, using the depth of the maxi-
mum depth image of the previous frame, we check if the
projected 2D pixel sees the same 3D surface point as the
current pixel. If this is the case, no further processing is
necessary (this occurs for most pixels because the move-
ments of the camera and/or objects between two sequential
frames are differential).

If this is not the case, it is possible that the current pixel
sees a new surface point that may augment the current 3D

background model. To establish this, a ray is cast through the
pixel of the current view, locating the farthest hit against the
current PBS. (Note that this farthest hit is the surface point
observed through the current pixel in the background envi-
ronment built thus far.) Only if the depth of the current pixel
is greater than the distance to the farthest hit, it is marked
as newly visible. After all the pixels in the current view are
examined, the triangles reconstructed via back-projection
from the marked pixels are merged with those in the current
P-PBS, from which the subsequent foreground culling is car-
ried out to build the final P-PBS (refer to Sect. 3.3.3 again).

To evaluate the extended P-PBS update algorithm, we
synthesized a video sequence, Gymnasium-a, made of 250
frames using four fixed and one moving reference cam-
eras (see Fig. 12a). Each of the omnidirectional cameras
produced an RGB-D image of 2048 × 2048 pixels per refer-
ence view. During visualizing the immersive video, we used
two dynamically selected fixed cameras for rendering (nrender

rv

= 2), four fixed cameras for initially building the S-PBS (ninit
rv

= 4), and 0.2 m for the foreground culling (� = 0.2). Then,
one reference view was selected from the participating cam-
eras for the P-PBS update in a circular manner in each video
input frame (nupdaterv = 1). Here, two views were selected for
rendering from the four fixed cameras whereas the views
from the moving camera were used only for the P-PBS
update.

When the moving camera was used, large numbers of
triangles were newly exposed by the moving camera during
every period of five video input frames as indicated by the
blue curve in Fig. 12b. (The moving camera was selected
every fifth frame among the five participating cameras for
the P-PBS update as nupdaterv was set to 1.) In fact, large por-
tions of such triangles actually corresponded to foreground
surfaces with respect to some fixed reference cameras. Our
foreground culling method was very effective in preventing
such triangles from being added to the P-PBS as implied

Fig. 12 Enabling a moving
reference camera for immersive
video. a In this video sequence,
four fixed reference cameras
were located near the center of
the 3D scene looking around
in the four orthogonal direc-
tions. In addition, one reference
camera moved linearly in the air
looking down the gymnasium.
b When the moving camera was
used, the presented foreground
culling method was very effec-
tive in keeping the size of the
P-PBS from growing exces-
sively

 Virtual Reality (2024) 28:17 17 Page 14 of 17

by the orange curve. This eventually suppressed the exces-
sive (and unnecessary) growth of the 3D background model,
allowing us to keep the PBS update time stably under 1/30
sec.

In our experiment, we tested two situations where the
reference views from the moving camera were not utilized
and utilized for rendering the Gymnasium-a video (refer to
Fig. 13a, b). As clearly seen, the effect of using the mov-
ing camera was substantial. It continuously scanned the
3D scene from a different viewpoint to those of the fixed
reference cameras. These extra views allowed us to effec-
tively augment the 3D background model, leading to 3D
warping with markedly reduced hole areas. When only the
fixed cameras were used for rendering (a), considerable
holes remained even after the 249th input frame despite the
use of the 3D background model. With the extra moving
camera overlooking the scene (b), the disoccluded regions
effectively diminished particularly as time proceeded. On

average, it took 3.51 ms (13.22 ms) and 4.6 ms (15.57 ms)
for the entire rendering without and with the additional mov-
ing camera. (Again, the figures in parentheses indicate tim-
ings taken when the Oculus headset was synced.)

To further test the presented P-PBS update algo-
rithm against the dynamic scene, we generated another
video sequence, Gymnasium-b, where the Gymnasium-a
sequence was slightly modified in such a way that a male
runner moves faster than others. Interestingly enough, the
effect of using the 3D background model was more observ-
able around the fast runner as can be identified in Fig. 13c.
That was because, around the fast moving object, larger
surface regions often became newly visible more quickly
to a reference camera, whether static or dynamic, in each
frame. As a result, those newly visible surfaces, added to
the 3D background model, reduced the hole areas more
effectively.

Before we wrap up, it should be noted that the sizes
of the 3D scene spaces of the Gymnasium and Museum
sequences are similar to each other, whereas five and

Fig. 13 Effect of using a
moving reference camera for
immersive video. The images in
(a) and (b) show the 3D warp-
ing results produced with the
presented 3D background model
for two different virtual views
just after the 4th and 249th
frames of video input. Unlike
as in a, the moving reference
camera that was added during
generating the immersive video
b allowed to effectively reduce
the disoccluded regions (marked
in light blue) during 3D warp-
ing. Each pair of images in c
compare the 3D warping results
generated without and with
the 3D background model.
They suggest that the effect of
employing the 3D background
model in this dynamic scene
can be stronger around a fast
moving object as larger surface
areas may become newly vis-
ible to a reference camera per
each frame, leading to a faster
buildup of the 3D background
model. Please watch the
attached videos

After 4th frame After 249th frame
(a) After 3D warping with the fixed cameras only (Gymnasium-a)

After 4th frame After 249th frame
(b) After 3D warping with the extra moving camera (Gymnasium-a)

After 143rd frame After 170th frame
(c) After 3D warping with the extra moving camera (Gymnasium-b)

Virtual Reality (2024) 28:17 Page 15 of 17 17

24 reference cameras were employed for generating the
respective videos. This test suggests that a moving refer-
ence camera can be a useful tool for reducing the size of
immersive video as it significantly decreases the demand
for fixed cameras even at improved rendering quality.

5 Concluding remarks

In this paper, we have demonstrated that the progressively
refined 3D background model that is built on the fly in the
virtual 3D space of immersive video enables us to effec-
tively exploit more ground-truth image data in the vir-
tual view synthesis process. This eased the burden of the
inevitably incomplete real-time hole-filling task, thereby
significantly alleviating both spatial and temporal aliasing
artifacts in the final immersive rendering. Thanks to the
3D background model, we were able to produce improved
view synthesis results using a subset of input reference
views in each time frame, which is important when a vir-
tual view is to be synthesized from reference views of high
resolution. Unlike the previous view synthesis methods
that usually assumed static reference cameras only, e.g.,,
Vadakital et al. (2022), we demonstrated that our scheme
of 3D background model is well suited for immersive vid-
eos made of both static and dynamic reference cameras.
In addition, we also showed that the compact 3D repre-
sentation of the background environment allows us to eas-
ily create traditional 3D effects, at least partially, in the
immersive 3D world.

Another possible GPU-based method for producing
the 3D background information would be to exploit the
OpenGL functionality on the GPUs. If depth buffering with
GL_GREATER option is used, the resulting model would
become quite dependent on the camera views and image
resolutions selected for this OpenGL computation. (Multiple
camera views would be necessary for spanning the entire 3D
space.) In this case, it is more possible that foreground sur-
faces falsely remain as background surfaces. For instance, in
Fig. 5, if the camera for building the 3D background model
is placed in the middle of RCp and RCq , and the OpenGL

rendering is carried out for finding back-most surfaces, the
triangle such as T� easily remains as a background surface as
there is no surface behind T� relative to the selected camera
view. In addition, the depth values of immersive videos are
often imperfect due to insufficient precision and/or inaccu-
rate estimation. If the OpenGL framework is employed, the
inevitable z-fighting problem will produce a probable back-
ground image, PBI, of poor quality with annoying visual
artifacts.

By contrast, the developed ray tracing-based method
keeps the triangles in the vicinity of background surfaces,
as implied by Fig. 6, as a part of 3D background model. This
enables a more effective blending operation when the PBI
is created using ray tracing from the probable background
surface, PBS. Furthermore, the current hardware-accelerated
ray tracing allows us to perform a more sophisticated fore-
ground culling process against reference cameras to remove
false background triangles more effectively. Through the
GPU-assisted ray tracing capability, the triangles of 3D
background model are also organized easily and quickly into
a BVH tree during foreground culling, in turn enabling effi-
cient 3D graphics operations in immersive 3D environment.

The developed method may appear limited in applicabil-
ity in that it demands GPUs that support hardware-assisted
ray tracing. However, because such GPUs have recently
become increasing common, this requirement will not be a
problem. Table 3 compares the computational cost to ren-
der the Museum sequence with disocclusion filling on three
recent GPUs (refer to Table 2b again). As these statistics
show, the newest GPU (‘4090’ in the table) provides signifi-
cantly better ray tracing (CUDA and OpenGL also) perfor-
mance, which strongly implies that the presented framework
for the real-time stereoscopic rendering of immersive video
will be easily implementable on commodity GPUs in the
very near future.

Currently, the presented immersive rendering scheme
assumes static lighting only in input video as in many studies
that exploit the temporal correlation between video frames
for background modeling. This may cause temporal aliasing
when the lighting condition varies over time. To overcome
this problem, we are going to investigate how to efficiently

Table 3 Immersive rendering
performance on three selected
GPUs

To further investigate the computational burden for including the 3D background model in the rendering
of immersive video, we tested with three recent NVIDIA GPUs supporting hardware-accelerated ray trac-
ing for synthesizing stereoscopic views for the Museum sequence. Here, ‘3090’ and ‘4090’ represent the
NVIDIA GeForce RTX 3090 and 4090 GPUs, respectively, while ‘A6000’ represents the NVIDIA Quadro
RTX A6000 GPU. (Please refer to Table 2 again to understand what these figures in milliseconds indicate).

DIBR Ours

Single GPU Dual GPUs Single GPU Dual GPUs

3090 (2020) 30.36 (46.32) 16.28 (33.59) 8.93 (15.31) 5.13 (13.13)
A6000 (2020) 31.46 (41.03) 16.57 (27.06) 9.10 (14.14) 5.51 (12.79)
4090 (2022) 16.26 (25.00) – 4.33 (12.50) –

 Virtual Reality (2024) 28:17 17 Page 16 of 17

reflect dynamic lighting changes during the PBS update for
rendering natural images. A possible solution would be to
partially replace the colors of visible vertices in the BVH of
the PBS with those of 3D warped reference views of a new
time frame.

Furthermore, the constructed 3D background model may
contain some foreground surfaces, often temporally, during
rendering without being removed by the foreground cull-
ing process. This problem is partially due to the numerical
inaccuracy encountered in the GPU-assisted real-time ray
tracing or, more seriously, the insufficient scene information
provided by video streams. An additional application of a
more sophisticated foreground removal algorithm, at least
periodically, to the PBS structure would be helpful. Last
but not least, the developed method tries to store only the
farthest surfaces in the 3D background model, which may
result in disocclusions on the surfaces of objects in the mid-
dle of scene. While it is quite desirable to keep multi-layers
of surfaces in the 3D background model, the development
of such a method that spends only a little time in the real-
time immersive rendering pipeline remains for future work.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10055- 023- 00921-w.

Author Contributions YK, JY, SK, II helped in conceptualization; YK,
JY, JY, SK, II formally analyzed and investigated; YK, JeY, II involved
in implementation; II helped in writing and funding acquisition.

Funding This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT)
(No. NRF-2020R1A2C2011709) and Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2022-0-00022).

Data availability The MPEG Test Model for Immersive Video (TMIV)
dataset including Museum, Hijack, Painter, and Frog is available in the
MPEG Immersive Video (MIV) repository, https://mpeg-miv.org. The
immersive videos Gymnasium-a & b generated by the authors are avail-
able from the corresponding author on reasonable request.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Boyce JM, Doré R, Dziembowski A, Fleureau J, Jung J, Kroon B,
Salahieh B, Vadakital VKM, Yu L (2021) MPEG immersive
video coding standard. Proc IEEE 109(9):1521–1536

Broxton M, Flynn J, Overbeck R, Erickson D, Hedman P, Duvall M,
Dourgarian J, Busch J, Whalen M, Debevec P (2020) Immersive
light field video with a layered mesh representation. ACM Trans
Gr 39(4):86

Chen KY, Tsung PK, Lin PC, Yang HJ, Chen LG (2010) Hybrid
motion/depth-oriented inpainting for virtual view synthesis in
multiview applications. In: 2010 3DTV-conference: the true
vision - capture, transmission and display of 3D video, pp. 1–4

Criminisi A, Perez P, Toyama K (2004) Region filling and object
removal by exemplar-based image inpainting. IEEE Trans Image
Process 13(9):1200–1212

Criminisi A, Blake A, Rother C, Shotton J, Torr PHS (2007) Efficient
dense stereo with occlusions for new view-synthesis by four-
state dynamic programming. Int J Comput Vis 71(1):89–110

Doré, R.: Technicolor 3DoF+ test materials. Standard ISO/IEC
JTC1/SC29/WG11 MPEG/M42349 (2018)

Doyen D et al. (2017) Light field content from 16-camera rig. Stand-
ard ISO/IEC JTC1/SC29/WG11 MPEG/M40010

Elharrouss O, Almaadeed N, Al-Maadeed S, Akbari Y (2020) Image
inpainting: a review. Neural Process Lett 51(2):2007–2028

Fehn, C.: Depth-image-based rendering (DIBR), compression, and
transmission for a new approach on 3D-TV. In: Proceedings of
stereoscopic displays and virtual reality systems XI (SPIE), vol.
5291, pp. 93–104 (2004)

Flynn J, Broxton M, Debevec P, DuVall M, Fyffe G, Overbeck R,
Snavely N, Tucker R (2019) DeepView: view synthesis with
learned gradient descent. In: 2019 IEEE/CVF conference on
computer vision and pattern recognition (CVPR), pp. 2362–
2371 (2019)

Huang Y, Zhang C (2008) A layered method of visibility resolving
in depth image-based rendering. In: 2008 19th international
conference on pattern recognition, pp. 1–4

Jam J, Kendrick C, Walker K, Drouard V, Hsu J, Yap MH (2021)
A comprehensive review of past and present image inpainting
methods. Comput Vis Image Underst 203:103147

Jung J, Kroon B (2022) Common test conditions for MPEG immer-
sive video. Standard ISO/IED JTC1/SC29/WG04 MPEG/N0203

Lee J, Kim Y, Yun J, Yun J, Cheong WS, Ihm I (2021) Disocclu-
sion-reducing geometry for multiple RGB-D video streams. In:
2021 IEEE conference on virtual reality and 3D user interfaces
abstracts and workshops (VRW), pp. 603–604

Luo G, Zhu Y, Weng Z, Li Z (2020) A disocclusion inpainting frame-
work for depth-based view synthesis. IEEE Trans Pattern Anal
Mach Intell 42(6):1289–1302

Luo G, Zhu Y, Li Z, Zhang L (2016) A hole filling approach based on
background reconstruction for view synthesis in 3D video. In:
2016 IEEE conference on computer vision and pattern recogni-
tion (CVPR), pp. 1781–1789

Mark WR, McMillan L, Bishop G (1997) Post-rendering 3D warp-
ing. In: Proceedings of the 1997 symposium on interactive 3D
graphics (I3D ’97), pp. 7–16

Müller K, Merkle P, Wiegand T (2011) 3-D video representation
using depth maps. Proc IEEE 99(4):643–656

Ndjiki-Nya P, Köppel M, Doshkov D, Lakshman H, Merkle P, Mul-
ler K, Wiegand T (2011) Depth image-based rendering with
advanced texture synthesis for 3-D video. IEEE Trans Multimed
13(3):453–465

NVIDIA: NVIDIA OptiX 7.4 Programming Guide (2021)
Qin Z, Zeng Q, Zong Y, Xu F (2021) Image inpainting based on deep

learning: a review. Displays 69:102028

https://doi.org/10.1007/s10055-023-00921-w
http://creativecommons.org/licenses/by/4.0/

Virtual Reality (2024) 28:17 Page 17 of 17 17

Rahaman DMM, Paul M (2018) Virtual view synthesis for free view-
point video and multiview video compression using Gaussian
mixture modeling. IEEE Trans Image Process 27(3):1190–1201

Salahieh B et al. (2018) Kermit test sequence for windowed 6DoF
activities. Standard ISO/IEC JTC1/SC29/WG11 MPEG/
M43748

Schmeing M, Jiang X (2010) Depth image based rendering: A faith-
ful approach for the disocclusion problem. In: 2010 3DTV—
conference: the true vision—capture, transmission and display
of 3D video, pp. 1–4

Smolic A (2011) 3D video and free viewpoint video—from capture
to display. Pattern Recognit 44(9):1958–1968

Sun W, Au OC, Xu L, Li Y, Hu W (2012) Novel temporal domain
hole filling based on background modeling for view synthesis.
In: 2012 19th IEEE international conference on image process-
ing, pp. 2721–2724

Vadakital VKM, Dziembowski A, Lafruit G, Thudor F, Lee G,
Alface PR (2022) The MPEG immersive video standard–cur-
rent status and future outlook. IEEE Multimed 29(3):101–111

Yao C, Tillo T, Zhao Y, Xiao J, Bai H, Lin C (2014) Depth map
driven hole filling algorithm exploiting temporal correlation
information. IEEE Trans Broadcast 60(2):394–404

Zhou T, Tucker R, Flynn J, Fyffe G, Snavely N (2018) Stereo magni-
fication: learning view synthesis using multiplane images. ACM
Trans Gr 37(4):65

Zhu C, Zhao Y, Yu L, Tanimoto M (eds) (2013) 3D-TV system with
depth-image-based rendering: architectures, techniques and
challenges. Springer, New York

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Ray tracing-based construction of 3D background model for real-time stereoscopic rendering of live immersive video
	Abstract
	1 Introduction
	2 Previous work
	3 Our method
	3.1 Problem specification
	3.2 Overview of our virtual view synthesis system
	3.3 Progressive update of 3D background environment
	3.3.1 Hybrid structure for PBS
	3.3.2 Initialization of PBS with S-PBS
	3.3.3 Update of the PBS through P-PBS

	3.4 Rendering with 3D background environment
	3.4.1 Generation of PBI from PBS
	3.4.2 Creation of backdrop images with PBI
	3.4.3 Fast disocclusion filling by inpainting

	4 Experimental results
	4.1 Test for scenarios of fixed reference cameras
	4.2 Extension for moving reference cameras

	5 Concluding remarks
	References

