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Abstract
While linear interpolation has been used fre-
quently in computer graphics, higher-order in-
terpolation is often desirable in applications re-
quiring higher-order accuracy. In this paper, we
study how interpolation filters, employed to re-
sample such data as velocity, density, and tem-
perature in simulating the equations of fluid dy-
namics, affect the animation of fluids. For this
purpose, we have designed a controllable local
cubic interpolation scheme that offers G1 (or
C1) continuity globally. It is based on mono-
tonic splines so does not suffer from undue over-
shooting. Furthermore, it is possible to control
the general behavior of the interpolation through
a global tension parameter, providing a contin-
uous spectrum of linear to cubic interpolation.
We analyze how this controllable interpolation
filter may be effectively used to enhance the
visual reality for physically based fluid anima-
tion.
Keywords: Interpolation, cubic polynomial,
monotonicity, controllability, fluid animation.

1 Introduction

Reconstructing an original function from sam-
pled data is a fundamental problem in com-
puter graphics. Linear interpolation has fre-
quently been used for this purpose because of
its simplicity, but usually introduces significant
reconstruction artifacts. A higher-order interpo-
lation filter is often desirable in applications re-
quiring high-order accuracy. Several high-order

reconstruction filters, including piecewise cu-
bic and windowed sinc filters, have been tested
in attempts to improve the reconstruction qual-
ity [1, 2, 3, 4, 5]. While these filters have been
considered too slow compared to linear inter-
polation, recent improvements in graphics hard-
ware allow efficient hardware implementations
of high-order filters [6].

This research was motivated by Fedkiw et
al.’s work [7], where it was observed that cubic
interpolation tends to reduce the amount of nu-
merical dissipation and to generate more fine de-
tails in smoke simulation. One difficulty in em-
ploying a cubic interpolant is that it often suffers
from numerical instabilities caused by undesir-
able oscillations. As Fedkiw et al. pointed out, a
cubic interpolation scheme with overshoot must
be avoided. Overshoot causes numerical insta-
bility and also produces severe aliases in anima-
tion and rendering. An interpolation filter with
overshoot can also generate data values in im-
proper ranges. For instance, when non-negative
smoke densities are interpolated, negative values
can be introduced, which should never happen.

A possible solution to avoid such undue over-
shoot is to design a monotonic interpolation fil-
ter. A monotonic filter gives rise to mono-
tonic interpolating curves without oscillations
for monotonic input data. Care must be taken
in developing monotonic interpolation filters.
In [7], a necessary condition was used to fix
the overshooting problem as will be described
later. Although it helps to reduce the overshoot-
ing problem, necessary conditions cannot fix it
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(a) Before monotonicity is enforced
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(b) After monotonicity is enforced with τglobal = 0.0

Figure 1: An example of cubic interpolation. Gen-
erally, the Catmull–Rom spline generates
very nice-looking curves. However, it
often produces inappropriate overshoots
even for monotone data points like those
marked with dotted circles. When mono-
tonicity is enforced, the oscillations go
away.

completely. Figure 1(a) shows an example of
the cubic Hermite interpolation obtained when
monotonicity is not enforced properly. In this
example, the slopes at the interpolation points
except the extreme points were generated us-
ing the method employed by the Catmull–Rom
spline algorithm. It is clear that a sequence
of monotone data, for example one in the in-
terval from 20 to 25, can easily produce non-
monotonic splines with ugly overshoots. On the
other hand, Figure 1(b) illustrates cubic interpo-
lation splines produced using the technique pre-
sented here, where the inappropriate oscillations
are nicely removed.

1.1 Related Work on Piecewise
Monotonic Cubic Interpolation

While there is a large amount of literature in
the area of monotonic interpolation, we focus on
piecewise monotonic cubic interpolation in this
paper. When only positional information P =
{(xi, yi) |i = 0, 1, 2, · · · , n} is provided, which

is usual in many applications, the key is the
choice of appropriate first derivatives y′i at the
interpolation points xi. The natural cubic spline
technique determines them implicitly in such a
way that the resulting splines are C2 continu-
ous [8]. Wolberg and Alfy applied the mono-
tonicity constraints introduced by Fritsch and
Carlson [9] to select derivatives that guarantee
monotonic splines [10]. Because C2 continuity
is not always possible, they applied some opti-
mization techniques to find the smoothest possi-
ble splines by minimizing the second derivative
discontinuity.

Since Schweikert introduced exponential ten-
sion splines that allow the elimination of ex-
traneous inflection points in cubic splines [11],
tension parameters have frequently been em-
ployed to control the shape of both exponen-
tial and polynomial splines (refer to, for exam-
ple, [12, 13] for extensive references). While
these methods compute smooth curves, such
global techniques are not well-suited to most
graphics applications, where data should be re-
constructed quickly using only local informa-
tion. Local monotonic schemes were proposed
in [14, 15, 16]. These schemes are based on
C1 continuous piecewise cubic Hermite inter-
polation using locally determined slopes, satis-
fying the monotonicity constraints given in [9].
They are quite simple to use, but on the other
hand the splines they produce are often too re-
stricted because they rely only on sufficient con-
ditions. There is no flexibility in controlling the
curve’s shape because a fixed formula is applied
to the selection of slopes. Manni also used the
same monotonicity constraints to develop a local
monotone interpolation scheme through para-
metric cubic splines [17].

1.2 Specific Contributions

The major motivation of this work is to pro-
vide the user with a continuous spectrum of
linear to cubic monotonic interpolation fil-
ters, and to allow him/her to select a filter
that produces the most desirable visual appear-
ance. For this purpose, we first develop a
controllable local monotonic cubic interpola-
tion scheme that can be used effectively in
fluid simulations. In particular, we attempt
to design a cubic filter of the form y∗ =



CUBIC INTERP(y−1, y0, y1, y2, x
∗; τglobal), 0

≤ x∗ ≤ 1, where sampled data y(i) = yi, i ∈
{−1, 0, 1, 2}, are used to reconstruct function
values y = y(x) on x ∈ [0, 1]. In doing this,
we propose to explore parametric cubic interpo-
lation, which offers more flexibility than does
functional interpolation. In our monotonic in-
terpolation technique, the initial tangent vectors
at the interpolation points are assigned using the
Catmull–Rom spline technique. The monotonic
constraints are then enforced, if necessary, by
controlling the magnitude of the tangent vectors
using local tension parameters at the data points.

As well as locality and monotonicity, the cu-
bic interpolation scheme presented has the fol-
lowing additional properties:

• The interpolation is at least G1 continu-
ous (or C1 continuous) globally. A four-
point stencil as above is enough to achieve
G1 continuity, while a six-point stencil
{y−2, y−1, · · · , y3} is necessary to achieve
C1 continuity.

• The global shape of the cubic interpolant is
controllable using a global tension param-
eter τglobal ∈ [0, 1]. As the parameter in-
creases from 0 to 1, the interpolation spline
becomes gradually flattened, becoming a
linear interpolation at τglobal = 1. This pa-
rameter enables the user to control the gen-
eral appearance of cubic interpolation in an
intuitive fashion.

2 Preliminaries

2.1 The Cubic Hermite Interpolation

Throughout this paper, it is assumed that we
want to reconstruct a function y = y(x) on [0, 1]
using a cubic spline from a set of sampled data
{yi = y(i) | i ∈ {−1, 0, 1, 2}} (see Figure 2).
One of the most frequently used techniques is
the cubic Hermite interpolation, which enforces
the positional and tangential constraints: y(i) =
yi and y′(i) = y′i (i = 0, 1). The resulting cu-
bic Hermite spline may be represented using the
usual cubic Hermite basis functions as follows :
y[y0,y1,y′

0,y′
1](x) = (2x3−3x2 +1)y0 +(−2x3 +

3x2)y1 +(x3 −2x2 +x)y′0 +(x3 −x2)y′1 (0 ≤
x ≤ 1).
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Figure 2: Cubic Hermite interpolation in functional
form. A four-point stencil {−1, 0, 1, 2}
is used to reconstruct the functional value
y = y(x) on x ∈ [0, 1].

(We drop the quadruple [y0, y1, y
′
0, y

′
1] from the

notation for simplicity unless its absence causes
confusion.)

When this interpolation scheme is adopted, an
important question is how to choose the deriva-
tive values y′0 and y′1. Various local or global
selection algorithms have been suggested, how-
ever they often fail to guarantee monotonicity.

2.2 The Monotonicity Conditions

In [9], Fritsch and Carlson derived necessary
and sufficient conditions for a piecewise cubic
interpolant to be monotonic. These conditions
have frequently been used to develop a family of
algorithms for global or local monotonic cubic
interpolation. Let ∆yi = yi+1 − yi be the slope
of the line segment connecting the data points
to be interpolated. A curve is monotone on an
interval if and only if there is no sign change in
the derivative values in the interval. Hence, it is
clear that the following is a necessary condition
for monotonicity:

⎧⎨
⎩

sgn(y′0) = sgn(y′1)
= sgn(∆y0), if ∆y0 �= 0,

y′0 = y′1 = 0, otherwise.
(1)

Let α = y′
0

∆y0
and β = y′

1
∆y0

(Without loss of
generality, we assume that ∆y0 �= 0 in the re-
mainder of this section). Then, α and β are non-
negative if the requirement in Eq. (1) is satisfied.
Now, the monotonicity conditions for the cubic
Hermite interpolant y = y(x) can be compactly
expressed as follows (see Figure 3):



4321

1

2

3

4

α

β

(a) The entire region

4321

1

2

3

4

α

β

A

B

C

D

(b) The region dis-
sected

Figure 3: The monotonicity region [9]. The mono-
tonicity of the spline from the cubic Her-
mite interpolation is guaranteed if the
point (α, β) = ( y′

0
∆y0

,
y′
1

∆y0
) resides in this

region.

1. If α + β − 2 ≤ 0, then y = y(x) is mono-
tone on [0, 1] if and only if the condition in
Eq. (1) is satisfied.

2. If α + β − 2 > 0, and the condition in
Eq. (1) is satisfied, then y = y(x) is mono-
tone on [0, 1] if and only if one of the fol-
lowing conditions is satisfied:

a) 2α + β − 3 ≤ 0,

b) α + 2β − 3 ≤ 0, or

c) φ(α, β) ≡ α − 1
3

(2α+β−3)2

(α+β−2) ≥ 0.

Previous works on local interpolation have at-
tempted to design monotone splines by choosing
appropriate derivatives from neighboring slopes
such that the monotonicity conditions are satis-
fied (for example, refer to [14, 15, 16]). Once
the derivatives are fixed, however, a cubic in-
terpolant in functional form is uniquely deter-
mined, in which case it is not possible to con-
trol the general appearance of splines. Notice
that the Catmull–Rom spline is not effective for
monotonicity because its derivatives often result
in non-monotone splines. In the next section, we
propose to use parametric cubic interpolation,
based on the Catmull–Rom spline, that provides
more flexibility in interpolation.

3 The New Controllable Local
Monotonic Cubic Interpolation

3.1 Assigning the Derivatives in
Catmull–Rom Fashion

In Catmull–Rom splines, the derivatives are set
to the arithmetic mean of the two incident incre-
ments. Combined with the necessary condition
in Eq. (1), the derivatives y′0 and y′1 are chosen
in Catmull–Rom fashion as follows:

y′i =
{ ∆yi−1+∆yi

2 , if ∆yi−1 · ∆yi > 0,
0, otherwise.

(2)

The selected derivatives are the same as those
used by the standard Catmull–Rom spline if the
given four values y−1, y0, y1, and y2 are mono-
tonic.

3.2 An Efficient Test of the Monotonicity
Conditions

Once the derivatives at the two endpoints are de-
termined, they must be checked to ensure they
are acceptable. It is important to find efficiently

whether a given pair (α, β) = ( y′
0

∆y0
,

y′
1

∆y0
) sat-

isfies the monotonicity conditions. Consider the
line joining the origin and the point (α, β) (see
Figure 4(a)). It can be shown that the line and
the ellipse φ(α, β) = 0 intersect at αmin =

3
1+

√
m+m

and αmax = 3
1−√

m+m
, where m = β

α

for α �= 0. Therefore, we can say that the pair
(α, β) satisfies the monotonicity constraints if{

α ≤ 3
1−√

m+m
, if α �= 0

β ≤ 3, otherwise.

The inequality α ≤ 3
1−√

m+m
can be written

equivalently, and somewhat more efficiently, as
α+β−3 ≤ √

αβ. When our cubic interpolation
scheme is coded, we use an even more efficient
expression, which avoids potentially expensive
square-root operations as follows:

α + β − 3 ≤ 0 or {not(α + β − 3 ≤ 0)

and (α + β − 3)2 ≤ αβ}. (3)

In fact, it is possibly more efficient to re-
place the logical expression α + β − 3 ≤ 0
by (α ≤ 3 and β ≤ 3). Notice that these
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Figure 4: The monotonicity region revisited. When
the pair (α, β) is outside the region, it is
moved into it along the line connecting the
pair with the origin to satisfy the mono-
tonicity constraints.

two expressions correspond to the triangular re-
gion (E1) and the square region (E3), respec-
tively (see Figure 4(b)), where the latter covers
a larger area. When the data to be interpolated
are from smooth parts of functions, as is often
the case, the selection of derivatives in Catmull–
Rom fashion most probably falls in the square
region E3. Therefore, the monotonicity con-
straints can be tested cheaply in most cases.

3.3 Modification of the (α, β) Pair

When a pair (α, β) does not satisfy the mono-
tonicity conditions, it must be modified appro-
priately. An effective way is to move the pair
along the line connecting the pair with the origin
to where the line intersects with the ellipse (see
Figure 4(a) again). In this case, the new pair
(α∗, β∗) is expressed as follows:

α∗ =
3

1 −√
m + m

, β∗ = m · α∗,

where m =
β

α
for α �= 0.

(4)

Of course, if α is zero, the pair is chosen to be
(α∗, β∗) = (0, 3) only when β > 3.

Other selection methods are possible by
putting the new pair on the boundary of or inside
the approximate subregion E1, E3, or E2, a cir-
cle centered at the origin of radius 3. While it is
probably cheaper to compute, only a part of the
monotonicity region is utilized (even E3 covers
only 67.9% of the entire region). Rather than
clamping the acceptable pair to a restricted sub-
region, our interpolation scheme fully utilizes

the monotonicity region. Observe that an (α, β)
pair closer to the origin results in a “tighter”
spline segment. Because the new pair (α∗, β∗)
is on the boundary of the region, it corresponds
to a spline that just meets the monotonicity con-
straints, possibly containing an inflection point.
Its shape can be made flatter by moving it further
towards the origin. The global shape control will
be discussed later.

3.4 Interpolation with Local Tension
Control

When the initially chosen derivatives y′0 and
y′1 are found to satisfy the monotonicity condi-
tions, the cubic Hermite interpolation in func-
tional form can be used. However, if this is
not the case, the slopes must be modified prop-
erly to meet them. The functional cubic curve
with only four degrees of freedom is not flex-
ible enough to satisfy the monotonicity con-
straints without changing the slopes. Because
we intend to design a local scheme that basi-
cally uses a four-point stencil, such slope mod-
ification makes it inefficient to obtain at least
G1 continuous splines. Of course, fixed slopes
that guarantee the monotonicity could be used,
as mentioned before. However, they are not
well-suited either, because we want to develop
a controllable interpolation scheme. Instead of
the functional interpolation, we exploit the para-
metric cubic interpolation that still has two de-
grees of freedom after the Hermite interpolation.
In this approach, monotonicity is achieved by
controlling the tensions at the endpoints while
maintaining the slope directions. As will be ex-
plained, the extra degrees of freedom allow a
useful controllability in interpolation.

Let Pi = (i, yi) and Ti = (1, y′i) (i = 0, 1)
be two endpoints and two tangent vectors, re-
spectively, of a curve to be interpolated, where
the slopes y′0 and y′1 are the initial derivatives
assigned as in Eq. (2) (see Figure 5). Then the
standard parametric cubic Hermite interpolation
C = C(t) is expressed as follows: C(t) =
(x(t), y(t)) = (2t3 − 3t2 + 1)P0 + (−2t3 +
3t2)P1 + (t3 − 2t2 + t)T0 + (t3 − t2)T1 (0 ≤
t ≤ 1).

With the introduction of local tension param-
eters τ0 and τ1 at the interpolation points, the
two tangent vectors can be written as Ti =
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Figure 5: Cubic Hermite interpolation in parametric
form. Parametric curves offer more de-
grees of freedom in controlling their ge-
ometric properties.

(1 − τi, (1 − τi) · y′i) with default value τi = 0.
Increasing the tension parameter τi from 0 to 1
reduces the magnitude of the tangent vector, re-
sulting in a tighter curve near the endpoint Pi.
Because the interpolation curve loops at the end-
point for τi > 1, we only consider tension values
less than one.

Notice that an interpolation curve C(t) =
(x(t), y(t)) is monotonic on [0, 1] if both x =
x(t) and y = y(t) are monotone in the inter-
val. When the local tension parameters τ0 and
τ1, initially set at zero, result in a non-monotone
spline, the key is to adjust them so that both
functions become monotonic. We flatten non-
monotone curve segments, through the tension
control, to enforce the monotonicity constraints.
Therefore, it is reasonable to assume that the
local tension parameters range in the interval
[0, 1). Then, the function x = x(t) is always
monotone on [0, 1] because its (α, β) pair with
α = x′

0 = 1 − τ0 and β = x′
1 = 1 − τ1 al-

ways meets the first constraint of the monotonic-
ity conditions (α + β − 2 ≤ 0). For the func-
tion y = y(t), its (α, β) pair is checked to see if
the initial derivatives result in a monotone func-
tion. If not, the adjusted tensions τ0 and τ1 are
computed through the new pair (α∗, β∗) on the
boundary of the monotonicity region as follows:
1 − τ0 = α∗

α and 1 − τ1 = β∗
β .

A drawback with this parametric interpolation
scheme is that x is not an independent variable
as in the functional case. Given x∗ ∈ [0, 1],
the interpolation must be carried out via the pa-
rameter t by first finding t∗ = x−1(x∗) and
then evaluating y∗ = y(t∗). Because the func-
tion x = x(t) is monotone on [0, 1], a unique

t∗ exists. The inversion can be performed by
a few Newton–Raphson iterations on f(t) =
x(t) − x∗ = 0, which converges rapidly and re-
quires little computation. Usually, we find that
four to five iterations are good enough.

3.5 Introducing the Global Tension
Parameter

In the interpolation scheme described here, the
Catmull–Rom spline is employed if the gener-
ated curve segment is monotone. If this is not
the case, we choose a spline that just meets
the monotonicity conditions. Sometimes, it is
highly desirable to control the general behav-
ior of the interpolation by adjusting the shapes
of the splines. Unlike the functional interpola-
tion, the parametric cubic interpolation is flexi-
ble enough to allow the user to select a proper
interpolant from a space of splines that share the
same tangential lines at the interpolation points.

In our technique, a parameter τglobal (0 ≤
τglobal ≤ 1), called a global tension, is em-
ployed as an interpolation control. Instead of the
tangent vector Ti = (1−τi, (1−τi) ·y′i), we use
Ti = ((1−τglobal)·(1−τi), (1−τglobal)·(1−τi)·
y′i) in computing the parametric Hermite curve
C(t). When τglobal increases from zero to one,
the interpolant becomes flattened, ending up in
linear interpolation at τglobal = 1 (The new lo-
cal monotonic cubic interpolation algorithm is
summarized in Figure 6). Figure 7 illustrates
how the monotonic interpolation spline in Fig-
ure 1(b) changes gradually as the global tension
parameter increases. We observe a continuous
spectrum of cubic to linear interpolants parame-
terized by τglobal, thus enabling the user to con-
trol the interpolation.

While we have described one technique for
interpolation control, it should be mentioned
that other control strategies are also possible.
For instance, we could move the (α, β) pair
as closely as possible to the boundary of the
monotonicity region wherever it is located in
the α-β plane. If the pair is outside the region,
it is moved to the boundary as explained be-
fore. When the pair moves towards the boundary
from inside, we must take care not to violate the
monotonicity conditions for the function x =
x(t), moving it up to the boundary or the critical
point whichever comes first. The new pair found



Input: y−1, y0, y1, y2, x∗

Output: y∗ = CUBIC INTERP(y−1, y0, y1, y2, x
∗; τglobal)

1. Compute the slopes to y′0 and y′1 as in Eq. (2).
2. Check if the monotonicity conditions are met

for (α, β) = ( y′
0

∆y0
,

y′
1

∆y0
).

3. if they are not satisfied then
4. adjust the local tensions via 1 − τ0 = α∗

α and 1 − τ1 = β∗
β .

5. Let σ0 = (1 − τglobal) · (1 − τ0) and σ1 = (1 − τglobal) · (1 − τ1).
6. Find t∗ such that t∗ = x−1

[0,1,σ0,σ1](x
∗).

7. Evaluate y∗ = y[y0,y1,σ0·y′
0,σ1·y′

1](t∗).

Figure 6: The controllable local monotonic cubic interpolation algorithm.

in this way produces one of the “slackest” mono-
tonic splines that are possible with the assigned
derivatives. The resulting spline may look too
loose, as shown in Figure 8. However, we ob-
serve that the global tension control offers an-
other nice spectrum of monotonic interpolants,
smoother at the same τglobal.

Before finishing this description, we briefly
mention the geometric continuity achieved
through the new controllable interpolation
scheme. It is clear that the generated splines
meet each other with G1 continuity because
the local tension parameter only changes the
magnitude of the tangent vector. It is possi-
ble to make them C1 continuous using a six-
point stencil {y−2, y−1, · · · , y3} instead of the
four-point stencil {y−1, · · · , y2}. The local ten-
sion parameter τi for each interpolation point xi

(i = 0, 1) is set to the maximum of the two lo-
cal tension parameters τL

i and τR
i that guarantee

the monotonicity on the two incident intervals
[i − 1, i] and [i, i + 1], respectively. This mod-
ification would produce C1 continuous splines,
although it is not evident that the additionally
required computational cost is worth paying.

4 Applications to Fluid
Simulations

To understand how our interpolation filter af-
fects fluid animations, we have added our con-
trollable interpolation scheme to our fluid dy-
namics solver, which is based on the compu-
tational models presented in [18, 7]. When
the Navier-Stokes equations are integrated over
time in three-dimensional space, a vector field
for the velocity and two scalar fields for the den-

sity and the temperature should be resampled
through interpolation in the advection stage.

4.1 Effects of the Controllable Cubic
Interpolation on Visual Appearance

In an attempt to create smoke animations with
different appearances, we have experimented
with the controllable cubic interpolation filter
in several ways. In the first example, a set of
different global tension parameters τglobal was
tested to resample both the density and the tem-
perature, while the velocity was resampled us-
ing a linear interpolant only. All the other an-
imation and rendering parameters were iden-
tical. Figure 9 demonstrates five animation
sequences of two rising-and-reacting smokes,
where the top row was generated with τglobal =
0.0, and subsequent rows were generated using
0.25, 0.5, 0.75, and 1.0, respectively. The first
row corresponds to a full cubic monotonic in-
terpolant, while the last row with τglobal = 1.0
corresponds to a linear interpolant. As also
discussed in [7], we find that the cubic inter-
polant produces a very abundant smoke simu-
lation with fine detail.

On the other hand, the linear interpolant gen-
erates a light simulation in which the smoke dis-
sipates too quickly because of its limited nu-
merical accuracy. As the global tension pa-
rameter varies from 0.0 to 1.0 (top to bottom),
we obtain a spectrum of animations with con-
tinuously changing appearance. The generated
smoke tends to be intense and swirling when
τglobal is close to 0.0 but becomes rather smooth
and dissipated as τglobal approaches 1.0. No-
tice that the animation results are correlated very
naturally with the interpolation curves shown in
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(a) τglobal = 0.25
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(b) τglobal = 0.5
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(c) τglobal = 0.75
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(d) τglobal = 1.0

Figure 7: A spectrum of controllable monotonic cu-
bic interpolants. As the global tension pa-
rameter τglobal increases, the monotonic
spline in Figure 1(b) changes continu-
ously to a linear interpolant.
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Figure 8: Another strategy for interpolation control.
A very slack spline curve with τglobal =
0.0 is obtained, where each spline seg-
ment has been pushed to the limit.

Figure 9: Comparison of rising-and-reacting
smokes created with our local monotonic
cubic interpolant. The new interpolation
scheme was applied to the evolving
smoke’s density and temperature with
different global tension parameters
τglobal = 0.0, 0.25, 0.5, 0.75, and 1.0 (top
to bottom), while a linear interpolant was
used to resample the velocity. As the
global tension parameter varies from 0.0
to 1.0, we obtain a spectrum of smoke
simulations with gradually changing
behaviors.



Figure 1(b) and Figure 7.
We have also employed the controllable fil-

ter to interpolate the smoke’s velocity as well as
its density and temperature. The monotonic cu-
bic interpolant with τglobal = 0.0 was applied
to the velocity vector in the example shown in
the first row of Figure 9, and the same cubic in-
terpolant was used for both the density and the
temperature. All the other animation parameters
were the same. The simulation result is given in
the first row of Figure 10, where the same time
frames are displayed for comparison. We find
that more fine detail of smoke is produced as the
cubic interpolant reduces the amount of numeri-
cal dissipation in the resampling of the velocity.
As a side effect, we observe that the smoke does
not rise as abundantly as in the example where a
linear interpolant was employed for the velocity.
It seems that with the added numerical detail,
the vorticity confinement force that was appro-
priate in the previous example becomes exces-
sive, hence dominating the buoyancy force.

We attempted to control the way that the
smoke flows by lowering the coefficient ε of the
vorticity confinement force f conf = ε h (N ×
ω) (refer to [7] for detail). ε specifies the amount
of small scale detail added back into the smoke
field. When ε was set to 3.0 instead of 12.0, we
were able to produce a smoke simulation with
a general appearance somewhat similar to the
animation in the first row of Figure 9, but it is
filled with slightly more fine detail (see the ani-
mation frames in the second row of Figure 10).
When ε was lowered to 0.0, that is, no vortic-
ity confinement force was added, the dominating
buoyancy force makes the smoke flow upwards
aggressively. This effect is seen clearly in the
animation sequence shown in the third row of
Figure 10, where small scale detail of the smoke
disappears because of the loss of the vorticity
confinement force.

Lastly, we tried to control the smoke anima-
tion in a different way. Rather than decreasing
the vorticity confinement force in the animation
given in the first row (τglobal = 0.0 and ε = 12),
we changed the global tension parameter of the
monotonic cubic filter. The animation sequence
in the fourth row of Figure 10 was created with a
new τglobal = 0.5 and the same ε = 12.0, where
the employed interpolation filter is somewhat in
the middle of the cubic and linear interpolants.

Figure 10: Comparison of rising-and-reacting
smoke created by additionally applying
our local monotonic cubic interpolant to
the velocity resampling. As shown in the
first row, more fine detail was possible
by virtue of the increased numerical
detail in the process of resampling the
smoke’s velocity. Compared to the
first animation in Figure 9, it seems
that the vorticity confinement force
dominates the buoyancy force. In the
first three rows, three different vorticity
confinement coefficients ε = 12.0, 3.0,
and 0.0 with the same τglobal = 0.0
were tested to understand how the
vorticity confinement force affects the
behavior of smoke. The animation in the
fourth row was created with ε = 12.0,
but with τglobal = 0.5.

Curiously, the smoke’s volume varies in similar
fashion as in the first row. However, the smoke
becomes, as expected, somewhat smoother and
lighter because of the numerical dissipation in-
troduced.

4.2 Computational Overheads of the
Controllable Cubic Interpolation

Table 1 summarizes the timing performance of
three different filters applied to the scenes in
Figure 9 and 10: Linear for the tri-linear filter,
Cubic [7] for the C0-continuous monotonic tri-
cubic filter used in [7], and CLM-Cubic for the
controllable G1-continuous monotonic tri-cubic
filter. In the table, DT-Only denotes the case
where the tri-cubic filters were applied to the



evolution of the density and temperature only,
while the velocity were additionally resampled
using the tri-cubic filters in DTV. The timings
were measured on a PC, equipped with a 2.0
GHz Intel Xeon CPU and 1 GB RAM, and
show the average times per time step, neces-
sary for updating the velocity and evolving the
density and temperature on a grid of resolution
60 × 60 × 60.

(sec.)

Linear Cubic [7] CML-Cubic

DT-Only
5.55

6.62 6.98

DTV 8.56 9.76

Table 1: Timing statistics. The figures compares the
three filters in terms of the average timings
per time frame, taken for updating the ve-
locity and evolving the density and temper-
ature on a 60 × 60 × 60 grid. Two cases
were tested where the cubic filters were
first applied to the advection of the density
and temperature, then the velocity was ad-
ditionally resampled using the cubic filter
in the second.

In this experiment, the respective filters were
applied to resample the points computed by
tracing the characteristics curves backward in
the advection stage of the 3D fluid simula-
tor, in which, for the cubic filters, each one-
dimensional filter is repeatedly applied 21 times
per resampling (16 times in the x direction, 4
times in the y direction, and finally once in the
z direction). As expected, the experimental re-
sults indicate that the computing cost of the con-
trollable filter is high compared to the other two
filters. In particular, the cost of CLM-Cubic,
based on parametric cubic interpolation, is a lit-
tle bit higher than that of Cubic [7], based on
functional cubic interpolation. The additional
cost mainly comes from the Newton-Raphson
iterations that are required to invert the cubic
function x = x(t). Since this monotone func-
tion behaves well on [0, 1], only a few iterations
on the simple cubic polynomial are enough,
which is quite cheap computationally.

It should be mentioned that it is often diffi-
cult to tell the difference between the interpola-
tion results obtained using Cubic [7] and CLM-
Cubic with τglobal = 0.0. Particularly when

Figure 11: Interactive control of the global tension
parameter. The presented cubic filter has
been implemented using the pixel shader
on a programmable GPU, which allows
an interactive control of the global ten-
sion in the 2D fluid simulation.

the simulated fluid is visualized, it is not easy to
distinguish the difference between the rendered
images. Notice that the little cost increase is
the price that we must pay to make the result-
ing interpolants monotone, G1-continuous and,
above all, controllable. These mathematically
fine properties for the cubic interpolation often
lead to effective applications. For instance, the
presented controllable interpolation scheme is
quite convenient when the user may want to in-
teractively choose an interpolation filter from a
continuous spectrum of linear to cubic mono-
tonic filters. Figure 11 shows a snapshot where
the global tension parameter is being interac-
tively adjusted in a 2D fluid simulator to see how
the visual appearance of the fluid changes (see
also the attached video). Here, we have mapped
the controllable monotonic bi-cubic filter onto
the pixel shader hardware of NVIDIA’s GeForce
6800 GT GPU. While employing the control-
lable interpolation in the simulation, again, re-
sults in a lower frame rate, we find it quite useful
to be able to control the filter’s behavior interac-
tively.

5 Conclusions

The motivation of this paper was to understand
how different interpolation filters employed in
the simulation stage affect fluid animations. In
achieving this goal, we have designed a local
monotonic cubic interpolation scheme that al-
lows the user to control its behavior. Through
the use of the global tension parameter, the pro-
posed interpolation technique is able to offer a



spectrum of cubic to linear interpolants, filling
the gap between them.

The experiments with our smoke simulation
solver indicate that fluid animations are greatly
influenced by the choice of interpolation filter
that is applied to resampling data such as the ve-
locity, the density, and the temperature. Con-
versely, this fact implies that the controllable in-
terpolation filter may be used in modeling fluid
animation creatively, although this approach is
not necessarily physically based. We have given
some examples where a wide range of smoke ef-
fects were developed through intuitive control of
the interpolation filter.
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tering windows: Improving reconstruc-
tion. In Proc. of IEEE Symposium on Vol-
ume Visualization, pages 101–108, 2000.

[6] M. Hadwiger, T. Theußl, H. Hauser, and
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