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Abstract

Given a graph G, and two vertex sets S and T of size k each, a many-to-many k-disjoint path cover of G joining S and T is a
collection of k disjoint paths between S and T that cover every vertex of G. It is classified as paired if each vertex of S must be
joined to a designated vertex of T , or unpaired if there is no such constraint. In this article, we first present a necessary and sufficient
condition for the cube of a connected graph to have a paired 2-disjoint path cover. Then, a corresponding condition for the unpaired
type of 2-disjoint path cover problem is immediately derived. It is also shown that these results can easily be extended to determine
if the cube of a connected graph has a hamiltonian path from a given vertex to another vertex that passes through a prescribed edge.
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1. INTRODUCTION

1.1. Problem specification

Given an undirected graph G, a path cover is a set of paths in
G where every vertex in V(G) is covered by at least one path.
Of special interest is the vertex-disjoint path cover, or simply
called disjoint path cover, which is one with an additional con-
straint that every vertex, possibly except for terminal vertices,
must belong to one and only one path. The disjoint path cover
made of k paths is called the k-disjoint path cover (k-DPC for
short).

Given two disjoint terminal vertex sets S = {s1, s2, . . . , sk}

and T = {t1, t2, . . . , tk} of G, each representing k sources and
sinks, the many-to-many k-DPC is a disjoint path cover each of
whose paths joins a pair of source and sink. The disjoint path
cover is regarded as paired if every source si must be matched
with a specific sink ti. On the other hand, it is called unpaired if
any permutation of sinks may be mapped bijectively to sources.
A graph G is called paired (resp. unpaired) k-coverable if 2k ≤
|V(G)| and there always exists a paired (resp. unpaired) k-DPC
for any S and T . The k-DPC has two simpler variants. One is
the one-to-many k-DPC, whose paths join a single source to k
distinct sinks. The other is the one-to-one k-DPC, whose paths
always start from a single source and end up in a single sink.

The existence of a disjoint path cover in a graph is closely
related to the concept of vertex connectivity: Menger’s theo-
rem states the connectivity of a graph in terms of the number
of disjoint paths joining two distinct vertices, whereas the Fan
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Lemma states the connectivity of a graph in terms of the number
of disjoint paths joining a vertex to a set of vertices [2]. More-
over, it can be shown that a graph is k-connected if and only if
it has k disjoint paths joining two arbitrary vertex sets of size k
each, in which a vertex that belongs to both sets is counted as a
valid path. When a graph does not have a disjoint path cover of
desired kind, it is natural to consider an augmented graph with
higher connectivity. A simple way of increasing the connectiv-
ity is to raise a graph to a power: Given a positive integer d, the
d-th power Gd of G is defined as a graph with the same vertex
set V(G) and the edge set that is augmented in such a way that
two vertices of Gd are adjacent if and only if there exists a path
of length at most d in G joining them. In particular, the graph
G2 is called the square of G, while G3 is said to be the cube of
G.

This paper aims to investigate the structures of the cubes of
connected graphs in the point of disjoint path covers. First,
we show a necessary and sufficient condition for the cube G3

of a connected graph G with |V(G)| ≥ 4 to have a paired 2-
DPC joining two arbitrary disjoint vertex sets S = {s1, s2} and
T = {t1, t2}. Then, the corresponding condition for the existence
of an unpaired 2-DPC is immediately derived. In addition, we
establish a necessary and sufficient condition under which the
cube of a connected graph has an s-t hamiltonian path passing
through a prescribed edge e for an arbitrary triple of s, t, and e.

1.2. Disjoint path covers

The disjoint path cover problem has been studied for several
classes of graphs: hypercubes [6, 9, 14, 16], recursive circu-
lants [18, 19, 25, 26], and hypercube-like graphs [25, 26]. The
structure of the cubes of connected graphs was investigated with
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respect to single-source 3-disjoint path covers [24]. The prob-
lem was also investigated in view of a full utilization of nodes
in interconnection networks [25]. Its intractability was shown
that deciding the existence of a one-to-one, one-to-many, or
many-to-many k-DPC in a general graph, joining arbitrary sets
of sources and sinks, is NP-complete for all k ≥ 1 [25, 26].

The method for finding a disjoint path cover can easily be
used for finding a hamiltonian path (or cycle) due to its natural
relation to the hamiltonicity of graph. For instance, a hamilto-
nian path between two distinct vertices in a graph G is in fact
a 1-DPC of G joining the vertices. An s-t hamiltonian path
in G that passes an arbitrary sequence of k pairwise nonad-
jacent edges ((x1, y1), (x2, y2), . . . , (xk, yk)) in the specified or-
der always exists for any distinct s and t with s , xi, yi and
t , xi, yi (1 ≤ i ≤ k) if G is paired (k + 1)-coverable [25]. A
simpler, s-t hamiltonian path that passes a prescribed edge (x, y)
with {s, t} ∩ {x, y} = ∅ can also be found by solving the corre-
sponding unpaired or paired 2-DPC problem [26]. While the
unpaired version would be easier to tackle than the paired one,
the difference is that the direction between x and y in the path
may not be enforced through the unpaired 2-DPC. For more
discussion on the hamiltonian paths (or cycles) passing through
prescribed edges, refer to, for example, [3, 8].

1.3. Strong hamiltonian properties

The cube of a connected graph with at least four vertices
is 1-hamiltonian, i.e., it is hamiltonian and remains so af-
ter the removal of any one vertex, as Chartrand and Kapoor
showed [5]. Sekanina [29] and Karaganis [17] independently
proved that the cube of a connected graph is hamiltonian-
connected. Whether the cube is 1-hamiltonian-connected, i.e.,
it still remains hamiltonian-connected after the removal of any
one vertex, was characterized for trees by Lesniak [21] and for
connected graphs by Schaar [28]. Characterizations of con-
nected graphs whose cubes are p-hamiltonian for p ≤ 3 were
also made in [20, 28], and strong hamiltonian properties of the
cube of a 2-edge connected graph were studied in [23].

On the other hand, the hamiltonicity of the square of a graph
was investigated by several researchers. Fleischner proved that
the square of every 2-connected graph is hamiltonian [11] (for
an alternative proof, refer to [13] or [22]). In fact, the square
of a 2-connected graph is both hamiltonian-connected and 1-
hamiltonian provided that its order is at least four [4]. These
works were followed by several results on the hamiltonicity of
the square graphs, in particular, by Abderrezzak et al. [1], Chia
et al. [7], and Ekstein [10]. Interesting results on pancyclicity
and panconnectivity of the square of a connected graph were
given in [12]. For the square of a tree T , Harary and Schwenk
showed that T 2 is hamiltonian if and only if T is a caterpil-
lar [15]. Recently, Radoszewski and Rytter proved that T 2 has
a hamiltonian path if and only if T is a horsetail [27].

1.4. Fundamental concepts and notation

Before proceeding to the main results, we summarize some
fundamental terminologies on the graph connectivity that are
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Figure 1: In this connected graph, the seven nontrivial bridges are marked in
dotted lines. There are three pure bridge vertices v7, v8, and v15, one pure bridge
triangle {v9, v10, v14}, and one pure bridge pair {v7, v8}.

frequently used in this article (refer to Figure 1 for an illustra-
tion of them). An edge of a graph G is called a bridge, or cut-
edge, if its removal increases the number of connected com-
ponents. Trivially, an edge is a bridge if and only if it is not
contained in a cycle. A bridge is said to be nontrivial if none
of its two end-vertices is of degree one. A vertex of G is called
a pure bridge vertex if each of its incident edges is a nontrivial
bridge. Furthermore, a set of three pairwise adjacent vertices,
each having a degree of at least three, is called a pure bridge
triangle if every edge that is incident with exactly one of the
triangular vertices is a nontrivial bridge. In addition to these
terminologies, we introduce another one:

Definition 1. A set of two adjacent vertices is called a pure
bridge pair if both vertices are pure bridge vertices.

Next, we present two fundamental theorems about the hamil-
tonian properties of the cubes of connected graphs that play im-
portant roles in deriving our results.

Theorem 1 (Sekanina [29] and Karaganis [17]). The cube of
every connected graph is hamiltonian-connected.

Theorem 2 (Schaar [28]). Given three vertices s, t, and v f of
a connected graph G, there exists an s-t hamiltonian path in
G3 \ v f if and only if

• {s, t, v f } * N[v] for any pure bridge vertex v of G, and

• {s, t, v f } does not form a pure bridge triangle of G.

In this article, NG(v), or N(v) if the graph G is clear in the
context, represents the open neighborhood of a vertex v ∈ V(G),
i.e., NG(v) = {u ∈ V(G) : (u, v) ∈ E(G)}, whereas NG[v],
or N[v], denotes the closed neighborhood of v, i.e., NG[v] =

NG(v) ∪ {v}. These neighborhood definitions are naturally ex-
tended to vertex sets, and will be used frequently in this arti-
cle: NG(X) =

⋃
v∈X NG(v) \ X and NG[X] = NG(X) ∪ X for

X ⊆ V(G). In addition, the usual notations, δG(v) and dG(u, v),
are employed to indicate the degree of vertex v in G and the
distance between vertices u and v in G, respectively. Finally,
we will call a vertex free if it does not belong to any terminal
vertex set.
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2. MANY-TO-MANY TWO-DISJOINT PATH COVERS

In this section, we derive, in parallel, the exact conditions
for the cube of a connected graph G with |V(G)| ≥ 4 to have a
paired and unpaired 2-DPC, respectively, joining two arbitrary
disjoint vertex sets S = {s1, s2} and T = {t1, t2}. First, let us
discuss the necessary conditions.

Lemma 1 (Necessity for unpaired 2-DPC). Let S = {s1, s2}

and T = {t1, t2} be terminal sets of a connected graph G. If G3

has an unpaired 2-DPC joining S and T , then {s1, t1, s2, t2} *
NG[v] for any pure bridge vertex v of G

Proof. Suppose to the contrary {s1, s2, t1, t2} ⊆ NG[v] for some
pure bridge vertex v. Let NG(v) = {v1, v2, . . . , vd} with d =

δG(v). Also let W = {wi : 1 ≤ i ≤ d}, where wi is a neigh-
bor of vi in G other than v, implying (wi,wi′ ) < E(G3) for any
pair of wi and wi′ in W. Let P1 and P2 be two paths of the
unpaired 2-DPC of G3, defined as sequences of vertices. We
denote by P′1 and P′2 the longest subsequences of P1 and P2, re-
spectively, whose elements, not necessarily contiguous to each
other, are contained in NG[v] ∪ W. Then, (i) P′1 and P′2 alto-
gether have d + 1 vertices in NG[v] and d vertices in W, and
(ii) their first and last vertices are all terminals contained in
NG[v]. Thus, at least one of P′1 and P′2, say P′1, should have two
consecutive vertices, wi and w j, of W. This indicates that, for
P1 = (x1, x2, . . . , xp (= wi), . . . , xq (= w j), . . . , xm), every vertex
xk with p ≤ k ≤ q is not contained in NG[v]. Since wi and w j

are respectively contained in different connected components
of G \ v, there should be two consecutive vertices xk∗ and xk∗+1
of P1, for p ≤ k∗ ≤ q − 1, that are contained in different con-
nected components of G \ v. This is, however, impossible since
dG(xk∗ , xk∗+1) ≥ 4. This completes the proof. �

Obviously, the condition above is also necessary for G3 to
have a paired 2-DPC joining S and T .

Lemma 2 (Necessity for paired 2-DPC). Let S = {s1, s2} and
T = {t1, t2} be terminal sets of a connected graph G. If G3 has a
paired 2-DPC joining S and T , then {si, ti} is not a pure bridge
pair of G such that {s3−i, t3−i} ⊆ NG({si, ti}) for each i = 1, 2.

Proof. Suppose for a contradiction that, for some i, say, i = 2,
{s2, t2} is a pure bridge pair such that {s1, t1} ⊆ NG({s2, t2}). Due
to Lemma 1, s1 and t1 must reside in the different connected
components of G \ (s2, t2), allowing us to assume w.l.o.g. that
there exists a path (s1, s2, t2, t1) in G, as shown in Figure 2. Now,
for each neighbor xi (, t2) of s2 with 1 ≤ i ≤ p (= δG(s2) − 1)
and x1 = s1, xi has another neighbor x′i in G other than s2.
Similarly, for each neighbor y j (, s2) of t2 with 1 ≤ j ≤ q (=
δG(t2)−1) and y1 = t1, y j has another neighbor y′j in G other than
t2. Let X, X′, Y , and Y ′ with |X| = |X′| = p and |Y | = |Y ′| = q
be the sets of vertices made of xi, x′i , y j, and y′j, respectively.
For the vertex set Xi (resp. Y j) of a connected component of
G \ {s2, t2} containing xi (resp. y j), 1 ≤ i ≤ p, 1 ≤ j ≤ q, we
can easily see that, letting X′i = Xi \ xi and Y ′j = Y j \ y j, the
distance in G between X′i and Y ′j, the distance between X′i and
X′i′ for i , i′, and the distance between Y ′j and Y ′j′ for j , j′ are
all greater than three.
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Figure 2: A contradictory situation in the proof of Lemma 2.

For the s1-t1 path P1 and the s2-t2 path P2 in the paired 2-
DPC, define further that P′1 and P′2 are the longest subsequences
of P1 and P2, respectively, whose elements, not necessarily con-
tiguous to each other, are contained in X∪X′ ∪Y ∪Y ′ ∪ {s2, t2}.
Then, (i) P′1 and P′2 altogether pass through the p+q+2 vertices
in B = X∪Y ∪{s2, t2} and the p+q vertices in W = X′∪Y ′, and
(ii) their end-vertices, four in total, are contained in B. Similar
to the proof of Lemma 1, we can reason that the two subse-
quences of vertices may not have two consecutive vertices from
W, indicating that the vertices of P′1 and P′2 should alternate
in B and W. Observe in particular that s1 and t1, the two end-
vertices of P1, are contained in X and Y , respectively. The fact
that the distance in G between X and

⋃
j Y ′j, and also between

Y and
⋃

i X′i , is four, however, means that s1 may not reach t1
in G3 \ {s2, t2} without passing through the two consecutive ver-
tices from B (one from X and the next from Y), implying the
path P1 is impossible to have. This contradiction completes the
proof. �

Interestingly enough, these two necessary conditions to-
gether form the sufficient condition for the cube of a connected
graph to have a paired 2-DPC as follows.

Theorem 3 (Paired 2-DPC). Let S = {s1, s2} and T = {t1, t2}
be terminal sets of a connected graph G. The cube G3 has a
paired 2-DPC joining S and T if and only if

• C1: {s1, s2, t1, t2} * NG[v] for any pure bridge vertex v of
G, and

• C2: {si, ti} is not a pure bridge pair of G such that
{s3−i, t3−i} ⊆ NG({si, ti}) for each i = 1, 2.

Proof. The necessity part is due to Lemmas 1 and 2. The
sufficiency part proceeds by induction on the number of ver-
tices of G, |V(G)|, in which we assume |V(G)| ≥ 5 as the
case of |V(G)| = 4 is trivial. Given the four terminals, we
can always select a terminal z such that the remaining termi-
nals {s1, s2, t1, t2} \ z reside in the same connected component of
G \ z. (Suppose that removing a terminal from G separates the
other terminals into different connected components. Then, at
least one of them must contain a single terminal, allowing us to
choose that terminal.) If there are more than one such terminals,
we select a terminal, named as s1 w.l.o.g., as follows: choose
a terminal with a minimum number of neighbors that are both
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terminals and pure bridge vertices. Now, let us denote by H
the connected component of G \ s1 containing all s2, t1, and t2,
and by H′ the subgraph of G induced by V(G) \V(H), in which
all the edges between the two disjoint subgraphs H and H′ are
incident to s1. In addition, define a vertex set W as follows:

W =


{w ∈ V(H) : dG(s1,w) ≤ 2} if |V(H′)| ≥ 2,
{w ∈ V(H) : dG(s1,w) ≤ 3} if |V(H′)| = 1,

i.e., V(H′) = {s1}.

In this proof, we consider two major cases in which a free
vertex in W is to be considered as a terminal instead of s1. Sup-
pose first that there exists a free vertex s′1 in W such that {s′1, s2}

and {t1, t2} satisfy the two conditions C1 and C2 with respect
to H. Then, by the induction hypothesis, there exists a paired
2-DPC in H3, composed of an s′1-t1 path and an s2-t2 path. Con-
sider an s1-v hamiltonian path in H′3 for some neighbor v of s1
in H′ if |V(H′)| ≥ 2, which is guaranteed to exist by Theorem 1,
or a one-vertex path s1 if |V(H′)| = 1. Notice that v and s′1 are
adjacent to each other in G3 due to the definition of W. Hence,
by combining the s1-v and s′1-t1 paths via the edge (v, s′1), we
can build a paired 2-DPC joining S and T , completing the proof
of the first major case.

Next, consider the second major case, where, for every free
vertex s′1 in W, if any, {s′1, s2} and {t1, t2} violate at least one of
the two conditions with respect to H. There are three cases.

Case 1: For some free vertex s′1 ∈ W, {s′1, s2} and {t1, t2} vi-
olate C2 but satisfy C1 with respect to H. In this case, there
exists an induced path (u1, u2, u3, u4) in H, where {u2, u3}, ei-
ther {s′1, t1} or {s2, t2}, is a pure bridge pair of H, and {u1, u4}

= {s′1, s2, t1, t2} \ {u2, u3} (see Figure 3(a) for possible permuta-
tions). While each edge of G from s1 to H may have the other
end-vertex in one of the three disjoint sets V(H) \ NH[{u2, u3}],
NH({u2, u3}), and {u2, u3}, we claim that (s1, v) < E(G) for every
v ∈ V(H) \ {u2, u3}. Due to the hypothesis of the second major
case, it holds true that (s1, v) < E(G) for v ∈ V(H)\NH[{u2, u3}]
since {v, s2} and {t1, t2} obviously satisfy both C1 and C2 with
respect to H. Similarly, (s1, v) < E(G) for v ∈ NH({u2, u3})
since for some v′ ∈ V(H) \ NH[{u2, u3}] adjacent to v, {v′, s2}

and {t1, t2} obviously satisfy both C1 and C2 with respect to H.
Thus, the claim is proved.

Now, it remains that (s1, u2) ∈ E(G), (s1, u3) ∈ E(G), or
both. First, in the case where {u1, u4} = {s2, t2}, as illustrated in
Figure 3(b), there exists an s2-t2 hamiltonian path P2 in H3 \ t1
by Theorem 2. There also exists an s1-t1 hamiltonian path P1
in G3

1 \ s′1 by Theorem 2 again, where G1 is the subgraph of G
induced by V(H′) ∪ {u2, u3}. The two paths P1 and P2, then,
form a paired 2-DPC of G3. Second, if {u2, u3} = {s2, t2} and
there are edges from s1 to both u2 and u3, we consider the two
connected components of H \ (u2, u3), called H1 and H2, where
u2 ∈ V(H1) and u3 ∈ V(H2). If u1 = s′1 and u4 = t1 (refer
to Figure 3(c)), we can build a paired 2-DPC of G3 by finding
an s1-t1 hamiltonian path P1 in G3

1 \ u3 with G1, the subgraph
induced by V(H2) ∪ {s1}, and an s2-t2 hamiltonian path P2 in
G3

2 \ s1 with G2, the subgraph induced by V(H1)∪V(H′)∪ {u3},
whose existence is guaranteed by Theorem 2. In the other case
of u1 = t1 and u4 = s′1, a paired 2-DPC of G3 can be constructed
symmetrically.

Third, suppose that {u2, u3} = {s2, t2} and there is exactly
one edge from s1 to either u2 or u3. Consider the case of
(s1, u2) ∈ E(G) first. In this case, δG(s1) = 1. Otherwise, that is,
if δG(s1) ≥ 2, (s1, u2) should be a nontrivial bridge of G. Then,
contrary to the hypothesis of the theorem, {s1, s2} and {t1, t2}
would violate the condition C2 with respect to G. Now, let G1
and G2 be the subgraphs of G induced by V(H1) ∪ {s1} and by
V(H2)∪ {u2}, respectively, where, again, H1 and H2 are the two
connected components of H \ (u2, u3) such that u2 ∈ V(H1) and
u3 ∈ V(H2). In the case where u4 = t1 (refer to Figure 3(d)),
there exists an s2-t2 hamiltonian path in G3

2 \ t1. Also, by merg-
ing an s1-s′1 hamiltonian path in G3

1 \ u2 and a one-vertex path
t1 via the edge (s′1, t1) in G3, we can build an s1-t1 path P1 cov-
ering the remaining vertices, showing the existence of a paired
2-DPC of G3. For the case of u1 = t1, an s1-t1 hamiltonian path
in G3

1 \ u2 and an s2-t2 hamiltonian path in G3
2 together form a

paired 2-DPC. Lastly, when (s1, u3) ∈ E(G), a symmetric argu-
ment also leads to the existence of a paired 2-DPC of G3.

Case 2: For some free vertex s′1 ∈ W, {s′1, s2} and {t1, t2}
violate C1 with respect to H. Here, we may assume that, for
every free vertex s′1 ∈ W, {s′1, s2} and {t1, t2} violate C1 since
the case of only C2 being broken has been dealt with in Case 1.
Since C1 is violated, {t1, s2, t2} ⊆ NH[v] for some pure bridge
vertex v of H. Such v should be unique since (i) at least two of
t1, s2, and t2 are distance two apart, and (ii) an extra candidate
for v would form a cycle. Thus, we can say that {s′1, t1, s2, t2} ⊆
NH[v] for every free vertex s′1 in W. Notice that there cannot be
an edge from s1 to any vertex u , v because the existence of
such an edge implies that there is another free vertex in W that
is not in NH[v], contradicting our assumption.

Hence, v must be a unique neighbor of s1 in H, indicating
that (s1, v) is a bridge of G. Now, if δG(s1) ≥ 2, (s1, v) is
nontrivial, and v becomes a pure bridge vertex of G such that
{s1, t1, s2, t2} ⊆ NG[v], contradicting the hypothesis of the the-
orem. If δG(s1) = 1, then there must exist a free vertex in W,
which is at distance three from s1, but is not in NH[v], also con-
tradicting our assumption. Hence, Case 2 is impossible.

Case 3: There exists no free vertex in W. Suppose t1 ∈ W.
Consider an s1-w hamiltonian path in H′3 for some neighbor w
of s1 in H′ if |V(H′)| ≥ 2, which is guaranteed to exist by The-
orem 1, or a one-vertex path s1 if |V(H′)| = 1. Then, appending
t1 to the path results in an s1-t1 path. If H3 \ t1 has an s2-t2
hamiltonian path, these two paths form a paired 2-DPC of G3,
and we are done. Suppose otherwise. By Theorem 2, (i) there
exists a pure bridge vertex v in H such that {t1, s2, t2} ⊆ NH[v],
or (ii) {t1, s2, t2} forms a pure bridge triangle in H. The case
(ii) is impossible since any neighbor u of s1 in W would be
free itself (if u < {t1, s2, t2}), or would have a free neighbor in
W (if u ∈ {t1, s2, t2}), which, in both possibilities, contradicts
the assumption of Case 3. In the case (i), v is a terminal be-
cause, otherwise, every neighbor u of s1 in W would be free it-
self (if u < {t1, s2, t2}), or would have a free neighbor v in W (if
u ∈ {t1, s2, t2}). Furthermore, v is the unique neighbor of s1 in H
similarly because, otherwise, every neighbor u of s1 in W other
than v would be free itself, or would have a free neighbor in W.
Now, if δG(s1) ≥ 2, (s1, v) is a nontrivial bridge of G and thus

4



u
4

u
3

u
1

u
2

t
1

t
2

s '
1

s
2

s
1
't

2
t

1
s

2

t
2

t
1

s
2

s '
1

t
2

s '
1

s
2

t
1

H

(a) {s′1, s2} and {t1, t2} violate C2 but satisfy C1.

u
3

u
2

t
2

s
1

s
2

H

G
1

(b) {u1, u4} = {s2, t2}.

t
1

s '
1 t

2

s
1

s
2

G
2 G

1

(c) {u2, u3} = {s2, t2} and (s1, u2), (s1, u3) ∈ E(G).

t
1s '

1 t
2

s
1

s
2

G
2G

1

(d) {u2, u3} = {s2, t2} and (s1, u2) ∈ E(G).

Figure 3: An illustration for the proof of Case 1 of Theorem 3.

v is a pure bridge vertex of G such that {s1, t1, s2, t2} ⊆ NG[v],
which contradicts the hypothesis of the theorem. If δG(s1) = 1,
there must exist a free vertex in W, which is at distance two
from v in H, contradicting our assumption.

Finally, suppose t1 < W. By the definition of W, either
(i) |V(H′)| ≥ 2 and dG(s1, t1) ≥ 3, or (ii) |V(H′)| = 1 and
dG(s1, t1) ≥ 4. The case (ii) is simply impossible since there
are at least three vertices in W, at most two of which may be
terminals. This suggests the existence of a free vertex in W,
leading to a contradiction. In the case (i), it is obvious that W
is made of s2 and t2, where one of them, x, is adjacent to both
s1 and the other one y. Notice that x is a pure bridge vertex of
G. Furthermore, (t1, y) ∈ E(G) and y is a pure bridge vertex of
G because, otherwise, the vertex t1 would have been selected as
s1 in the beginning. This implies that (s1, x, y, t1) is an induced
path of G such that {x, y}, i.e., {s2, t2} is a pure bridge pair and
{s1, t1} ⊆ NG({s2, t2}), which contradicts the hypothesis of the
theorem. This completes the entire proof. �

Corollary 1. For a connected graph G with four or more ver-
tices, G3 is paired 2-coverable if and only if G has neither a
pure bridge vertex of degree at least three nor a pure bridge
pair.

Now, the necessary and sufficient condition for the existence
of an unpaired 2-DPC of the cube of a connected graph is easily
derived.

Theorem 4 (Unpaired 2-DPC). Let S = {s1, s2} and T =

{t1, t2} be terminal sets of a connected graph G. The cube
G3 has an unpaired 2-DPC joining S and T if and only if
{s1, s2, t1, t2} * NG[v] for any pure bridge vertex v of G.

Proof. The necessity part is due to Lemma 1. For the proof
of the sufficient condition, it suffices to handle the situation
where the second condition of Theorem 3, C2, is broken and
the first condition C1 is satisfied. Suppose that the four termi-
nals form an induced path (u1, u2, u3, u4) such that {u2, u3}, say,
{s2, t2} w.l.o.g. is a pure bridge pair. Let H1 and H2 be the two
connected components of G \ (u2, u3) such that u2 ∈ V(H1) and
u3 ∈ V(H2). There are two cases to be considered: u1 = s1
& u4 = t1 as shown in Figure 4, and u1 = t1 & u4 = s1. In
the first case, we can find an s1-t2 hamiltonian path in G3

1 \ s2
by Theorem 2, where G1 is the subgraph of G induced by
V(H1) ∪ {u3}. Furthermore, an s2-t1 hamiltonian path in G3

2 \ t2
also exists by the same reason, where G2 is the subgraph in-
duced by V(H2)∪{u2}, forming an unpaired 2-DPC of G3 along
with the s1-t2 path. A symmetric argument shows the existence
of an unpaired 2-DPC for the second case of u1 = t1 & u4 = s1,
too. This completes the proof. �

Corollary 2. For a connected graph G with four or more ver-
tices, G3 is unpaired 2-coverable if and only if G has no pure
bridge vertex of degree at least three.
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Figure 4: An illustration of the proof of Theorem 4. Under the assump-
tion {u2, u3} = {s2, t2}, this figure represents the first case where the induced
path (u1, u2, u3, u4) is either (s1, s2, t2, t1) or (s1, t2, s2, t1). The other case of
(t1, s2, t2, s1) or (t1, t2, s2, s1) can be handled symmetrically.

3. HAMILTONIAN PATH THROUGH A PRESCRIBED
EDGE

In this section, we are concerned to know when the cube of a
connected graph has a hamiltonian path between given source
and sink that passes through a certain edge. First, given two dis-
tinct vertices s and t and a prescribed edge (x, y) of a connected
graph H with three or more vertices, the following observations
are easily made.

1. If {s, t} ∩ {x, y} = ∅, it is straightforward that H has an
s-t hamiltonian path that passes through (x, y) if and only
if H has an unpaired 2-DPC joining S = {s, t} and T =

{x, y}. Note that the order of the vertices x and y on the s-t
hamiltonian path may vary depending on the paths of the
unpaired 2-DPC.

2. If {s, t} = {x, y}, there exists no such hamiltonian path.
3. If |{s, t} ∩ {x, y}| = 1, say, s = x and t , y w.l.o.g., H has

an s-t hamiltonian path passing through (x, y) if and only
if H \ s has a y-t hamiltonian path.

These facts naturally lead to the next theorem.

Theorem 5. Let G be a connected graph with three or more
vertices. Given s, t ∈ V(G) with s , t, and (x, y) ∈ E(G3)
such that {s, t} , {x, y}, the cube G3 has an s-t hamiltonian path
passing through the prescribed edge (x, y) if and only if

• if {s, t} ∩ {x, y} = ∅, then {s, t, x, y} * NG[v] for any pure
bridge vertex v of G, and

• if {s, t} ∩ {x, y} , ∅, assuming s = x and t , y, then
{s, t, y} * NG[v] for any pure bridge vertex v of G and
{s, t, y} does not form a pure bridge triangle of G.

Proof. The proof is a direct consequence of Theorem 4 and
Theorem 2. �

Corollary 3. Let G be a connected graph with three or more
vertices. The cube G3 has an s-t hamiltonian path passing
through (x, y) for any distinct vertices s and t, and a prescribed
edge (x, y) of G3 such that {s, t} , {x, y} if and only if there exists
neither a pure bridge vertex nor a pure bridge triangle in G.

Remark 1. From Theorem 2, we deduce that the condition
given in Corollary 3 can be rephrased as “G3 is 1-hamiltonian-
connected, i.e., G3 \v f has an s-t hamiltonian path for any three
vertices s, t, and v f .”
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Figure 5: An example graph H that reveals that Corollary 4 does not hold for an
arbitrary connected graph. Here, the subgraph of H induced by {u1, u2, u3, u4}

is edgeless, whereas those induced by {v1, v2, v3}, {v4, v5, v6}, and {v7, v8, v9},
respectively, are all complete graphs. Furthermore, (ui, v j) ∈ E(H) for all 1 ≤
i ≤ 4 and 1 ≤ j ≤ 9.

The next corollary is derived directly from Theorems 4 and
5.

Corollary 4. Let G be a connected graph with four or more
vertices. The cube G3 has an s-t hamiltonian path passing
through (x, y) for any distinct vertices s and t, and a prescribed
edge (x, y) of G3 such that {s, t} ∩ {x, y} = ∅ if and only if G3 is
unpaired 2-coverable.

Remark 2. If an arbitrary graph H with four or more vertices is
unpaired 2-coverable, then H has an s-t hamiltonian path pass-
ing through a prescribed edge (x, y) for any s, t ∈ V(H) with
s , t, and (x, y) ∈ E(H) such that {s, t} ∩ {x, y} = ∅. How-
ever, unlike the cube of a connected graph, the converse is not
always true. For instance, take a look at the graph illustrated in
Figure 5. We can see by an immediate inspection that the graph
has no unpaired 2-DPC joining {u1, u2} and {u3, u4}, while it al-
ways has an s-t hamiltonian path that passes through (x, y) for
any s, t, and (x, y) such that {s, t} ∩ {x, y} = ∅.

So far, the order in which the two end-vertices of prescribed
edge (x, y) are encountered during traversal of an s-t hamil-
tonian path starting from s has not been important. We may
further require that x is visited before y, where such a path is
now described as an s-t hamiltonian path passing through an
arc 〈x, y〉 (note that we still consider an undirected graph).

Given a connected graph H with three or more vertices, we
can make the following observations similarly as before:

1. If {s, t} ∩ {x, y} = ∅, H has an s-t hamiltonian path passing
through 〈x, y〉 if and only if H has a paired 2-DPC join-
ing the (s, x) and (y, t) pairs. Here, the paired 2-DPC is
composed of an s-x path and a y-t path.

2. If either {s, t} = {x, y}, s = y, or t = x, there exists no such
hamiltonian path.

3. If s = x and t , y, H has an s-t hamiltonian path passing
through 〈x, y〉 if and only if H \ s has a y-t hamiltonian
path. Similarly, if t = y and s , x, such a hamiltonian path
exists if and only if H \ t has an s-x hamiltonian path.

From these observations, a counterpart to Theorem 5 follows
immediately.
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Theorem 6. Let G be a connected graph with three or more
vertices. Given s, t ∈ V(G), and a prescribed arc 〈x, y〉 from
(x, y) ∈ E(G3) such that {s, t} , {x, y}, s , y, and t , x, G3 has
an s-t hamiltonian path passing through 〈x, y〉 if and only if

• if {s, t} ∩ {x, y} = ∅, then {s, t, x, y} * NG[v] for any pure
bridge vertex v of G, and {s, x} and {y, t}, respectively, are
not a pure bridge pair of G such that {y, t} ⊆ NG({s, x})
and {s, x} ⊆ NG({y, t}),

• if s = x and t , y, then {s, t, y} * NG[v] for any pure bridge
vertex v of G and {s, t, y} does not form a pure bridge tri-
angle of G, and

• if t = y and s , x, then {s, t, x} * NG[v] for any pure
bridge vertex v of G and {s, t, x} does not form a pure
bridge triangle of G.

Proof. The proof is a direct consequence of Theorem 3 and
Theorem 2. �

We also have counterpart corollaries for this stronger prob-
lem. The first one is as follows:

Corollary 5. Let G be a connected graph with three or more
vertices. The cube G3 has an s-t hamiltonian path passing
through 〈x, y〉 for any distinct vertices s and t, and a prescribed
arc 〈x, y〉 from an edge (x, y) of G3 such that {s, t} , {x, y}, s , y,
and t , x if and only if there exists neither a pure bridge vertex
nor a pure bridge triangle in G.

Note that the condition of this corollary is the same as that
of Corollary 3, indicating that, whether the prescribed edge is
directed or not, the absence of a pure bridge vertex and a pure
bridge triangle in G is the exact condition for a wanted hamil-
tonian path to exist in G3. Next, the following corollary can be
deduced directly from Theorems 3 and 6.

Corollary 6. Let G be a connected graph with four or more
vertices. The cube G3 has an s-t hamiltonian path passing
through 〈x, y〉 for any distinct vertices s and t, and a prescribed
arc 〈x, y〉 from an edge (x, y) of G3 such that {s, t} ∩ {x, y} = ∅ if
and only if G3 is paired 2-coverable.

Remark 3. If an arbitrary graph H with four or more vertices is
paired 2-coverable, then H has an s-t hamiltonian path passing
through a prescribed arc 〈x, y〉 for any s, t ∈ V(H) with s ,
t, and (x, y) ∈ E(H) such that {s, t} ∩ {x, y} = ∅. Again, the
converse is not always true for H as can also be seen from the
graph in Figure 5.

4. CONCLUDING REMARKS

Deciding if the cube of a connected graph contains a paired or
unpaired 2-disjoint path cover for arbitrarily given sources and
sinks is an interesting problem in graph theory. In this paper, we
have presented the necessary and sufficient conditions for the
two 2-disjoint path cover problems. We have also characterized
exactly when the cube of a connected graph has a hamiltonian

path from a given vertex to another vertex passing through a
prescribed edge. All the proofs given for the four main theo-
rems in this paper are constructive themselves, hence, can be
used effectively to design an algorithm to find the respective 2-
disjoint path covers or hamiltonian paths. Recall that the pure
bridge vertices, pure bridge triangles, and pure bridge pairs can
all be computed in linear time with respect to the size of the
graph, based on the well-known biconnected component algo-
rithm. Therefore, all the exact conditions for the four theorems
can be checked efficiently in linear time.

Unlike the cube of a connected graph that allows easy recur-
sive construction, finding a paired or unpaired 2-disjoint path
cover in the square of a 2-connected graph remains a challeng-
ing problem. We hope that the following two conjectures could
initiate future research.

Conjecture 1. The square of every 2-connected graph with
four or more vertices is unpaired 2-coverable.

Conjecture 2. Let S = {s1, s2} and T = {t1, t2} be terminal
sets of a 2-connected graph G with four or more vertices. The
square G2 has no paired 2-DPC joining S and T if and only if

• G is isomorphic to an even cycle (v0, v1, . . . , v|V(G)|−1), and

• S and T are such that {s1, t1} = {v0, vq} and {s2, t2} =

{vp, vr} for some even integers p, q, and r with 0 < p <
q < r.
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