Volume 23 (2004), number 4 pp. 697-714

SIMD Optimization of Linear Expressions for
Programmable Graphics Hardware

Chandrajit Bajaj', Insung IThm?, Jungki Min? and Jinsang Oh?

1 Department of Computer Science, University of Texas at Austin, Texas, USA
2 Department of Computer Science, Sogang University, Seoul, Korea

Abstract

The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implemen-
tations of a wide range of general computations on commodity PCs. An important factor in such implementations
is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions
in the form of § = AX + b, where A is a matrix, and %,y and b are vectors, constitute one of the most basic
operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that
enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can
be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through
reordering of the operations in linear expressions. We demonstrate that the presented technique can be used ef-
fectively for programming both vertex and pixel shaders for a variety of mathematical applications, including
integrating differential equations and solving a sparse linear system of equations using iterative methods.

Keywords: programmable GPU, vertex shader, pixel shader, numerical computing, linear expression, SIMD,
shader code optimization

ACM CCS: 1.3.1 Computer Graphics: Graphics processors, Parallel processing, Programmable shader; G.1.3
Numerical Analysis—Numerical linear algebra, Sparse systems; G.1.6 Numerical Analysis—Optimization

COMPUTER GRAPHICS forum

1. Introduction

In recent years, commodity graphics hardware has evolved
beyond the traditional fixed-function pipeline, to allow flexi-
ble and programmable graphical processing units (GPUs).
User-programmable vertex and pixel shader technologies
have been applied extensively, and have added a large num-
ber of interesting new visual effects that were difficult or
impossible with traditional fixed-function pipelines. Signifi-
cant effort has focused mainly on the efficient utilization of
pixel shader hardware by effectively mapping advanced ren-
dering algorithms to the available programmable fragment
pipelines. Flexible multitexturing and texture-blending units,
as provided by recent graphics cards, allow a variety of per-
pixel shading and lighting effects, such as Phong shading,
bump mapping and environmental mapping.

© The Eurographics Association and Blackwell Publishing Ltd
2004. Published by Blackwell Publishing, 9600 Garsington
Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

In addition to these traditional per-pixel rendering effects,
the list of graphics applications accelerated by programmable
shader hardware is growing rapidly. Volume rendering is an
actively studied topic in which pixel shading hardware has
been exploited extensively for more flexible classification
and shading at higher frame rates (refer to [1] for the vari-
ous volume rendering techniques using user-programmable
graphics hardware). In [2,3], real-time procedural shading
systems were proposed for programmable GPUs. Two pa-
pers demonstrated that ray casting can be performed ef-
ficiently with current graphics hardware. Carr et al. de-
scribed how ray-triangle intersection can be mapped to a
pixel shader [4]. Their experimental results showed that a
GPU-enhanced implementation is faster on existing hardware
than the best CPU implementation. Purcell et al. presented
a streaming ray-tracing model suitable for GPU-enhanced

Submitted May 2003
Revised July 2003
Accepted August 2004

698 C. Bajaj et al. / SIMD Optimization of Linear Expressions

implementation on programmable graphics hardware [5].
They evaluated the efficiency of their ray-tracing model on
two different architectures, one with and one without branch-
ing. Recently, global illumination algorithms, such as photon
mapping, matrix radiosity and subsurface scattering, were
implemented on GPUs by Purcell et al. [6] and Carr et al.
[71, respectively.

Programmable graphics hardware has also been used for
more general mathematical computations. Hart showed how
the Perlin noise function can be implemented as a multipass
pixel shader [8]. In [9], Larsen and McAllister described the
use of texture mapping and color blending hardware to per-
form large matrix multiplications. Thompson et al. also im-
plemented matrix multiplication, and nongraphics problems
such as 3-satisfiability, on GPUs [10]. Hardware-accelerated
methods were proposed for computing line integral con-
volutions and Lagrangian—Eulerian advections by Heidrich
et al. [11] and Weiskopf et al. [12]. In [13], Rumpf and
Strzodka attempted to solve the linear heat equation using
pixel-level computations. Harris et al. also implemented a
dynamic simulation technique, based on the coupled map
lattice, on programmable graphics hardware [14]. Moreland
and Angel. computed the fast Fourier transform on the GPU,
and used graphics hardware to synthesize images [15].

As the fragment processing units of the recent graphics
accelerators support full single-precision floating-point arith-
metic, itbecomes possible to efficiently run various numerical
algorithms on the GPU with high precision. Two fundamental
numerical algorithms for sparse matrices, a conjugate gradi-
ent solver and a multigrid solver, were mapped to the GPU
by Bolz er al. [16]. Goodnight et al. also implemented a gen-
eral multigrid solver on the GPU, and applied it to solving a
variety of boundary value problems [17]. Kriiger and Wester-
mann described a framework for the implementation of linear
algebra operators on a GPU [18]. The GPU was also used for
solving large nonlinear optimization problems by Hillesland
et al. [19]. Harris et al. solved partial differential equations
on the GPU for simulating cloud dynamics [20].

Many of the numerical simulation techniques mentioned
are strongly reliant on arithmetic operations on vectors and
matrices. Therefore, considerable efforts have been made to
develop efficient representations and operations for vectors
and matrices on GPUs. This paper continues those efforts, and
is specifically concerned with the problem of computing lin-
ear expressions in the form of affine transforms § = AX + b,
where A is a matrix, and ¥, y and b are vectors. Such lin-
ear transforms constitute basic operations in many scientific
computations. Because the matrix A in the expression is usu-
ally large and sparse in practice, many CPU-based parallel
techniques have been proposed in parallel processing fields
for their efficient computations. In particular, several methods
for large sparse matrix—vector multiplication have been de-
signed for SIMD machines [21-24]. Although the proposed
techniques work well on specific machines, it is difficult to

Table 1: Supported instructions. S, S0, S1 and D are four-wide
registers. +, * and - represent component-wise addition, component-
wise multiplication and four-component dot product, respectively.

Operation Usage Description
ADD ADD D, SO, S1 D < S0 +5S1
MUL MUL D, SO, S1 D « S0 * S1
MAD MAD D, SO, S1, S2 D < S0 * S1+S2
DP4 DP4 D, SO, Si D < S0-S1
MOV MOV D, S D« S

apply them directly to the simple SIMD models supported by
current programmable graphics hardware.

This paper presents a SIMD code optimization technique
that enables efficient assembly level shader codes to be gen-
erated for evaluating linear expressions. The technique trans-
forms a given linear expression into an equivalent and opti-
mized expression that can be evaluated using fewer instruc-
tions on the SIMD graphics architecture supported by cur-
rent GPUs. Arithmetic operations are packed into four-wide
SIMD instructions by reordering the operations in the linear
expression. Our technique is different from other related GPU
programming techniques because it searches for the most ef-
ficient linear expression to make the best use of the four-wide
SIMD processing power of current GPUs. We demonstrate
that the proposed optimization technique is quite effective
for programming both vertex and pixel shaders in a variety
of applications, including the solution of differential equa-
tions, and sparse linear systems using iterative methods.

2. Efficient SIMD Computation of Linear Expressions
2.1. Abstract model of SIMD machine

We assume an abstract model of the shader for which our opti-
mization technique is developed. Vertex and pixel shaders of
different manufactures are slightly different from each other.
Furthermore, they are still evolving rapidly. In this respect, we
make only a few basic assumptions about the shader model so
that the resulting technique is vendor-independent, and can
be easily adapted to future shaders. In this paper, we view
the shaders as general purpose vector processors with the
following capabilities:

1. The shader supports four-wide SIMD parallelism.

2. Its instruction set includes the instructions shown in
Table 1.

3. Any component of the source registers may swizzle
and/or replicate into any other component. Furthermore,
destination registers may be masked. These register
modifiers do not harm shader performance.

4. Every instruction executes in a single clock cycle.
Hence, the number of instructions in a shader program
is the major factor affecting shader performance.

© The Eurographics Association and Blackwell Publishing Ltd 2004

C. Bajaj et al. / SIMD Optimization of Linear Expressions 699

2.2. Definition of the problem

As described earlier, this paper describes the genera-
tion of efficient shader code that evaluates a linear
expression of the form E : j = AX + b, where the matrix
A= (a,;,v);,_,-=0y1‘___,m_| and the vector E = (b(), b] ey bm_])’
are constants, and the two vectors X = (xg, X1, ..., Xp_1)"
and y = (yo, y1,---, Ym—1)" are variables. Because the ver-
tex and pixel processing of currently available GPUs is based
on four-wide SIMD floating-point operations, we consider
linear expressions with sizes that are multiples of 4, that is,
m = 4n for a positive integer n. Note that linear expressions
of arbitrary size can be augmented to such expressions by
padding the appropriate number of zeros at the ends of the
matrix and vectors.

Let Ay = (@})i j=0.1...n1. pg=0.123 be the (i, j)th 4 x
4 submatrices that partition A. Then, the linear expression
is described in the following form that is more amenable to
four-wide SIMD processing:
n—1
Ji=) AyX+b foralli=0,1,....n—1, (1)

=0

- P

where X; = (x4; X4j41 Xaj42 X4j33)", i =i Yait1 Yaiy2
t h — t

Yaiv3)' and b; = (bai baiy1 Daiva baiy3)'.

If we define Tj; to be A;;x; fori, j =0,1,...,n — 1,
the following partial product becomes the basic component
in our code optimization technique:

ij ij ij ij
gy * Xaj + gy~ Xajy1 + Aoy - Xaj2 + Qgy - Xaj43
ij ij ij ij
Ajo * X4j tayy - Xajp1 +ayp - Xajpa + a3 Xaj43
Ti=| i ij ij ij
g - X4j + A5) - Xajr + Ay - Xajio + A3 - X443
ij ij ij ij
Az - Xaj + a3y - Xgjy1 + A3 - Xgjpo + Q33 - Xaji3

@

2.3. Our optimization technique

Shader performance greatly depends on the number of in-
structions in the shader program [25]. Our shader optimiza-
tion technique attempts to minimize the number of instruc-
tions generated by fully exploiting the vector nature of both
linear expressions and shader instructions. In our scheme, a
linear expression is translated into a shader program through
the following two stages:

1. Transformation Stage: Transform a given linear ex-
pression E into a more efficient equivalent expression
E*.

2. Code Generation Stage: Generate the shader code by
evaluating equation (1) for E*.

As will be explained below, the number of shader instruc-
tions necessary for evaluating E : j = AX + b depends on
the pattern of nonzero elements of A and b. The goal of the
transformation stage is to search for a better linear expres-
sion that is equivalent to the given expression, and can be

evaluated using fewer instructions. Once a more efficient lin-
ear expression is found, the shader code is generated using
the supported SIMD instructions as efficiently as possible in
the second stage. Because the transformation stage relies on a
cost function defined in the code generation stage, we explain
the latter first.

2.3.1. Code Generation Stage

To compute the four-vector 7;; = A;;X; in equation (2), 12
additions and 16 multiplications must be carried out in the
worst case. However, when the matrix A; contains zero el-
ements, it can be evaluated in fewer arithmetic operations.
Notice that the SIMD instructions offered by graphics proces-
sors perform multiple arithmetic operations simultaneously.
For instance, the MAD and DP4 instructions in currently avail-
able consumer graphics processors perform four additions
and four multiplications, and three additions and four multi-
plications in a single clock cycle, respectively.

When Tj; is evaluated with the SIMD instructions, the key
is to exploit their parallelism cleverly. If a MAD instruction,
for instance, is used to multiply any null element of A, the
GPU’s parallel computing power is wasted. It is important to
rearrange the arithmetic expressions equation (2) appropri-
ately, with trivial terms deleted, so that each applied SIMD
instruction performs as many nontrivial additions and multi-
plications as possible. Note that the computation of multiply-
ing A; and X; relies on the structure of A;;. A close analysis
of the pattern of zero elements of A; suggests two evalu-
ation methods, which we call column-major multiplication
and row-major multiplication, respectively.

Column-major multiplication: This method uses the MAD
and MUL instructions to evaluate Tj. As illustrated in Fig-
ure 1(a), A is peeled off vertically such that each skin covers
as many nonzero elements as possible. Let the cost cg(i, j)
(three in this example) be the number of necessary peels.
Then, it is trivial to see that T}; can be evaluated in one MUL
and cg(i, j) — 1 subsequent MAD instructions. If matrix—vector
multiplication is to be implemented in this way, the nonzero
elements of A; that are multiplied in each instruction must
be loaded in a register before the shader is executed. In this
example, assume that (ag) aj, a5 ay,)', (ag, ath0 a3))' and
(0 a’50 0)' are stored in registers C27, C28 and C29, respec-
tively. Let the register R4 also contain (x4;X4j4+1X4j42X4j4+3) .
Then the following three shader instructions compute 7;; in
column-major fashion, and put the result 7} into the register
R3:

MUL R3, C27, R4.yxyx
MAD R3, C28, R4.zzzy, R3
MAD R3, C29, R4.wwwz, R3

The source-argument swizzles clearly help in rearranging and
replicating the X;’s elements.

Row-major multiplication: DP4 is another instruction
that is useful for exploiting SIMD parallelism. In fact, it is

© The Eurographics Association and Blackwell Publishing Ltd 2004

700
A .
2 491 “%2 ?J T4
7= | %0 O @12 ai3 || T4t |
! 0 ag; 0 0O Taj42
ajy a3; 0 0 Taj+3
SO --gY- Y- ,
g 01 %62 D T4j
Ty; = | %10 O aip-arg | | T4+l |
0--ag;--0---0 Taj+2
0o 0 0 o T4j+3

C. Bajaj et al. / SIMD Optimization of Linear Expressions

- MUL -~ "MAD MAD'
2] i i |
gy Taj41; T Aoy Taj42) ‘
] | (¥ .] |
ajo-@aj 1+ ajp Taj4o; + ai3 Taj43,
1j
31 T4j41, |
) ! 1] !

\ 030 Taj |+ a3y Tajq :

(a)

DRI i 'DP

1agy - Taj41 + agy - Taj4o ! 4 3§ 4

g 1Y)]

Gjp- T4y F aip Tajyo t+ ay3c 4543

s

(431 T4 41, Dp4

(b)

Figure 1: Efficient SIMD evaluation of Tj. Not all arithmetic operations must be performed because some entries are null.
The proposed optimization technique identifies the nonzero entries and reorganizes them to produce a code with fewer SIMD
instructions.(a) Column-major multiplication and (b) row-major multiplication.

very natural to matrix—vector multiplication. If we define the
cost rg(i, j) to be the number of rows of A; that contain
at least one nonzero element, it is also trivial to see that T};
can be evaluated using rz(i, j) DP4 instructions (see Figure
1(b)). If the registers C27, €28 and €29 hold (0 aéfl af)jZO)’,
(a0 @', a') and (0 a¥,0 0), respectively, the following
instructions compute 7;; in row-major fashion:

DP4 R3.x, C27, R4
DP4 R3.y, C28, R4
DP4 R3.z, C29, R4

When Tj; is evaluated, the multiplication method with the
smaller cost is selected. When cg(i, j) and rg(i, j) are even,
the column-major method is chosen for the reason that will
be explained in the next paragraph. Then the cost, i.e. the
number of necessary instructions, of multiplying A; with &;
is defined as C‘g‘“'(i, j) =min(cg(i, j), rei, j)).

Once the terms Tj; are obtained for all j, they are added to
b; using the ADD instruction. The addition process must be
coded carefully. First, neither null 7;; nor null b; should be
added (notice that Tj; vanishes if all elements of A;; are null).
Secondly, an ADD instruction is saved if it can combine with
the first MUL instruction of the column-major multiplication.
That is, by replacing MUL in the column-major multiplica-
tion with MAD, and accumulating the partial products of T;
to the register corresponding to ¥;, the addition process can
be implemented more efficiently. This is why column-major
multiplication is preferred to the row-major multiplication
when their respective costs are the same. In summary, the
code generation stage is described as follows:

1. Terms Tj; with rg(i, j) < cg(i, j) are evaluated first,
in row-major fashion. Their results and b; are accu-

mulated to the destination register for y; using the ADD
instruction.

Then the remaining terms 7}; are evaluated in column-
major fashion, accumulating to the destination register.

Let n'; (i) be the number of terms Ty, j =0, 1,...,n — 1,
that are computed in row-major fashion. If we define C3™ (i)
to be the cost of the summation process, i.e. the number
of additional ADD instructions required, it becomes then
Cym@@) =nk () if b; is not trivial, or ny(i) — 1 otherwise.

2.3.2. Transformation stage

Now by combining the two cost functions, the evaluation
cost C(E) for E : § = A% + b can be defined to be C(E) =
Zf’;lzo C™I(i, j) 4+ Y12y C™(i). This metric represents the
number of shader instructions required to compute E, and is
determined by the patterns of nonzero elements in A and
b. The key to our shader optimization technique is the fact
that exponentially many linear expressions exist equivalent
to the given expression E. We consider two linear expressions
E:y=AXx+band E' : y = A’X' + b’ to be equivalent to
each other if ¥ can be obtained by rearranging the elements
of y'. Basically, the results of two equivalent expressions are
the same except for the order in which the computed values
are stored in memory.

Figure 2 shows augmented matrices [A | b] of two equiva-
lent linear expressions, found in the example of Section 3.2,
which have costs of 20 and 14, respectively. The thick
(curved) line segments in the matrix parts indicate how the
corresponding matrix—vector multiplications are performed.
It is obvious that the expression in Figure 2(b) can be imple-
mented more efficiently.

© The Eurographics Association and Blackwell Publishing Ltd 2004

C. Bajaj et al. / SIMD Optimization of Linear Expressions 701

09000000[0000/0000[00000 0 00900000/0000j0000/0000 0
1234000000000000/0000 1 00090000]0000/00000000 0
0009/0000/000000000000 0 7586/0000[0000]0000(0000 2
5678000000000000/0000 2 3142/0000/0000/0000/0000 1
0000/0900/0000j00O0OO0O[DO0OO0 O 0000{2000/0010(04003000 1
0000(123400000000[0000 1 0000[0200/0001/4000/0003 1
0000000900000000/0000 0 0000/0020[0100(0040[{0300 1
0000/56780000/0000[0000 2 0000[0002(1000/0004/0030 1
0000[0000[0900[0000/0000 0 0000[/0009[0000[0000[0000 0O
00000000/123400000000 1 0000{0090/0000[0000[0000 0
0000/0000[00090000/0000 0 00009000[0000/0000(0000 0
0000/0000[56780000[0000 2 0000/0900/0000/0000[0000 0
0000/0000[0000/0900[0000 0 0000[0600[0005[8000[(0007 2
0000/00000000{1234/0000 1 0000(6000/0050(0800(7000 2
00000000/00000009/0000 0 0000[0060/0500(0080(0700 2
0000/0000/0000/56780000 2 0000[0006/5000/00080070 2
0000[0000[0000[0000[0900 0 0000[0000/0000[0900[0000 0
0000000000000000(1234 1 0000(0000[0000[0090[0000 0
00000000/000000000009 0 0000[0000/0000[00090000 0
000000000000[0000(S678 2 0000(0000[0000[9000[0000 0
(@ (b)

Figure 2: Example of two equivalent linear expressions.
When the expression in before transformation (a) is evalu-
ated carelessly using MAD and MUL instructions, the SIMD
processing power is wasted. The equivalent expression in af-
ter transformation (b) can be evaluated more efficiently using
fewer SIMD instructions.

=
Sl

y A

Figure 3: (i, j) swapping of a linear expression. Interchang-
ing the ith and jth rows and columns does not harm the equiv-
alence of the expression.

As mentioned previously, the goal of our optimization tech-
nique is to produce a shader written using the minimum num-
ber of instructions. The problem is how to effectively find an
equivalent linear expression at the minimum cost. Consider
an (i, j) swapping operation applied to a linear expression, as
illustrated in Figure 3. This operation, denoted by =, trans-
forms a linear expression to another equivalent expression
by swapping the ith and jth rows of A and b, and the corre-
sponding columns of A. Because any equivalent expression
can be obtained by repeatedly applying a sequence of (i, j)
swapping operations, the shader optimization problem for
evaluating linear expressions can be restated as follows:

Minimize C(E) subject to Eg = E,where Eqisa given linear
expression.

In the transformation stage, we search for an expression
with minimum cost by attempting to solve the minimization
problem. Notice that the configuration space grows factori-
ally with respect to the size m of the linear expression. A
close investigation suggests that it is unlikely that a poly-
nomial time algorithm will be found for this combinato-

E < Given linear expression Ey;
T «— Initial temperature Tj;
while (stopping criterion is not sat-
isfied) {
while (not yet in equilibrium) {
E’' <+ Some randomly picked neigh-
boring equivalent expression
of E; // line (a)
AC «— C(E")—C(E); // line (b)
phmin(l,ef%); // line (c)
if (random(0, 1) < p)
E—E'; // line (d)

Update T; // line (e)

Output the best linear expression E;

Figure 4: Simulated annealing algorithm.

rial minimization problem, although we have not proven its
NP-hardness yet. In an attempt to reduce search costs, we
use an efficient approximation algorithm that produces at
least, near-optimal solutions. This is described in the next
subsection.

2.3.3. Simulated annealing: An iterative improvement
algorithm

The method of iterative improvement, or local search, is
a simple and practical search technique using trial and er-
ror, and has been shown to be effective for solving many
intractable combinatorial optimization problems. The basic
idea is to move around the configuration space trying to find
the global minimum. Iterative improvement usually keeps
track of only the current state, and does not look ahead be-
yond the immediate neighbors of that state. Simulated an-
nealing defines a class of iterative improvement algorithms,
based on the analogy between combinatorial optimization
problems and thermodynamics, especially the way that lig-
uids freeze and crystallize, or metals cool and anneal. It was
first presented in [26], where the idea was borrowed from the
Metropolis algorithm, applied to simulating complex sys-
tems in statistical physics [27]. Since its introduction, this
method of simulated annealing has attracted significant atten-
tion as suitable for large-scale optimization problems, espe-
cially ones where a desired global extremum is often hidden
among many poorer local extrema [28-30].

It was designed to overcome the drawback of hill-climbing
algorithms, another class of iterative improvement algo-
rithms, which only move in the direction of decreasing cost,
and hence easily become stuck in local minima or plateaux.
Figure 4 shows our version of the simulated annealing algo-
rithm thatis used to search for a linear expression of minimum
cost. Unlike hill climbing, in which the best move is selected

© The Eurographics Association and Blackwell Publishing Ltd 2004

702 C. Bajaj et al. / SIMD Optimization of Linear Expressions

in each step, the simulated annealing technique picks a ran-
dommove (1ine (a)).If the move actually lowers the cost,
i.e. AC < 0, it is always accepted. Otherwise, i.e. AC > 0,
the move is accepted only with probability e~ ET (line (b)-
(d)). This allows occasional ‘uphill moves’ in an attempt to
move out of a local minimum in favor of searching for a
better, more global, one. These uphill moves are controlled
probabilistically by the ‘temperature’ 7. At higher values of
T, uphill moves are more likely to be allowed. However, they
become less likely toward the end of the process, as the value
of T decreases. The temperature is lowered slowly according
to an annealing schedule that dictates how it decreases from
high to low values (1ine (e)). Theoretical analysis shows
that if the schedule lowers T slowly enough, the algorithm
converges with probability one to a global minimum. Unfor-
tunately, the analysis provides little information on how to
define a good schedule.

When the simulated annealing method is applied to combi-
natorial optimization, the schedule usually controls the tem-
perature with a function of the number of steps that have
already been taken. In our implementation, we have care-
fully selected through repeated trial-and-error experiments
such control parameters as the number of iterations taken in
each downward step, the decrease rate between subsequent
downward steps, and the (Boltzmann’s) constant k(> 0) that
relates the cost C and the temperature 7.

3. Applications to Vertex Shader Programming

‘We have implemented the shader optimization technique pre-
sented above, and applied it to various problems. When it is
used in practice, the optimization scheme may have to be
modified slightly to meet the specific requirements of each
problem. In this section, we first explain how we applied our
technique to efficiently implement vertex shaders for three
numerical problems. Then, a pixel shader programming tech-
nique is presented in the next section.

3.1. Two-dimensional wave equation

Waves are natural phenomena we experience in our every-
day lives. Some simple forms of waves can be described
mathematically by the wave equation, which is a prototypi-
cal second-order hyperbolic partial differential equation [31].
For example, two-dimensional waves such as ripples on the
surface of water, resulting from a stone being dropped in
water, are described by the two-dimensional wave equation

9%z ,f %z 9%z

—_— = e) 3

e - Y\ tay)
where the time-dependent wave z(x, y, t) spreads out at the

speed of o.

The wave equation is easily discretized using the finite-
difference method. Consider a node (x;, y;) of a coordinate

grid at a sequence of discrete times #;, where x; =i - Ax
fori =0,1,...,m,yy=7j -Ayfor j=0,1,...,n and
tr =k - At fork =0, 1,.... Then, applying equation (3) at
the grid point (x;, y;) at the time instant f;, and approximat-
ing the second partial derivatives with a central difference,
we obtain a finite-difference equation of the form w; ;x4 =
Rwisy g + 2w ok + 210 = 20w,k 4+ APwi gk +
}‘«ZwH—I.j,k — W jk—1, Where w; jx = z(x;, yj, tx) and A = O(A—ét
(for simplicity of explanation, we assume Ax = Ay). Then,
the entire equation set can be represented in the matrix form
§ = AX + b, where 7, % and b are comprised of the (k + 1)th,
kth and (k — 1)th time-step variables, respectively.

We tested our optimization technique with an 8 x 8 grid.
Figure 5(a) shows a portion of the 64 x 64 matrix of the
corresponding finite-difference equation. It takes 82 SIMD
instructions to evaluate the linear expression using our code
generation technique. After the linear expression is trans-
formed through the simulated annealing algorithm, the num-
ber of instructions reduces to 63. Observe that nonzero ele-
ments are packed more compactly in the transformed matrix
as shown in Figure 5(b). As a result, it becomes possible to
exploit the four-wide SIMD parallelism of the vertex shader
more effectively for computing the wave equation.

3.2. Fourth-order Runge-Kutta method

Integrating differential equations is an important part of dy-
namic simulation in computer graphics. The fourth-order
Runge—Kutta method offers substantial improvement in ac-
curacy over the lower-order techniques such as the Euler
method. Nevertheless, it has not been popular in developing
real-time applications because of its computational complex-
ity. As an application of our optimization technique, we show
that the fourth-order Runge—Kutta method, known to be ex-
pensive for real-time applications, can in fact be implemented
efficiently on a SIMD graphics processor.

Consider a system of first-order differential equations

i = filt, Yo. Yis e s Yuz1)s
yi(ty) = y}) i=0,1,....,n—1)

where the f;’s are linearly defined as follows:

ﬁ(ta Yos Y15 -+ -7yn—1)

n—1

=Y iy (=0.1,....n—1)

Jj=0

The formula for the classical fourth-order Runge—Kutta
method is

yl.k+1 = yt]‘ + é(ai +2b; + 2¢; + d;),

k=0,1,2,..., (4)

where the four classes of coefficients a;, b;, ¢; and d;
are computed through the following steps (y; = hot;,

© The Eurographics Association and Blackwell Publishing Ltd 2004

703

C. Bajaj et al. / SIMD Optimization of Linear Expressions

U~ T ~ TSR N SN —~ < o ~ ~ —~ [B N — o
$E8T LT c &£ & = g Z 2E£5°5EFE
.lum lmWJO ~ ~ 7R = L B o 1
R =Y =2 3 £ 3
< SE Y2 RESK ©® 3 < 2
I LRT S as : ; : g &85 L8282
S Sets 530 — — — SES 9
S0 v & 3] o «
PSTRELTEL _ _ _ s S PE X2 o
“ .
S8 555 = = = M.W.mwmmm,
£] " - —_ - - S 88
MWand.mwm I_. . | : - : m,mmomﬂFm
.ﬂbwwsw.dﬁN . - | . £33 EE 4=
S YRS = IS\l = [IS\ S o = 9 2
§ ¥ P38 & - . - - - = o5 &8O
2RE£855§:5%3 I o= 8 4 285828
2 [Q . - . - . - .
SS3S8S85% - S o E258=39¢
Or.OJMWEtﬂr N I N I N I ST S A = =] =]
2 EJEES YR — - o Sr2s5gPs
2S5 Sy_s & - oy - > = o =
= QO X QO r 2« X S) (=} o) o) =oen = > =
o) - = Q Q
= < S < Q =
So¥.TSSE g T = N SEEETES
2 E2 S B g R g
2SEFE 23283 e - = | - ZB8 W3 %8 2
S S3NS S5 E 8 N S I SSEL° ¢ 8
STITT~=¥YE33 = + = + =4 g o g g
§:32:Fis® S - 2 - 2s2Effg
= X8 - 3 = 3 3 RIS =1
3 ~= S @ N =] =
2SO 3§ = S ; < i ; S < 2 &
B S 2835 S ~ja —la G o lkWooicm
ESSTEIRE Ny Ny Ny ET 228§
< ¥ 2Nz 22333 _ _ + _ So o E =
W..U ndﬁ = mﬂ M < _Zﬂ = ,Zﬂkl _Zﬂ mme%mmn
2T 338 a8 =4 mosNS s SN s PN 8 e 55 05 S
) #ﬂ m S = 3= S o B 28 s
© SISV < .9 K - < > L
=2 3 9 MW.G = v 2 o S L 2= =
B SsSeP3gEs R -~ . ~ - - 229 ZE22E
.w.b.woeo.mevheP 3 S 3 S ERES 8 2 38 o8
= S S SEEXEcR0 a2 Tk .8 &

1

—{=(ko + k1)yo — (co + c)y

m

1
7 {(Loko — (L — Lo)k1)yo + (Loco — (L — Lo)c1)yi

+ (coLo — c1(L — Lo))ys + do},
— (L3ko + (L = LoPki)2

Y3,
- (L(Z)CO +(L - Lo)zcl))’3 +d;]

+ (koLo — k(L — Lo))y»

/_
Yo = Y1s
[
f =
[

2

y
3

axis, the following equations of motion can be derived [32]:
y

Here, d and d, are values that are functions of the displace-
ments zo and z; of tires from the reference height, and their
© The Eurographics Association and Blackwell Publishing Ltd 2004

on—1, (5

.

2

L,

’

fori =0

(b)

+ 8

k

i

yi-

J

1

0

Transformation of the 2D wave equation. We

n
J

.

ARoRENRRBH-RIB8EBBoTY2INLTo2B5RBIB-HBBBE83 $BBLEocccogRRYRRIE B RYRIHITE 0 0oBYRLFHBR
colooocolbooooooolcocolocoooooooosoolooosooooloosn colooooloooojooomomoooooolcoocoboooooocoloooscoom
oojocooojoooo/oocoolocoo/ooooloooooooooof oo oo oo ©0/0000ooooomobloto foooocooooooooooooofooodo
colooooloooooooolooooloooooooooooo|ofoolooo o= ooloooolooo oo oloo oo oolooo oo oo ooo oo adoooloo
colocooloooooooolococoloocooooooooooléoooomonmsoo S0l0000lc0so oo cRoltooolossocoo oo soldEcodooo
Solcooolooo0/o000/o000/000 0000000 0|00 000 O moo0 Solcoooco0 00000000000 00[&00 0o 0mo/o0 oo/ omo oo
©0jco00jo00 000000000000 0/o000oof oo ooemoooo colooooloooojocoooooooooolohoolgdoooooolooMmooof o
colooooloooooooolooooloooooooo|ofooloooomseoooo colooooloooojoooooooooooolook oo oojoooolomookan o
colooooloooooocolooocolooocooooodooolococoeroolooco colococoloocoooooolocoocoooloookloocomooooooolosoo
©0/0000/0000/0000/0000/006 0|00 0000000 N0 00000 oM Solccooccooccooo000000000000000000000000000
colocoolooooooooloooo/o0000of oo oo olesmao oo oo oo coloooolcooojocoooooocooolcooobooooooooooooooo
OOO0OOOO0OOOOOOOOOO0OOOOF O OO0 0O s =do OO OOMOO OCO@REmOO000000000O00000000000000000000O00O00
colooooloooooocoloooolooco o oo oemernvsoooocoodoco coloooolooooocooloooococolcococooooooocolcoocoooco
500000006000 00/0000000s 000 0|00 ~nmeee 0000000 oojcooo/cooosocoooco0co00co00oooMooooEooobo00
©ojooo0jooo0/oooo|oooooofooooolemmoooooosdooooo colooooloooogoosoocoooooolooooodoooocolgoofoooo
©0jc000/0000/0000|oo0o|of o oloooolewmeloooooMoocooo colooooloooooof olocoooooolooooooooooolonooloooo
coloooolooooooccolococoldooolooooleroolocooldoooloooo coloooolooooloroolooooloosolccooldoooooccolookoooco
Solcoo0lo000/0000/000s000 0o oMNo0 0000000000000 Solcoooco0 00000000000 0/000Mo 0000000k o0oo0 o
©ojooo0/o000/o0oo|oof oo o oermnoooooofoocooooooo colooooloooolooooloocooooooloodoloooooooolowoooooo
colooooloooojoooolof ooloooommmeloooolofcooocoooooo colooooloooojocoooooooooolomoolooooooooloomooooo
colooooloooooooolfoooleeerwsoococolfocooocoolooco coloooocooooocooocoooocoodoooooooooccolocomioocoo
©olc000/0000000s0000/0ommmeenooosco00oo000000 Sojemo 00000000 000000000/000 0006000000000 000
©oloooojoooooofoloooolermsoocoooofoooooooooboos g colcomoccoooocoooooocooocooooooooooooooobooo
O O00O0OOCOOOOF OO0 OO =BOOOOOFOO0O0O0O00OO0OO0O ~— OOCOOHOOOOOOOOCOOOO0O000000OO0O00OO0O00OO0CO0O
colocoooooodooolocoolerooooccoldocoloccococoolocon ©0/0000/000 0|0 00 Ofmmmrwevelccocooooooooolccococooo
©0/0000/000F 0000000000 0/000s0000000000000000 Solcooocoo0/c000000MEooo/o00 00000000000 0000m o
©0joo 0000 oloooo|esmnoooooofooooocooooooooooo oojcooojooooloocoooowo-ooocoooooooooooloooo o
©0/0000|/0f 0000 0o|ms =000 oofcocooocoooooo0co00 colcooocooooocoolodoorooocooooooooocooloooooow
coloooolf oo cemenleroolccocofooococoloccoooocoolooco colooooloocoolocoodooosooolocoocoloooooooolccocokooo
50000000 000 ~|mEee00 0000000000000 0000000 SoloooooooojoooMmo 0000000000 oo omolooooooooooo0 s
ocoloofoloooojermmoocooloof ooooooooooooooooooooo ©oloocoo/ooooooolooo0/o000/o000of gojoooooooor oo
o olof oolo oo ojewmeloocoolof oooooooocolococoooooloooo % olooooloocooooooooolocoolocooléodooooooooooof o
0o o SSSc00ocooerooooooldoocoooooocooocoooooooooo 00 e OFccoooooodooooooolooooloooolboomooogooodowoo
orjlcoooloormoooolooo,s0000oo00o000o00000000000 ©0/00 60|00 oleem™olc6 6000000000000 0/000000000000
#oloooolesmniooooloofoloocoooooooocolococooocooloooo colcooocooooooplocoocooocoooooooocooloooobooo
coloooolew=eoocolofoolocoooooocooolocooooooooooo colcooocoooocomoooocooocooooooooooooooobooo
o oleeesax o ooocolfccolocoooooooocolcoccooocooooo colcooocooooocoolocoooooocooooooooccoloccolbooo
© ojo o Fnl=ee/o o 0f/cooo/o0 0 0ooo0oo00/o0000 0000000 ©0ccoMoo0000000000000000000000000000000000
o oles mlo 0o ojoofoloccoloooooooooocolcocooooooooo oojcoolcooooocoolocoocooocoooooooocooloooobooo
o olew =olo 0o ojof coloocolocoooooooooolococooooooooo cojooolccooocoooooocooocooooooooooooooobooo
ocoloooloooodooolocoolcoooloocoolocooloooolocoolocoo codooolcoooocooocooocoooooooooooocooloccolbooo
10|00 0 0000000000 00000000000000000000000000 ©18/00 000000800 0/0000000000000000000000000000
107030 © © 0|0 0.4 0/o 0 o ofo o ool o oo oo ojoooolooooocooloooo Woloooocoooonoooooocooocoooooooocooloooooooo

° °

. .

° °

hB:):

a,-(—E

i =

find that the nonzero entries are packed very efficiently af-

ter the transformation process. As a result, the number of
nonzero real number. (a) Before transformation and (b) after

that each nonzero integer number in the matrix denotes a
transformation.

necessary SIMD instructions drops from 82 to 63. Note

Figure 5

S

704 C. Bajaj et al. / SIMD Optimization of Linear Expressions

derivatives z; and z}. They must be computed at each time
step using the vehicle’s speed and the road surface profile.

In this example, we consider five cars moving indepen-
dently on the road, and obtain a system of 20 linear differ-
ential equations. To integrate the equations for each car, the
expressions in equations. (4)—(11) must be evaluated four
times. This implies that they must be evaluated 20 times at
each time step. Although the amount of necessary compu-
tation appears too much for real-time simulation, it can be
coded very compactly on SIMD graphics processors.

The expressions in equations (4)—(11) can be partitioned
into three classes: {equation (4)}, {equations (5), (7), (9),
(11)} and {equations (6), (8), (10)}. The equations in the
second class comprise the most time-consuming part, so we
focus on their optimization. Note that there are four sets of
equations corresponding to the coefficients a;, b;, ¢; and d;.
While these sets must be evaluated in alphabetical order, the
20 equations of each set can be computed in arbitrary order.
Furthermore, because the four sets share the same equations
except for the run-time values of w;, optimized codes for one
set can be used for the others. Figure 2(a) is, in fact, a linear
expression derived from the 20 equations corresponding to
a coefficient of this example. The cost, that is, the number
of necessary four-wide SIMD instructions when no transfor-
mation is applied, is 20. After the linear expression is trans-
formed through the simulated annealing algorithm, we found
that it can be coded in 14 instructions. Because there are four
sets of identical equations, this results in a saving of 24 (= 6
x 4) SIMD instructions. Figure 2(b) shows the transformed
linear expression. It is obvious that the parallel computing
power of SIMD graphics processor is utilized very well.

3.3. Gauss—Seidel method

The Gauss—Seidel method is one of the most commonly used
iterative methods for solving linear systems A¥ = b. It starts
with an initial approximation ¥, and generates a sequence
of vectors ¥, hoping to converge to the solution . It is ex-
tensively used in solving large and/or sparse systems found in
various problems (some examples include the radiosity equa-
tion[33] and several finite-difference equations from compu-
tational fluid dynamics [31]).

The iteration in the Gauss—Seidel method is expressed as
Di" = —Lx" —Ux"" +b

where D is the diagonal part of A, and L and U are the
lower and upper triangles of A with zeros on the diagonal,
respectively. Note that each unknown is updated as soon as a
newer estimate of that unknown is computed, which speeds
up convergence. If welet Ay = — D™'L, A, = —D~'U and
b, = D™'b, the equation becomes

70 = A170 + 4,500 4+ b,.

In matrix form, it is

! 1
xi) 0 xg)
() @))
X ay X2
) a1 a4z @)
X3 =—| ap a3 0 X3
) nl Gn2 dn3 | 0]
Xn Gnn Gnn Ann 0 Xn

— b

0 %2 43 .., 4n (GY] b1

ayy apg ary X] ary

@3 .. (=1 by

0 a azn X ax

(-1) b3

—_ . . . X —_—

o . 3 + a33

An—1,n
an—1,n—1 : Y
-1
0 x’(l) n

The Gauss—Seidel iteration is different from the linear ex-
pressions in the previous examples in that it is composed
of two linear expressions of the form E, : y = A; ¥ and
E, : 5 = A=Y 4 b,. To optimize the iteration computa-
tion, the cost function is modified as follows

n—1
C(Ev B = Y [Cmia. p+cpdi.)
i,j=0
n—1
+ Y o + o).
i=0
In computing the first matrix—vector multiplication A, %, it
is important that the elements of ¥’ be computed in sequen-
tial order. This requirement can be satisfied by selecting the
row-major multiplication method for all diagonal submatri-
ces A;; of A. For this reason, Cg‘l‘"(i, J) in the cost function is
slightly changed to

ifi # j,

otherwise.

min(cg, (i, j), rg, (i, j)),

Cpl,)= o
re, (1, D),

As atest, we applied our optimization technique to solving
a Poisson equation that is generated in the process of enforc-
ing the incompressibility condition V - u = 0 of the Navier—
Stokes equations for fluid animation[34]. Figure 7(a) shows a
portion of the Gauss—Seidel iteration for a 64 x 64 linear sys-
tem of equations, generated from the fluid-containing cells
ina 10 x 10 x 10 grid. For convenience, we put the three
matrices A; (lower triangular), A, (upper triangular) and D
(diagonal) in one matrix. Figure 7(b) shows an equivalent
iteration obtained after the transformation stage.

In this example, the cost decreased from 112 SIMD instruc-
tions to 72 SIMD instructions. This high optimization effect is
understood by observing the row-major multiplications that
must be performed in an iteration computation before the
transform (see the horizontal thick line segments in the di-
agonal submatrices of Figure 7(a)). Only one nonzero num-
ber appears in each segment, implying that only one mean-
ingful multiplication is performed per DP4 instruction. The

© The Eurographics Association and Blackwell Publishing Ltd 2004

705

C. Bajaj et al. / SIMD Optimization of Linear Expressions

Statistics on vertex shader implementations. (a) Number

of total arithmetic operations, (b) and (c) Costs before and after the

Table 2

N [} ® o L L g
< 15} = Q> 8.5 E B
= oo 1N oo = = S @»n
Z
= 5w 8 9=
~ Q [D)
2 > 9 @ =
2 2 0 B =
g < = s
3 ngTm
= on <t © 17} £ = e
Q =] P8 =] 0T @ . oA
N o~ O IS o 2 B o
~ .-
& o— D) mOD
1> = < o—
£ 8 ES_-2S
~ N enaSI
S = = = O
S o 0 O AN 5} o = = N
o O o~ g B o
N E =9 K 9
< 2 o m o =
g I «mc.l =]
] S TLE b5
= ~ oo g 48 O g
—~ o o B — o= v Y .= 8%
N — r Q = .=
- =5 o —
] - = 2
2 s ZE5%%
Q b1 S < = =}
X = S % 2.8 0
= = g
S = 882 Aol
= =
<F A W 0P8 5%
= = @
- - O <
g 5 GRS
w2 w
N > 02 esr
3 N 8 5 9]
= c St o= .leW
Cv& S rw Mmdtmna.e
o =
£ 3 2 Eo5 58
NS S @’ S8 = ~
S 28o & EY SS
KRG ot 8 = i >
o= [T =) @ 2 Sy © O
S Y X 0 = “— o g
N Q7] o
N S | = (o] m 5 [+
S D © O »n 5 O
= & 200 70]] L T
3= c > . .I.dmen
NN S ® -+ Q< - m
S £ [a] . S = 25 2
S E [N O] n Hw e a3
OO AR BRI RHBBITYYILSNIBHBIBBEBRIBTES
cocooojocooolocoooooojooooloocosooocooocoooooscos
colcooojooooloooooooolooooloosoloooolooooloorsoosys
colcooojoooolooooooooloooolofoolooooloooolosoosdso
colcooocoooooooooooloooolfocoooccolocoofoogbros
Solocoojoocoolocoooooooooscooooooooooroosfooors
© oo oo|oooolooooooooloosoloooolooooloorolositooso
©ojcooojooooloooooooolosoolooooooooofoolsdssofoo
coloooocoooocooocooléocoloccoloocoldéoogieadlféoco
cojoooojoooolooooooosoooolooooooosoosdooorcooo
ocojoooojooooloooooosoloooolooooloosoosdelootooooo
©ojcooojoooolooooofoolooooloooolofooliisoofoococo
colcooolcoooloooofooolooooloccolfoooéeoslfooococo
© 000 00/c000/000r00000000000r00sko00rco000000
o oloooo|ooooloos oo ooolooooloosoloséeoofoloooococco
colooooloooolosooooooooolosoolsdsosoolooooooco
colooooocooéooooocooloocooléoooléessléoooloooccoco
Solocoojoooslocooooooooorscosfooorooooooooooors
©ojoo0ojoofolooo oo oooloosolofieoorooocooooooooso
©oloooojof ooloooooooolofooltdtslofoooocoooooofoo
colcooofooooooooooolfooososlfocooocooooofoco
ocolooorloooolocoooocorloosblooorloooooooooooscooo
o ojoofojoooolooooloosolosiloofooococoooofoocooco
oolofooloooolooo oo oolsdsslosfooloooococoolofoocooco
colfcooloocoolocoofoogbesslcoocobocooocoldoooocco
Sflccoojoocooooorsicosbooorcooooooooooroooooo0o
Zoloocoolooooloos oo sitoosooocobooooosolocoooccn
o oloooo|oooolosooedsslofoolocoooocoofoooooocooco
coloooooooofoogessléoooloccooocoléococloooccoco
cojlccoojcoosloosbicoorlocoooooo00o0 000000000000
o oloooojoofolosbaoosoooooloooooofooocoocooococo
o olcooojof oolgks Slof ooooooloocooofoooocoooooooco
colcooofooodtsfoooloooolocoolfocolocooooooooc
© 000 0rc0sHo00rc0000000000r0000000000000000
ocoloofologbeloofooocooooooloofooocooocooooococ
o olofoolsésslofoolocooloooolofooloococooooooococo
cofoogézodléoooooooloooolfooooocolocoooocoooocn
oflcosblocorlocoocooooooslcooooooooooooooooooo
#ologbieloofolocooooooloofoloccooocooocoooooocooo
© 0|64z alof oolooooloooolofooloccooocooocoooooococo
c9é=odfoooccoooooolfocoloccooocoloocooooooooco
=Glooorlooocolccooooorlcoooloooooooooooooooooooo
Zloofojoooooooooofooocooloccooocooocoooooccoco
.
.

is exploited at all. The next two columns b and ¢ compare
the numbers of SIMD instructions necessary for evaluating

the initial and transformed linear expressions. We find that

the transformation effort reduces the cost by 23-36%.

Column d indicates the ratio of the total arithmetic opera-
tions (column a) to the vertex shader length (column c). This
figure represents the average number of arithmetic operations
that are performed per SIMD instruction. Recall that the DP4
and MAD instructions can carry out up to seven (three addi-
tions/four multiplications) and eight (four additions/four mul-
tiplications) arithmetic operations, respectively. Efficiency of
the SIMD implementation of linear expression is determined

by how cleverly the arithmetic operations are crammed into

the SIMD instructions. The efficiency levels range from 6.4 to

8.0, indicating that our optimization technique generates very

effective vertex shader codes. Interestingly enough, SIMD
parallelism is fully utilized in the Gauss—Seidel example,

and its efficiency turns out to be 8.0.

The last column e shows the number of instructions that
are actually required to write a vertex shader program on

£8-53FRBBo R RONTIHRNARITRHT SR B BAT RT3
B soskoososoflssodsooasog

SobooTeo000 73500000k ook oboooge oo o ogs
e A Q= = S O O 7
OOPPH PO A PO O s ¥ PO SO 7
T T O T T - O T Sy e
e e e S g
O D DO S PSR S S AP 4 O
EPOPPA P, T ARG N SO NI 7 SO S SO
e e e R e e E AR S
e e e A ccodooss
SoEsedessste Sookoos Soodecss
coboockeoska cookoos e ecoboos
R Soskoos Sookeen
Solcodetocse cookboos e 4
= Sookess 250895 %s
cobcodeoNboochooobaoobons A0 ¥ 4
Soeoooeo000000000000b00sboooo000R0000000
oo oo do0ochodhooook oFtbosoeoogouoabass
o oooooogoooadofoboocbdbokbesoooodoouabocs
cobccdeoodoooabobascfbochocnboooboMoons
e e e e A S S

0 0loor ofr © 9o

#o

coocooof oo
ocoocojrgoocooco

colooow=loroo loooolooocooroocooco
colocoocolcocoq lcoooclcoocojloocoocooco
ocoloooolccoo loooolcocoloooocooco

loooo
oooo

loooo
oooo

coocoloooolcooco

cocoloooolcooo

oolcoorlccoq

lcooo
cooo
loooo
cooo

cococooFmorloroo
coooowoloo #
© 0o of om olcowo
coocoo¥omFooo

mooo

coooloocoocooo

cooolomoolocoolonocooooocoooooo
cooof ooolocoooonoooooocoooo00
cooolbowoloocooloooroooooocoooooe
coookocooloocoolcooocoooocoooooo
cocoodorolocoolooooooooocoooooo
¥ooloocooloooolocoooloocoooooo
co=ooooloooooooopoooooe
offoococolocooocooocoooooooloocoflomoojocoococococooooco
oloocoojlooooocoooloooooooooFfolgonocoooocoooooo

L]

L]

L]

the input values, that is, the nonzero values of A, ¥ and b
of linear expression are loaded into the constant registers be-

NVIDIA’s GeForce FX GPU. To use its vertex engine, all

fore the vertex program starts. These values are then supplied
to its function unit while the linear expression is evaluated.

A problem is that only one constant register may be read
by a SIMD instruction on the GeForce FX GPU [35]. This

limitation forces frequent data moves between constant reg-

Transformation for the Gauss—Seidel method. Our

Figure7

SIMD optimization technique generates an equivalent linear

expression that can be evaluated more efficiently. The number
of necessary SIMD instructions per iteration drops from 112

to 72. (a) Before transformation and (b) after transformation.

isters and temporary (read/write) registers. For the 2D wave

equation and the Gauss—Seidel examples, 18 and 15 ex-

inefficiency is evident, because a DP4 instruction can carry out

tra MOV instructions were required, respectively. On the other
hand, the extra 64 instructions in the Runge—Kutta example
include these move operations, and the arithmetic operations

for evaluating Equations (4), (6), (8) and (10). Due to the

up to four multiplications and three additions simultaneously.
On the other hand, this inefficiency disappears after the trans-

formation process, as seen in Figure 7(b). Interestingly, each
curved segment, corresponding to a MAD instruction, contains

extra MOV instructions, the actual efficiency is lower than that
shown in column (d). However, we expect it to be enhanced

four nonzero coefficients. This entails the full exploitation of

the SIMD parallelism of shader hardware.

© The Eurographics Association and Blackwell Publishing Ltd 2004

706 C. Bajaj et al. / SIMD Optimization of Linear Expressions

80 sty »,‘»h‘wrhﬁ:n:;ﬁ
40
5000 10000 15000 20000 25000 30000
of moves
(a)
Cost
30 [T TR o T VR el et s e s
KA i WP AR ARG ke oL ' Tt i
0 SR il o by TIAT
Hﬁqlr M‘N%“ th AL 1 4
10
5000 10000 15000 >
of moves
(b)
Cost
L e PN T VY
16 PR 5 ey
] R " o)
10 o
5000 10000 15000 20000 25000
of moves
(©)

Figure 8: Performance of the simulated annealing algo-
rithm. Three different sets of control parameters were tested.
1t is conjectured that the simulated annealing algorithm suc-
cessfully found a global minimum in these examples. (a) 2D
wave equation, (b) Runge—Kutta and (c) Gauss—Seidel.

when vertex shaders are implemented on the newer GPUs
that are equipped with more temporary registers.

Finally, Figure 8 shows how the cost C(E) decreases dur-
ing the simulated annealing process, where three different
sets of control parameters were tested. We observe that all
three annealing schedules find the same minimum although
the times taken to reach it for the first time vary. It appears that
the search patterns are less affected by the schedules for the
Runge—Kutta example. On the other hand, the difference
is noticeable for the other examples. Recall that the search
space (20!) of the first example is rather small compared to
the search spaces (64!) of the latter examples. During the an-
nealing process, since there are more possible ways to move
around the larger spaces, the search process is more sensitive
to the annealing schedules. In any case, we conjecture that
the simulated annealing algorithm successfully found one of
possibly many global minima.

3.5. Implementing the optimized vertex shaders on
NVIDIA’s GeForce GPUs

So far, we have described how various numerical algorithms
can be mapped onto abstract vertex shaders that support a

simple SIMD parallelism. In implementing this optimiza-
tion technique, we have used vertex state program offered
by NVIDIA’s GeForce GPUs. It shares the same SIMD in-
struction set as vertex program and have a similar execution
model. Unlike the vertex program that is executed implicitly
when a vertex transformation is provoked by drawing it, the
vertex state program is executed explicitly, independently of
any vertices.

The major purpose of the vertex state program is to com-
pute various program parameters that are required for execut-
ing vertex programs. The computed values stay in program
parameter registers, shared by both the vertex state program
and the vertex program, and are then used appropriately by
subsequently executed vertex programs. Unlike the vertex
program, no vertex is put in the graphics pipeline. This execu-
tion model is well-suited to implementing our optimization
technique. For instance, a vertex state program, containing
the optimized differential equation solver explained in Sec-
tion 3.2, is executed for each frame to compute the position
yo and the orientation y, of the vehicle, and store them in
program parameter registers. A vertex program, repeatedly
called for each vertex of the vehicle model, can then perform
modelling transformations appropriately using these param-
eters.

When vertex programs or vertex state programs are exe-
cuted, the data transfer between the CPU and the GPU must
be minimized. In fact, it is often unnecessary to transfer the
data computed by vertex state programs to main memory.
As mentioned above, there is no need to move the computed
position and orientation in the example of Section 3.2. Fur-
thermore, it is possible to render the waves in Section 3.1
without transferring the computed z-coordinates back to main
memory. When each vertex of the wave is enumerated using
the glVertex*(*) command, only x and y coordinates are de-
scribed. At the same time, the index to the program parameter
register that holds its z-coordinate is supplied to the vertex
program as a vertex attribute. The vertex program can then
use the index as a relative offset for reading the z value from
the proper program parameter register.

Implementations of vertex shaders with vertex state pro-
grams are currently limited because of the shortcomings of
available vertex shader hardware. Such hardware generally
supports a small number of available program parameter
registers, and simple control structures that do not support
branching and looping. For instance, the vertex state program
must be called explicitly for every iteration of the Gauss—
Seidel method (presented earlier) because looping instruc-
tions are not supported by the current vertex state program.
When the unoptimized and the optimized vertex shaders
were used on an NVIDIA GeForce FX 5900 GPU solving
a Poisson equation of size 64 x 64, they took 4.27 ms and
3.65 ms, respectively, for 174 iterations. Obviously, this is
lower performance than modern CPUs, but such problems are

© The Eurographics Association and Blackwell Publishing Ltd 2004

C. Bajaj et al. / SIMD Optimization of Linear Expressions 707

expected to be relieved as vertex shader hardware becomes
more flexible in future GPUs.

The SIMD optimization technique is not currently as ef-
fective for vertex shaders as it is for pixel shaders, yet it is
promising for applications such as moving vehicle simulation
in Section 3.2, which are inherently per-vertex oriented. We
believe that efforts to optimize vertex shader codes whether
it is on vertex programs or vertex state programs, are impor-
tant, because to reduce the computation time and shorten the
codes, allowing vertex shader codes for larger problems to fit
into the vertex shader hardware (the vertex shader still limits
the number of instructions in its codes; for example, 256 are
permitted for NV_vertex_program2 of NV30).

4. Applications to Pixel Shader Programming

The presented optimization technique can also be applied ef-
fectively for programming pixel shaders. An important archi-
tectural difference between vertex shaders and pixel shaders
is that the latter offer fast access to texture memory, which
can hold a large amount of data. To utilize the texturing func-
tion of the pixel shaders, we add another instruction TEX to
the instruction set (shown in Table 1). Given texture coordi-
nates and a texture image, this additional instruction fetches
a correct texel value from texture memory. Unlike the tech-
nique presented in the previous section, the SIMD optimiza-
tion technique can harness the fragment processing power
of the pixel shader. In this section, we show a couple of ex-
amples which demonstrate how our optimization method is
employed to enhance the performance of pixel shaders.

4.1. An iterative sparse linear system solver

As the first example, we apply the SIMD optimization tech-
nique to develop a pixel shader that solves Poisson equations,
generated during the integration process of the Navier—Stokes
equations. Although our Poisson equation solver has been de-
veloped for three-dimensional grids, we will first explain the
solver in terms of a two-dimensional problem for the sake of
simplicity.

4.1.1. Enhanced block jacobi method for the
two-dimensional poisson solver

Consider an 8 x 8 grid through which fluid is simulated. A
sparse linear system A% = b is obtained by discretizing the
Poisson equation over the pressure term. A linear equation
per grid point is produced, where the unknown variable x;;
denotes the pressure value at the (i, j)-th point:

E(XH—I,_/ + X1 X Xi o1 — 4xi) = by,
fori, j=0,1,2,...,7. Let X € R* be the vector of un-

knowns, where x;;’s are enumerated in row-major fashion, so
index i varies faster.

Figure9: The block structure of the matrix —D~'(L + U) in
the Jacobi iteration. The matrix from the 2D Poisson equation
exhibits a block-tridiagonal structure.

The iteration in the well-known Jacobi method is then ex-
pressed as

= —DNL 4+)z + by,

where L, D, U and b, are defined in the same way as in
Section 3.3. In the Gauss—Seidel method, the updated values
of x;; replace older values immediately. This property makes
it difficult to implement the method on current pixel shader
hardware, because of its inability to read and write the same
texture memory location in the same pass [7, 20]. In contrast,
the standard Jacobi method computes all new components
of X before replacement, resulting in slower convergence of
the Jacobi iteration. Our pixel shader technique, however, is
faster than the standard Jacobi method, as will be explained
shortly.

If two T blocks are added in the first and last block rows,
the 64 x 64 matrix —D~'(L + U) of the two-dimensional
Poisson equation can be represented as a repetition of a T-S-T
block sequence (see Figure 9). This block-tridiagonal struc-
ture exhibits a very simple pattern in the matrix—vector mul-
tiplication ¥ = —D~!(L + U)x"~Y, which is highly desir-
able for the pixel shader implementation. Figure 10(a) illus-
trates an elementary blockwise multiplication involving the
Jjth block row, where two sets of artificial unknowns {x¢ _1,
X1,—1,X2,—15++ > X7,,1} and {Xog, X 18y X285 e v x73} are ad-
ditionally assumed for j =0 and j = 7.

As in the vertex shader implementation, each quadruple of
()Coj,xlj,ij,X3j)t and(x4j,X5j,x6j,x7j)’,j =0, 1,2, e ,7
is stored as a four-tuple of floating-point numbers. The figure
shows that 10 shader instructions are required to implement
the entire elementary blockwise multiplication. However, it
is obvious that the SIMD processing power of pixel shader

© The Eurographics Association and Blackwell Publishing Ltd 2004

708 C. Bajaj et al. / SIMD Optimization of Linear Expressions

(-1)
X1
Xy
Xoi1
X310
x4/—1
Xsiq
T X1
R

w2

S
j—l

Xy

x4j

OO OO OO/ O
O OOO|OHYP OO
SO0 O|FOOO
OCOOF OO OO
SO/ O| OO O
O/HF OO OO OO
g coococ/oocooo
OO0 OO SO
O OO0 |OSON
O OO O|TFOHS O
IO O O O
O O O ENOIOID
O/F O/ OO OO
oSO o000
OPTFOO| OO0 O
SOOI ON
[=N=NololeBay do)
D OO O OO O
OO0 O IO OO
S OO/H OO0
SO O OOOO
OYPF OO OO OO
IQOOOOOOO

a
0
0
0
Y|~ [0
0
0
0

(a)

cooo|loo o
do o |coowo
Sooco|jlocow
SoocoloMoo
oo o|ooco#s
co®o|gdo oo
coo®Fooo
cooo|joo o
cocooojlood o
cocoocojlod oo
cooco|Fooo
cooFoocooo
coso|loocooo
o oo|loocooco
Foooloooo
L
=

[=NeNoNelleNoy- gl

cooo|logfo o
cooo|Fooco
cooF oocooco
coF oo o
o oo|lcoooco
Foooloocooco
Com o oo o
oS oo oo o

(b)

Figure 10: (a) After transformation The elementary block-
wise multiplication for the 2D Poisson equation (a = — % and
b=— j—1). As in the vertex shader optimization, the transfor-
mation on the S block finds a more efficient SIMD computation
(a) before transformation and (b) after transformation.

is not fully exploited when the S block is multiplied with the
two quadruples.

Applying our optimization technique to the 8 x 8 S block
returns a more efficient SIMD computation that requires only
four instructions instead of six (see Figure 10(b)). Notice that
30 scalar multiplications are actually carried out using 10
four-wide SIMD instructions before the optimization. Hence,

only 75% (= %) of the fragment processing power is used.

TEX X EVEN TEX_X ODD
x4J xl/
X Xs;
Xy Xgi
x3] XZJ

j=0123 456 17

TEX B

j=0123 4567 012345°¢67

Figure 11: Packing of data into 1D texture images. Be-
cause the evaluation of the elementary blockwise multipli-
cation requires two computation kernels, one each for X!
and)E{j the unknown vector X is partitioned into two textures
TEX_X_EVEN and TEX_X_Q0DD. In order to perform a Jacobi
iteration, a line segment is rendered twice as bound to the
correct pair of kernel and texture alternately.

On the other hand, the efficiency increased to 93.75% (= %ﬁ)
after the optimization, where eight SIMD instructions were
used.

The optimized elementary blockwise multiplication in
Figure 10(b) becomes the fundamental computation kernel
that is mapped to the pixel shader hardware. Let X/ and
)E{{, j=0,1,2,...,7 denote the two permuted four-tuples
(X4_/, X7j5 X0j> X3j)[and (X]_/, Xsj, X6js X2_/')[, respectively.
Because the current pixel shader supports four-wide SIMD
processing, each optimized multiplication must be performed
using two fragments. One problem is that the expressions to
compute ¥/ and ¥/ are not identical. Since the same kernel
must be executed over all fragments of a stream in the cur-
rent pixel shader, we have implemented the matrix—vector
multiplication using two pixel shader programs, one for X/
and another for ¥/, so the unknown vector ¥ is partitioned
into two one-dimensional textures, as illustrated in Figure 11:
TEX_X_EVEN stores all even-numbered quadruples X/, and
TEX_X_0DD stores the remaining odd-numbered quadruples
XJ.

These two textures, and another one-dimensional texture
TEX_B containing the correctly permuted b, vector, are loaded
into texture memory. To compute the new unknown vector X
in the /th Jacobi iteration, a line segment is rendered twice,
bound to the texture images and the correct (alternately even-
numbered or odd-numbered) shader program. In the first line
drawing, all even-numbered quadruples of) are updated by
performing the first part of the elementary blockwise multi-
plication and adding b;; values. The updated unknowns are
then used to calculate the remaining unknowns in the second
line drawing. The immediate replacement of the unknowns

© The Eurographics Association and Blackwell Publishing Ltd 2004

C. Bajaj et al. / SIMD Optimization of Linear Expressions 709

provides a faster convergence of the iterations than that ob-
tained for the standard Jacobi method.

We now discuss how boundary conditions of the Poisson
equation are handled in our pixel shader implementation.
Dirichlet conditions can easily be imposed by setting bound-
ary values directly. The free Neumann condition g—)fl = 0 can
be realized by copying the unknown values of the first and
last rows and columns of the two-dimensional grid toward
their respective exteriors. At the two vertical boundaries, this
has a consequence that the diagonals in the Poisson equation
Ax = b, corresponding to the boundary unknowns, decrease
by one. The matrix, shown in the example of Figure 10(a), has
been constructed by imposing this partial condition, where
the denominator for the first and last rows in the elementary
blockwise multiplication is 3. However, the boundary condi-
tion at the horizontal boundaries has not been reflected in the
elementary blockwise multiplication yet, as it would compli-
cate the matrix and require additional pixel shader kernels.
Instead, the horizontal boundary condition is imposed during
the execution of the pixel shader programs. The unknowns of
the first and last rows are stored in the four border texels of the
two one-dimensional textures TEX_X_EVEN and TEX_X_0DD.
When the unknowns in the exterior rows, whose texture co-
ordinates are outside the texture range, are accessed with
the texture wrap mode set to GL_CLAMP_TO_EDGE, the corre-
sponding unknown values in the boundary rows are fetched.
In this way, the boundary condition ‘;—}i = O in both horizontal
and vertical directions can be satisfied using only two pixel
shader programs.

4.1.2. Extension to three-dimensional space

The method presented here is easily extended for solv-
ing three-dimensional Poisson equations. Consider, for in-
stance, a 40 x 80 x 80 grid, where the 256,000 unknowns
X, 1 =0,1,2,...,39, j,k=0,1,2,..., 79 are enu-
merated again in row-major fashion (see Figure 12). Let
)?jk = (ijkg X1jks X2jks + v s X39jk)t, j, k= 0, 1, 2, ey 79 be
vectors in R* that partition the unknown vector . Then each
%/¥ represents a line in the grid that shares the same j and k
indices. The (j, k)-th elementary blockwise multiplication in
the Jacobi iterations is represented similarly as

k=T .5x/"Vk 4T . .g/thk 7. 57k

+ T -3/ 5. gk,

Here, T € R**4 is a diagonal matrix whose diagonal entry
is —é (except the first and last diagonals, which are — é), and
S € R4 j5 a diagonal block as depicted in Figure 13(a),
where the Neumann boundary condition g—; = 0 is already
imposed at the two boundary planes perpendicular to the

X-axis.

As before, our optimization technique finds a more effi-
cient method of computing the matrix—vector multiplication.
Figure 13(b) shows the matrix S after the optimization. In

TEX_X_0 TEX_X_1 ooo

=
X

Figure 12: Partition of 3D grid into 2D texture images. Each
slab of width 4 is stored in a 2D RGBA texture. All unknowns
in a slab are updated by executing a corresponding pixel
shader kernel. The computed values update the unknowns
immediately, and are used to compute the unknown values of
the remaining slabs. These immediate updates within an iter-

ation step lead to an enhanced convergence rate, compared
with the standard Jacobi method.

the three-dimensional case, 238 scalar multiplications (78
for S and 40 each for T') are needed to compute an elemen-
tary blockwise multiplication. Before the computation is op-
timized, 78 SIMD instructions (38 for S and 10 each for T
were required, and only 76.3% %) of the SIMD capability
was utilized. After the transformation of S, only 60 instruc-
tions (20 for S and 10 each for T') are required for the same
computation. The efficiency approaches 99.2% (= %), as
the SIMD processor is now almost fully exploited. Notice that
there are only two ‘wasted’ zeros in the thick line segments

of the optimized S.

Unlike the two-dimensional Poisson solver, the un-
knowns in the three-dimensional grid are packed into two-
dimensional textures. For the simplicity of notation, ¥/¥
now denotes the group of unknowns whose elements have
been permuted in the optimization process. We let X(’i’)‘, i=
0,1,2,...,9 be the quadruples (x4 jk, X4it1,jk» Xai42,jk>
X4i43, i)' that further partition X7* (refer to Figure 12 again).
Because x/* contains 10 such quadruples, 10 fragments must
be processed to compute the entire (j, k)-th elementary block-
wise multiplication. As in the two-dimensional solver, each
fragment is calculated differently, so we need to run 10 sep-
arate pixel shader kernels, one for each)E(jl]; This partition of
the task forces the 256,000 unknowns to be stored in 10 two-
dimensional texture images of size 80 x 80, where the ith tex-
ture TEX_X_i (i =0, 1, 2,...,9) holds all 6,400 quadruples

© The Eurographics Association and Blackwell Publishing Ltd 2004

710 C. Bajaj et al. / SIMD Optimization of Linear Expressions

X({'; Jj,k=0,1,2,...,79. Figure 12 illustrates the corre-
spondence between slabs of width 4 in the three-dimensional
grid and texture images. In order to impose the Neumann
boundary conditions for the remaining two directions, the
texture wrap mode must be set to GL_CLAMP_TO_EDGE for
both texture coordinates.

Once the shader kernels and textures are prepared, includ-
ing one for the b, vector, it is straightforward to solve the
three-dimensional Poisson equation. In the /th Jacobi itera-
tion step, a rectangle is drawn 10 times. In every drawing, the
correctly bound shader kernels update the unknowns, slab-
by-slab. Note that the newly computed unknown values of a
slab are immediately used to update the unknowns of the re-
maining slabs. These slabwise serial updates of the unknown
vector within an iteration step enhance the convergence speed
of the standard Jacobi method remarkably.

Our sparse linear system solver differs from previous
solvers in that only the unknown vector X is loaded into
texture memory for the matrix—vector multiplication. In the
work of Bolz et al. [16], for instance, all nonzero entries of
the matrix A and their indirection information are additionally
loaded in texture memory. Their formulation is appropriate
for arbitrary sparse matrices; however, many of the sparse
matrices found in engineering applications are structured. In
such cases, there is often no need to store all information in
the matrix, as the nonzero entries can be ‘melted’ into the
computation kernels instead. Our easy-to-implement pixel
shader is optimized in both space and time since only the
unknown vector is loaded into texture memory, and no addi-
tional indirection operations are required to access the matrix
entries and the unknowns.

4.1.3. Comparisons between CPU and GPU
implementations

To verify the effectiveness of the presented optimization
technique, we have implemented the enhanced block Jacobi
method on an NVIDIA’s GeForce FX 5900 Ultra GPU. We
have also implemented the Gauss-Seidel method on an Intel’s
2.66 GHz Pentium 4 CPU. We applied these GPU and CPU
techniques to solving the Poisson equation that arises in the
projection step of Stam’s solver for incompressible viscous
Navier—Stokes equations [36]. Although we have described
the GPU technique using the Neumann boundary conditions,
it is possible to impose either Dirichlet or Neumann con-
ditions to each direction in three-dimensional space. In this
experiment, zero Dirichlet conditions were imposed on the
boundary plane perpendicular to the x-axis, and zero Neu-
mann conditions were applied to the other two directions.
We tested Poisson equations of size 256,000 x 256,000 with
a40 x 80 x 80 grid.

Table 3 compares the performance of three different im-
plementations of the Poisson solver. First, the Gauss—Seidel

Table 3: Comparison of timing performances. The computation
times in milliseconds (time) spent solving a Poisson equation of size
256,000 X 256, 000 are given with the numbers of iterations (iter)
required to achieve the specified precisions (tolerance). The figures
in parentheses are the pure computation times spent by the optimized
enhanced block Jacobi solver. They exclude the times for data trans-
fers between the CPU and the GPU that must be made to store the
initial vector in the GPU and to read the solution vector back into
the CPU.

Tolerance

1073 1074 1073
GS Time 101.6 364.8 1178.6

on CPU Iter 16 61 200
EBJ Time 62.8 142.4 419.1

on GPU Iter 20 84 291
EBJ Time 49.1 111.6 3159
on GPU 9.8) (68.3) (272.6)

(optimized) Iter 19 77 253

method was coded in highly optimized software (GS on
CPU). The enhanced block Jacobi method was programmed
with and without applying our SIMD optimization technique
(EBJ on GPU (optimized) and EBJ on GPU, respectively).
To measure the computation time in milliseconds (time),
we have evolved the Navier—Stokes equations in time 1,000
times, and averaged the timings required to solve the 1,000
generated equations. In each time frame, the respective solver
of each implementation was iterated until a target tolerance
was achieved.

The Gauss—Seidel method requires 20-30% fewer
iterations (iter) than the enhanced block Jacobi method in
this experiment. However, the experimental results indicate
that the ‘slower’ enhanced block Jacobi method without
a SIMD optimization (EBJ on GPU) runs faster on the
GPU than the ‘faster’ Gauss—Seidel method (GS on CPU)
does on the CPU. They also reveal that a considerable
enhancement in the GPU implementations is obtained when
the presented SIMD optimization technique is applied (for
example, when comparing the timings of EBJ on GPU and
EBJ on GPU (optimized)). We find that about 23% of
the computation time is saved on average. It is interesting
to note that the optimized GPU implementation demanded
slightly fewer iterations to satisfy the same tolerance
constraint. For instance, the optimized implementation
required only 253 iterations to achieve a tolerance of
1073, whereas the unoptimized implementation required
291 iterations. As discussed, our optimization technique
packs the necessary arithmetic operations of the solver
more efficiently into the four-wide SIMD instructions of
the GPU. The new arrangement of arithmetic operations
produced by the SIMD optimization process produces a
more effective ordering of computations that leads to a
faster convergence. As a result, the number of required

© The Eurographics Association and Blackwell Publishing Ltd 2004

711

C. Bajaj et al. / SIMD Optimization of Linear Expressions

SIMD instructions per iteration is reduced, and the conver-

gence rate is accelerated.

The timings for the two GPU implementations include the
data transfer time between the CPU and the GPU. In the ini-
tialization stage, the 10 texture images containing the 256,
000 elements of @ must be moved from the CPU to the

GPU. When the Poisson solver finishes iteration, another

data transfer from the GPU to the CPU must be performed
to get the solution vector back. The figures in parentheses

indicate the pure computation times spent by the solver, yet

exclude the data transfer time, which is about 40 ms on av-

erage in this experiment. Notice that this extra time for data
transfer can be saved if the entire solver of the Navier—Stokes

equations is implemented completely on a GPU, or at least
amortized over the diffusion step that precedes the projection
step in Stam’s solver. Our optimized GPU implementation
can be easily modified to solve the linear equations from the
diffusion step. Usually, these equations are more diagonally

dominant, therefore only a few (5—-10) iterations are sufficient

to achieve a high precision.

ccoccococcccogoococceccoccoccoclcccoloc,so
ceococlcococlccogecocolcccoloceolcocclocoolc Ty
cceocceccoccocococgocoecgececcccoccocleccoldc do
ccoccocogoccogeocgececcccoc co clommmm|c oo
cococcocococdocodococoececocc e oo oo oo s ol
coccoccoococccodecococecoccoocococicosccco
cccclecocccodecccoccccccococodedelccce
cococcocococodococoecccoccccmmemmcdoclccce
ccoclcococgococodoocococeoccooc o olmmmecoco
cceoccocccocced pocccolccce
cccceccoccccod ccecclcceco
ccocgeocccgoccceq cccclccece
EECEEEEEEERE | EEECEEEE]
ccececcccocceqg ccececlccece
ccocccccocced ccceolccce
cceccgecccgoceq ccccolccce
EEEEEEECEEERE Sccoccolccce
ccececcccoceq cceclecece
cccocceccoccccod cccclccce
cccocceccogoco cccolccce
ccocgocccocgococcd Scoclcecce
cceocceccccced ccoclceco
cececececccceq ccoclcecco
ccegle e o conen ccoclceco
cccoccoccocoosa cococlccce
coccoccoccooclo.s cococlccco
ccccoccocododc ccoclceco
c oo clommes o £o o cococlecco
EEEEEE e — cococlccce
ccocofoeccog cococclccco
ccocdocdcoccoc cococ|lccce
e o focjccod coocclecce
c o clEmmmsccod cococlcece
cdcgccccocod cococlccco
dodcjccoccocog cococclccco
cfdoclccoccccog ccoclcece
s ccocccod cococ|lccce
gococclccocccod cococ|lccco
Cleccccccccced ccoclcecco
cceoceccoccccod cococlccco

(@

Section 3.1. We have simulated waves on a 512 x 512 grid,

E o EAME.LE QL L UGS
g8 0 =22 < g & = = =
S g =T < B T = .= 5 S EE=)
B EE S= 2 S PEe = 0
sSgs~< mlv,m ELE «>3T O
©» — = o0 3 = O =
&0 el RS 9 =
FeE5382 7255 g3
w & [P}
)
§ c£Z2255o8853E 2248
S S E22Z88%=98 S547
= wS s 5980288 28R
£ 2080302 =sc58E 885
B < S = 2 & =5 —
w o8 g+ m == M) @ S ﬁ =}
= Qs = = O g2 § o O 1S)
S &= @ E = S A = P
= g = O =T = s 0 QD o8
S edHoe.&Gmmr 0o 8 < 5
o =
=} cE X8 cE%,2=58 5.383% T
< = 35 = 05 3 S 2 o &3]
§ SEaSEg8E£532S oz
X k- o) =08 Eo©=
m = =0 8 VO e = O = = =
= eSS e85 &8 28 8 caASO
2 22ZTigzf5i: 8:°%
5 f%rtmhemm.m..m;r =S 4 5
—_ O O "» = O c* £
a < O = Q [
< = —_ 2 SS9 =2« L 0
= wMS.lpeWcC.lce T EZ o
cg ES<BEZE,pfa S5%¢2
w3 a.mn.m.epei@nmc Eo 5§
[T) < g s = S . =3NS
- = == = »
= 15 =] S = —_—
€2 B8 ZEFESLS2RE 5a0E
< O g3 O NE =
P2 EEEESB T EZ 02§
. =
53 229w 0238 8B 23 o - S &
2 £ = 3 E o & - 2.8 =
=2 <3852 g 8.2 a5 B2~ g
5% « X 9 9E& .prom N5 e E
oA Q =3 == =1 0o » © =
< o S, 885323 =2 S
e o Q dgomeeMV E= 2 &8
a SE2£28388222¢8 0 S &
< Oocs88a=S o= awnn & 23 B
cccclccemlccoclecccccccclococ|cccccccdscocleccs
coccclcoffclcococc|lccocclccoclccoclcocolccceScc@oocce
ccccl@ccleccocclcccclcccclccoc|cocolccocclcRdblccco
cocolde clococlcccaccoclocoojcocolc oo oo Mol co
CMCOCCOCICOCCICOCCCICCOCCOCOC|CCCCICoCoccoCcecooocea/c
IdJcgococcolcocclocccjcoccclccoolcccclcccslccoojadce
fomclcocclcooc|lccoolcooo|eooococolceSoocoocR o
Scccolcocolcocclcccclccocc|loccoc|lcocolccocc|lccoojlccca
cCCoCCClCoCcoIcoCCIccoolcc oo ooceeoiIccMc|Iocoococe
ﬂﬂ00000ﬂﬂ00ﬂﬂﬂnﬂﬂ00Uﬂab»ﬂﬂﬂﬂﬂﬂﬂm,ﬂﬂﬂﬂﬂﬂﬂﬂﬂ
cccolcocccolccoclccccccccladoblcccclgccclococlocccs
coccclcocclcocclccco|lcoccolccoBcocc oMo clocoolcoce
coccocCclcococlcmacclocceloccoolcocoolcocolcecocilececlcecee
cccolcoco|ddlc slc@cklccoclccoolcocolcccclocos|lcoce
ccocclcocolgaft|ldclclccocclccoc|cocolccecclccoolcocco
CoCCoCCoICOC o CoOcECc OoCIccooICooC|IcoTolccocloceeoecee
cCocoClemoccicocclccocolccocoiccocolcocogeccoleccecilec e
cCoCoIFACHKHOCOCOCCICCOCcCOoIcCcOO|Ice o caglccococlcocce
cccocojgofclcccclccoccjccoclccoo|cocogefeclccoojocco
cCocCcooccolcocociccoolccoolcecolceccolcwocclococieceee
cCoCColcooCococoCcemececcac|IccoCc|coCcolcococeclccococ e
cccolcocolccoofcclcorococ|cocolcoocccoolocos
coccococlcocclcococclccRolgdeclccoc|lcocococslccosloccoa
cCoCoCCoIcococcococicccRMOW o cICooC|IcocolcocolccoClece e
ccececlcocclcococclcceclgecojecceclecececplcccclecececclocee
ccoccoccoclcocclcececlccecc|cReclccoc/lcAcK| lcoccc|lccoccjlocce
cccclcocolcooolcceolcqcloccoc|gol@olccocclccoclocoe
cooclcocclcecoclcceclecc¥llccocl@oco|lcoccclcececloocee
Scocacoccolcocclccoolccoolccoc|lecomo|lcocclccoclooc e
cCAcE cocclececcclcceelecceelccocgadlic|lcocelccoclooe e
00#,0;000000000000000000000O0,0bOOOOOQOOOOQO
BCoCCColcoCoCooCCooClcooClccoC/lc@ocolcocelccocloocee
coccocolcoccolcooccolccocolcococolccmc|lcoccolcccclccoccloocos
cCoCCClcocoIcoco|Iccooilcc oo foicoccoicoccclcceciloc T
cCoCColcocoicocelceceelec ool ocRicccolcoccclccocRce o
ccocccolcocclcoccclcccelcccelfceclcoccelcccclcc Mo
cCoooICOoCoCoCCRpOCOCICOCOCICCOC|coColcocCclecec@mcioc e o
coccclcocclcfAcElccoc|lccoclecoclecccelcc e ok lccce
ccoclceco|ldolelcccc/cccclccoc|ococcolccco|decglocce
cCocCcColcoc oo c|cocoClcceolccoclcoce|lcocclfcocloocce

from which a wave matrix of size 262, 144 x 262,144 is gen-
erated. In this experiment, we imposed zero Dirichlet condi-
tions in one direction, and zero Neumann conditions in the

other direction, where the application of a similar mapping

(b)

The diagonal block S of the matrix —D~' (L + U)

in the enhanced block Jacobi solver for 3D Poisson equations

.

Figure 13

technique as used in the previous subsection also produces

). The matrix transformation reduces

= —é and b = —é
the cost of SIMD instructions from 38 to 20. Through the op-

(a

description, without repeatedly explaining what is basically

an efficient GPU implementation. Here, we give only a brief
the same implementation technique.

timization effort, we were able to utilize the SIMD capacity of
pixel shader hardware with an efficiency of 99.2/elementary

blockwise multiplication. Notice that only two ‘wasted’ zeros

The wave matrix is sparse and has a simple structure, and
can be, as before, represented as a repetition of a T-S-T

are found in the thick line segments of the optimized S (a)

Before transformation and (b) after transformation.

block sequence of size 512 x 512. Instead of applying our
SIMD optimization technique to the somewhat large diagonal
S block, we have subdivided it into a sequence of diagonal

subblocks S* of size 32 x 32 (see Figure 14(b)). After the

© The Eurographics Association and Blackwell Publishing Ltd 2004

712 C. Bajaj et al. / SIMD Optimization of Linear Expressions

cooolcocoolcoolcooolcoooooocoooloss
coocolcococoocococoococooocoooboo oo s
coocolocoooloocococococooojpoooocogsFo
coocclpoocopococoocoooocoocomamidoo
coocolcoocolbocoolcoococooooo ool o e
coocolocooloocoocococooocoooogs soocoe
coocolocoocoocococoococooocoocogidolooo
coooloocoolpcoocoocoocoememsdoocloooo
EEEE EEEE R EEEE D Y I CEER)
coocolocoocolocococoococoooogs soooolcoos
cooolocococolpocococoocobooogdFdolcooolcooo
ocoocolpooopococoocopmemiFoccooolone
Soococoocobcocococoooooss meeeoooocoo
coocoloocooloocoococogisccooclcooolooos
coocoloococoloocoococo@d Focooolcoooloooo
coocolpoocopococopmendFooccocoolcoooleoce
cococolcococolcocococossmeenccoococoooocoo
cococoloccoolbococooddscocoocosocoolocon
cococolococoolpococo@s Folcoocopooojoocoolocos
cocoolpocoolomems Foolcoocooooojoccoolocos
cocoocoocobossmeoencococooococoolccoo
cococoloocoogisocoococopoocoocoolocoo
cocoolpococogFocoocolcoocojpooojocoojlocoe
cocococememiFoocococooopooosooslocns
cocococossmeeecoococoocoooocoocoooocoo
cococoogdwocoocooclcocojoocojocoolocos
cococogsFolbocoocooocooojooocojocoolocos
ooomldFoolcoocolcoooosocoooooocoslooocs
coss moeocoocooco00cocooocoocoocooe
oggsloocoolboococooolcooojooocojocoolocoe
Fddoloccooloocococooclcocojoocojocoslocos
d¥ocojococoopoccooococonojoocojoocoslocos

~
S
=

cococolocococopocoolcogolcoocolooclowe ofolocooco
cococolpocoopocooloFdoolcoocoosoolodooloooo
cooolcoccopococoosoomolcoococoogocooo
cooolcoococpooojoodoogoplcoocolcogolccon
cooolooocpboocjofooplooscocologosicocs
cooolooochbocol§ocoFococooodooococe
§oocolcocococboosocooococococooolcooogoo
owooclcoocbogdoloococooccolcooolcn oolcome
cogolcoochioclooococococooolcooolosos
cooelococodoocopoocopococoodlconoloron
cocowmcocospooocococoomooococococooocoo
®odojlcogopooolcocolmooboccolccoolcons
ceogolofoclpocoolcocolosoococoloccosocos
owlooldoocopocoolcocolodooocoloooolooos
cooglcocop@oococoooooooocoococcoojocoo
cofolosmolobmoclcoocojoccocconolccnslocos
of coldccopbogolocoojccoccooolcooolocoe
dooolcomwopboosjocosjocoscoocolcooolocon

cococolccookmoclcocolcocolcooolocoolooms
cocooloccocokowolcoocolcocolcoocoloooolool®
ocococoleococoFooplcooolcoococoooloocolgs oo
cococoloococopocowcocolcocclcocoloooolssoo
cocococlccocolocoolcoosoocococomolccoslos oo
cocooloococopoooldocobocodocolfooolooco
Scococolcococopocoolcoococoocoomoslcomolcooco
cococolocococopocoolcoocococodadolodosloooco
cocooloococopocoolcoocolcoocoodogflogoclooce
cococolpoocopocoolcocococol oooooloooco
Socoococogpoooomoccoosocoolcocoolcooo
cococomocobocoolcooglcos olccocolocoslooco
cococologobpocoolonolod cojlcooolococlooce
cocooloodopocooldocodocojooocoloocoslooco

—~
o
~

Figure 14: The simulation of two-dimensional waves. The
tested 512 x 512 grid offers a very detailed wave simulation.
The matrix transformation again demonstrates the effective-
ness of the SIMD optimization technique as in the previous
examples. The 32 x 328* blocks are shown before and af-
ter the transformation. The cost reduces from 38 to 24 (a =
2(1 — 2A%) and b = A\?); (a) After transformation and (b)
before transformation.

elementary block S* is optimized, we find that the SIMD cost
reduces from 38 to 24 (see Figure 14(c)). Two coefficients
around each corner of S* are missing, as the S block is parti-
tioned into the S* blocks. In coding pixel shaders, two extra

Table 4: Comparison of timing performances. The computation
times in milliseconds per time step to integrate the two-dimensional
wave equation over a 512 X 512 grid are summarized. The figures
were measured by averaging the times spent updating the 262,144
variables over the first 2000 time steps. While the data transfer from
the GPU to the CPU clearly harms the performance, this problem is
expected to be alleviated in the near future. In any case, the experi-
ment reveals a very favorable result for both the GPU implementa-
tions and the SIMD optimization technique.

On GPU
On CPU On GPU (Optimized)
Total 17.73 8.34 8.08
No data transfer - 1.28 1.02

SIMD instructions are additionally required to handle them,
for a total of 26 SIMD instructions after the optimization.
Because the T block is a simple diagonal matrix, two parti-
tioning subblocks T* of size 32 x 32 can be multiplied using
16 SIMD instructions. Hence, the total number of SIMD in-
structions for an elementary blockwise multiplication of size
32 x 32 decreases from 56 to 42 through the optimization
effort. Note that the entire 262,144 variables containing the
heights at the grid points are stored similarly as four-tuples
in eight two-dimensional texture images, which are updated
in each time step using eight separate pixel shader kernels.

The timing measurements summarized in Table 4 again
show a quite favorable result for both the GPU implementa-
tions and the SIMD optimization technique. Here, the figures
represent the computation times in milliseconds for a sin-
gle integration of the wave equation, averaged over the first
2000 time steps. In the GPU implementations, the height val-
ues of simulated waves are stored in texture memory, hence
a data transfer from the GPU to the CPU is necessary per
time step to move the newly computed values. Currently, this
overhead is unavoidable on most GPUs, because the height
information must be read back to the CPU for rendering and
further processing. In spite of the extra data transfer time, the
GPU implementations are shown to be faster than the CPU
implementation (compare the timings in the row Total).

The performance could improve further if it was possi-
ble to bind the render target to memory objects such as ver-
tex arrays, as their data can be reinjected into the geometry
pipeline directly without data transfers, as proposed recently
in the uber buffers extensions [37]. When the data transfer
time is excluded, the performance enhancement of the GPU
over the CPU is remarkable as indicated in the row No data
transfer. It is also evident that the SIMD optimization tech-
nique presented here provides a considerable speedup for the
GPU implementations. We believe that our SIMD optimiza-
tion technique can be used effectively in a wider range of
graphics-related problems, as GPUs evolve to support more
flexible framebuffer architectures in the near future.

© The Eurographics Association and Blackwell Publishing Ltd 2004

C. Bajaj et al. / SIMD Optimization of Linear Expressions 713

5. Conclusion

Linear expressions appear frequently in many scientific and
engineering areas, including computer graphics, and their
efficient evaluation is often critical in developing real-time
applications. We have presented a SIMD code optimization
technique that enables efficient codes to be produced for eval-
uating linear expressions. In particular, our technique exploits
the four-wide SIMD computing capacities offered by modern
GPUs. We have demonstrated that the new technique can be
effectively applied to solving a variety of general mathemat-
ical computations on a GPU. Although our emphasis was on
code optimization for the GPU, the ideas are valid for any
processing unit that supports the simple SIMD processing
model as described.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful comments and suggestions. This work was sup-
ported by grant no. R01-2002-000-00512-0 from the Ba-
sic Research Program of the Korea Science & Engineering
Foundation.

References

1. K. Engel and T. Ertl. Interactive High-Quality Volume
Rendering with Flexible Consumer Graphics Hardware.
In Proceedings of Eurographics 2002 — STAR Report,
pp. 109-116, 2002.

2. M.S.Peercy, M. Olano, J. Airey and P.J. Ungar. InterAc-
tive Multi-Pass Programmable Shading. In Proceedings
of ACM SIGGRAPH 2000, pp 425-432, 2000.

3. K. Proudfoot, W. R. Mark, S. Tzvetkov and P. Hanra-
han. A Real-Time Procedural Shading System for Pro-
grammable Graphics Hardware. In Proceedings of ACM
SIGGRAPH 2001, pp. 159-170, 2001.

4. N. A. Carr, J. D. Hall and J. C. Hart. The Ray Engine.
In Proceedings of Graphics Hardware 2002, pp. 1-10,
2002.

5. T.J. Purcell, I. Buck, W. R. Mark and P. Hanrahan. Ray
Tracing on Programmable Graphics Hardware. In Pro-
ceedings of ACM SIGGRAPH 2002, pp. 703-712, 2002.

6. T. Purcell, C. Donner, M. Cammarano, H. Jensen
and P. Hanrahan. Photon Mapping on Programmable
Graphics Hardware. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pp. 41-50, 2003.

7. N. Carr, J. Hall and J. Hart. GPU Algorithms for Ra-
diosity and Subsurface Scattering. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, pp. 51-59, 2003.

8. J. Hart. Perlin Noise Pixel Shaders. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, pp. 87-94, 2001.

9. E. S. Larsen and D. McAllister. Fast Matrix Multiplies
Using Graphics Hardware. In Supercomputing 2001,
p- 43, November 2001.

10. C. Thompson, S. Hahn and M. Oskin. Using Mod-
ern Graphics Architectures for General-Purpose Com-
puting: A Framework and Analysis. In Proceedings of
the 35th International Symposium on Microarchitecture
(MICRO-35), November 2002.

11. W. Heidrich, R. Westermann, H.-P. Seidel and T. Ertl.
Applications of Pixel Textures in Visualization and Re-
alistic Image Synthesis. In Proceedings of ACM Sympo-
sium on Interactive 3D Graphics, pp. 145-148, 1999.

12. D. Weiskopf, M. Hopf and T. Ertl. Hardware-
Accelerated Visualization of Time-Varying 2D and 3D
Vector Fields by Texture Advection via Programmable
Per-Pixel Operations. In Proceedings of Vision, Model-
ing, and Visualization 2001, pp. 439-446, 2001.

13. M. Rumpf and R. Strzodka. Using Graphics Cards
for Quantized FEM Computations. In Proceedings of
IASTED International Conference Visualization, Imag-
ing, and Image Processing, pp. 160-170, 2001.

14. M. J. Harris, G. Coombe, T. Scheuermann and
A. Lastra. Physically-Based Visual Simulation on
Graphics Hardware. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pp. 1-10, 2002.

15. K. Moreland and E. Angel. The FFT on a GPU. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, pp. 112-119, 2003.

16. J. Bolz, I. Farmer, E. Grinspun and P. Schroder. Sparse
Matrix Solvers on the GPU: Conjugate Gradients and
Multigrid. ACM Transactions on Graphics, 22(3):917-
924, 2003.

17. N. Goodnight, C. Woolley, G. Lewin, D. Luebke and
G. Humphreys. A Multigrid Solver for Boundary Value
Problems Using Programmable Graphics Hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, pp. 102-111, 2003.

18. J. Kriiger and R. Westermann. Linear Algebra Op-
erators for GPU Implementation of Numerical Algo-
rithms. ACM Transactions on Graphics, 22(3):908-916,
2003.

19. K. Hillesland, S. Molinov and R. Grzeszczuk. Nonlinear
Optimization Framework for Image-Based Modeling on

© The Eurographics Association and Blackwell Publishing Ltd 2004

714

20.

21.

22.

23.

24.

25.

26.

27.

C. Bajaj et al. / SIMD Optimization of Linear Expressions

Programmable Graphics Hardware. ACM Transactions
on Graphics, 22(3):925-934, 2003.

M. Harris, W. Baxter, T. Scheuermann and A.
Lastra. Simulation of Cloud Dynamics on Graph-
ics Hardware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pp. 92-101, 2003.

A. T. Ogielski and W. Aiello. Sparse Matrix Compu-
tations on Parallel Processor Arrays. SIAM Journal on
Scientific Computing, 14(3):519-530, 1993.

L. H. Ziantz, C. C. Ozturan and B. K. Szymanski. Run-
time Optimization of Sparse Matrix-Vector Multiplica-
tion on SIMD Machines. In Parallel Architectures and
Languages Europe, pp. 313-322, 1994.

N. Kapadia and J. Fortes. Block-Row Sparse Matrix-
Vector Multiplication on SIMD Machines. In Proceed-
ings of 1995 International Conference on Parallel Pro-
cessing, vol. 111, pp. 34—41, 1995.

L. F. Romero and E. L. Zapata. Data Distributions for
Sparse Matrix Vector Multiplication. Parallel Comput-
ing, 21(4):583-605, 1995.

C. Maughan and M. Wloka. Vertex Shader Introduction.
NVIDIA Technical Brief, 2001.

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Opti-
mization by Simulated Annealing. Science, 220:671—
680, 1983.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller
and E. Teller. Equations of State Calculations by Fast
Computing Machines. Journal of Chemical Physics,
21:1087-1091, 1953.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

V. Cerny. Thermodynamical Approach to the Travelling
Salesman Problem: An Efficient Simulation Algorithm.
Journal of Optimization Theory and Application, 45:41—
51, 1985.

M. P. Vecchi and S. Kirkpatrick. Global Wiring by Simu-
lated Annealing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, CAD-2:215—
222, 1983.

D. F. Wong, H. W. Leong and C. L. Liu. Simulated An-
nealing for VLSI Design. Kluwer Academic Publishers,
Boston, 1988.

J. C. Tannehill, D. A. Anderson and R. H. Pletcher. Com-
putational Fluid Mechanics and Heat Transfer. Second
edition, Taylor & Francis Publishers, Philadelphia, 1997.

W. J. Palm IIl. Modeling, Analysis, and Control of Dy-
namic Systems. Second edition, John Wiley & Sons, Inc.,
New York, 2000.

M. E. Cohen and J. R. Wallace. Radiosity and Realistic
Image Synthesis. Academic Press, Inc, Cambridge, 1993.

N. Foster and R. Fedkiw. Practical Animation of Liquids.
In Proceedings of ACM SIGGRAPH 2001, pp. 23-30,
2001.

E. Lindholm, M. J. Kilgard and H. Moreton. A User-
Programmable Vertex Engine. In Proceedings of ACM
SIGGRAPH 2001, pp. 149-158, 2001.

J. Stam. Stable fluids. In Proceedings of ACM SIG-
GRAPH 1999, pp. 121-128, 1999.

R. Mace. OpenGL ARB Superbufters. In Game Devel-
opers Conference 2004, Speaker Slides, March 2004.

© The Eurographics Association and Blackwell Publishing Ltd 2004

