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Abstract

The simple frame-to-frame tracking used for dense vi-
sual odometry is computationally efficient, but regarded as
rather numerically unstable, easily entailing a rapid accu-
mulation of pose estimation errors. In this paper, we show
that a cost-efficient extension of the frame-to-frame tracking
can significantly improve the accuracy of estimated camera
poses. In particular, we propose to use a multi-level pose
error correction scheme in which the camera poses are re-
estimated only when necessary against a few adaptively se-
lected reference frames. Unlike the recent successful cam-
era tracking methods that mostly rely on the extra comput-
ing time and/or memory space for performing global pose
optimization and/or keeping accumulated models, the ex-
tended frame-to-frame tracking requires to keep only a few
recent frames to improve the accuracy. Thus, the resulting
visual odometry scheme is lightweight in terms of both time
and space complexity, offering a compact implementation
on mobile devices, which do not still have sufficient com-
puting power to run such complicated methods.

1. Introduction

The effective estimation of 6-DOF camera poses and re-
construction of a 3D world from a sequence of 2D images
captured by a moving camera has a wide range of com-
puter vision and graphics applications, including robotics,
virtual and augmented reality, 3D games, and 3D scanning.
With the availability of consumer-grade RGB-D cameras
such as the Microsoft Kinect sensor, direct dense methods,
which estimate the motion and shape parameters directly
from raw image data, have recently attracted a great deal of
research interest because of their real-time applicability in
robust camera tracking and dense map reconstruction.

The basic element of the direct dense visual localization
and mapping is the optimization model which, derived from
pixel-wise constraints, allows an estimate of rigid-body mo-

tion between two time frames. For effective pose estima-
tion, several different forms of error models to formulate a
cost function were proposed independently in 2011. New-
combe et al. [11] used only geometric information from
input depth images to build an effective iterative closest
point (ICP) model, while Steinbrücker et al. [14] and Au-
dras et al. [1] minimized a cost function based on photo-
metric error. Whereas, Tykkälä et al. [17] used both geo-
metric and photometric information from the RGB-D im-
age to build a bi-objective cost function. Since then, sev-
eral variants of optimization models have been developed
to improve the accuracy of pose estimation. Except for the
KinectFusion method [11], the initial direct dense methods
were applied to the framework of frame-to-frame tracking
that estimates the camera poses by repeatedly registering
the current frame against the last frame. While efficient
computationally, the frame-to-frame approach usually suf-
fers from substantial drift due to the numerical instability
caused mainly by the low precision of consumer-level RGB-
D cameras. In particular, the errors and noises in their depth
measurements are one of the main sources that hinder a sta-
ble numerical solution of the pose estimation model.

In order to develop a more stable pose estimation
method, the KinectFusion system [11] adopted a frame-
to-model tracking approach that registers every new depth
measurement against an incrementally accumulated dense
scene geometry, represented in a volumetric truncated
signed distance field. By using higher-quality depth im-
ages that are extracted on the fly from the fully up-to-date
3D geometry, it was shown that the drift of the camera
can decrease markedly while constructing smooth dense 3D
models in real-time using a highly parallel PC GPU imple-
mentation. A variant of the frame-to-model tracking was
presented by Keller et al. [9], in which aligned depth im-
ages were incrementally fused into a surfel-based model,
instead of a 3D volume grid, offering a relatively more
efficient memory implementation. While producing more
accurate pose estimates than the frame-to-frame tracking,
the frame-to-model tracking techniques must manipulate
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the incrementally updated 3D models during camera track-
ing, whether they are stored via a volumetric signed dis-
tance field or a surfel-based point cloud. This inevitably in-
creases the time and space complexity of the camera track-
ing method, often making the resulting implementation in-
efficient on low-end platforms with limited computational
resources such as mobile devices.

In this paper, we show that a cost-efficient extension
of the simple, drift-prone, frame-to-frame tracking can im-
prove the accuracy of pose estimation markedly. The pro-
posed multi-level pose error correction scheme decreases
the estimation errors by re-estimating the camera poses on
the fly only when necessary against a few reference frames
that are selected adaptively according to the camera mo-
tion. It differs from the visual odometry techniques, such
as [10], which estimate camera poses with respect to adap-
tively switched keyframes but without any error correction.

Our method is based on the observation that supplying a
better initial guess for the rigid-body motion between two
frames results in a numerically more stable cost-function
optimization. By using high-quality initial guesses derived
from available pose estimates, we show that our error cor-
rection scheme produces a significantly enhanced camera
trajectory. The extra cost additionally required for the com-
putationally cheap frame-to-frame tracking is quite low in
terms of both computation time and memory space, thus
enabling an efficient implementation on such low-end plat-
forms as mobile devices. We describe our experience with
this technique and demonstrate how it can be applied to de-
veloping an effective mobile visual odometry system.

2. Related work
A variant of the frame-to-model tracking algorithm of

Newcombe et al. [11] was presented by Bylow et al. [2],
where the distances of back-projected 3D points to scene
geometry were directly evaluated using the signed distance
field. While effective, these frame-to-model tracking ap-
proaches needed to manipulate a (truncated) 3D signed dis-
tance field during the camera tracking, incurring substan-
tial memory overhead usually on the GPU. To resolve the
limitation caused by a fixed, regular 3D volume grid, Roth
and Vona [13] and Whelan et al. [20] proposed the use of
a dynamically varying regular grid, allowing the camera
to move freely in an unbounded extended area. A more
memory-efficient, hierarchical volume grid structure was
coupled with the GPU-based pipeline of the KinectFusion
by Chen et al. [3] in an attempt to support large-scale recon-
structions without sacrificing the fine details of the recon-
structed 3D models. Nießner et al. [12] employed a spatial
hashing technique for the memory-efficient representation
of the volumetric truncated signed distance field, which,
because of its simple structure, allowed higher frame rates
for 3D reconstruction via the GPU. In an effort to achieve

higher memory efficiency without trading off the pose esti-
mation accuracy, several surfel-based techniques were also
proposed to represent the dynamically fused scene geome-
try, for example, [9,15,21], for which efficient point manip-
ulation and splatting algorithms were needed.

Whichever base tracking method is used to register cap-
tured images, small pose estimation errors eventually ac-
cumulate in the trajectory over time, demanding periodic
optimizations of the estimated camera trajectory and maps
for global consistency, which usually involves the nontriv-
ial computations of keyframe selection, loop-closure detec-
tion, and global optimization. Several algorithms suitable
for low-cost RGB-D cameras have been proposed. For in-
stance, Endres et al. [5], Henry et al. [7], and Dai et al.
[4] extracted sparse image features from the RGB-D mea-
surements to estimate spatial relations between keyframes,
from which a pose graph was incrementally built and op-
timized. A surfel-based matching likelihood measure was
explored by Stückler and Behnke [15] to infer spatial rela-
tions between the nodes of a pose graph. Whereas, Kerl et
al. [10] presented an entropy-based method to both select
keyframes and detect loop closures for the pose graph con-
struction. Whelan et al. [19] combined the pose graph opti-
mization framework with non-rigid dense map deformation
for efficient map correction. Whelan et al. [21] also pro-
posed a more map-centric dense method for building glob-
ally consistent maps by frequent refinement of surfel-based
models through non-rigid surface deformation.

In spite of the recent advances in mobile computing tech-
nology, implementing the above methods on mobile plat-
forms is still quite challenging, and very few studies ad-
dressed this issue. Kähler et al. [8] presented an efficient
mobile implementation, based on the voxel block hashing
technique [12], achieving high frame rates and tracking ac-
curacy on mobile devices with an IMU sensor.

3. Improved frame-to-frame pose estimation
In this section, we first explain our multi-level adaptive

error correction scheme which, as an inherently frame-to-
frame method, enables to implement an efficient camera
tracking system on mobile devices with limited comput-
ing power and memory capability. Consider a live input
stream produced by a moving RGB-D camera, where each
frame at time i (i = 0,1,2, · · ·) provides an augmented im-
age Fi = (Ii,Di) that consists of an intensity image Ii(u) and
a depth map Di(u), respectively seen through every pixel
u ∈U ⊆ R2. We assume that the intensity image has been
aligned to the depth map, although the reverse would also be
possible. The basic operation in the frame-to-frame camera
tracking is, for two given augmented images Fi and Fj from
two different, not necessarily consecutive, time steps i and
j (i > j), to estimate the rigid transformation Ti, j ∈ SE(3)
that maps the camera coordinate frame at time i to that at



time j by registering Fi against Fj. Once Ti, j is known,
the ith camera’s pose in the global space is computed as
Ti,0 = Tj,0Ti, j, where the global space is set to the camera
space of the zeroth frame as usual.

We denote by the function Ti, j = MOT ION(Fi,Fj,Tinit)
the process of estimating the relative rigid body motion
from time i to time j through the dense, direct alignment
of both intensity and depth images, where Tinit , an initial
guess for Ti, j, is provided as a function parameter. While
any feasible method (such as the one presented in, for in-
stance, [1, 11, 14]) may be applied to implement the motion
estimation function, we use a slight variant of the method
by Tykkälä et al. [17], in which the weights in the itera-
tively re-weighted least squares formulation are computed
based on the t-distribution as proposed by Kerl et al. [10].

3.1. Basic idea and algorithm

It should be emphasized that selecting a good initial
guess for the unknown rigid-body motion greatly influences
the accuracy and stability of the iterative pose estimation
process. Usually, the camera pose from the last frame is
chosen as the initial guess for the current frame (i.e. the
identity matrix I is used as the initial guess for the relative
motion), there being no obvious better alternative. Com-
bined with any possible deficiency in the captured images,
supplying a poor initial value to the optimization algorithm
often leads to an inaccurate approximation.

Observe that, despite the use of the null motion as the
initial guess, the estimated camera poses for the next few
frames will be fairly close to reality. Therefore, they may
be utilized to figure out better initial guesses in later rounds
of the pose estimation computation to improve the accuracy
of the camera poses. Figure 1(a) illustrates the basic idea of
our adaptive pose error correction method, where the rela-
tive rigid transformation Tc,p from the current frame Fc to
the previous frame Fp is to be estimated by a function call
MOT ION(Fc,Fp, I) (see the box [A] in Figure 1(b)). Here,
Fr1 is the frame that has been set the last time as a (level-
one) reference frame. After each camera pose is estimated
for the current frame, it is checked if there has been a sig-
nificant rigid-body motion since the last reference frame.
That is, we investigate if the accumulated rigid transfor-
mation Tp,r1Tc,p from Fc to Fr1 is large enough to attempt
a pose error correction. This query is done by a boolean
function comp(Tp,r1Tc,p,(ε

r1
d ,εr1

a )) against a given pair of
motion thresholds (εr1

d ,εr1
a ), whose implementation shall be

explained shortly.
If that is the case, in an effort to reduce the error in the

pose estimate of the current frame Fc, we re-estimate it with
respect to the reference frame Fr1 using the Tp,r1Tc,p as an
initial guess of the relative rigid-body motion Tc,r1 (see the
box [B] in Figure 1(b)). After the camera pose for Fc is
re-estimated, it becomes the next level-one reference frame

(a) Error correction against reference frames

(b) Flowchart of the two-level pose error correction algorithm

Figure 1. Adaptive camera pose correction scheme. Every time the
rigid-body motion from the current frame Fc to the last frame Fp is
estimated, it is tested if a level-one error correction is necessary by
investigating the (approximate) rigid-body motion from Fc to the
level-one reference frame Fr1 (figure (a)). This adaptive pose error
correction idea may easily be extended to a multi-level technique,
where a two-level algorithm is summarized in figure (b).

in subsequent frame-to-frame camera tracking. As will be
shown later, the effect of the pose error correction with a
more elaborate initial guess is evident, tending to refrain
the camera from drifting over time from the real trajectory.

In hope to suppress the camera drift as much as possi-
ble at little additional expense, we apply another level of
pose error correction, in which the new level-one reference
frame is further compared to a level-two reference frame.
That is, when a current frame becomes a level-one reference
frame Fr1 after the error correction, the accumulated relative
rigid-body motion Tr1,r2 between Fr1 and the previously set
level-two reference frame Fr2 is investigated against looser
motion thresholds (εr2

d ,εr2
a ) if there has been sufficient mo-

tion. If there is, an additional pose estimation is performed
between Fr1 and Fr2 with the better initial motion matrix
Tr1,r2 (see the box [C] in Figure 1(b)), hoping to enhance
further the accuracy of the estimated pose of Fr1 . Once this
is done, Fr1 also becomes a new level-two reference frame
Fr2 , and the next round of pose estimation starts. As will



be shown, this simple second-level computation often has
an effect of correcting the pose estimation errors between
two frames of longer distances, enhancing the overall per-
formance of the camera tracking.

The resulting two-level pose error correction algorithm
is shown in Figure 1(b), where the poses of the reference
frames (Tr1,0 or Tr2,0 if a level-two reference frame is found)
are output with the respective frame numbers as a result
of camera tracking. Whereas the reference frames work
as keyframes for improving the pose estimates, our method
differs from the conventional keyframe techniques in many
ways. Contrary to those methods, our ‘memoryless scheme’
maintains only the last reference frame, one frame for each
correction level, that is updated adaptively during cam-
era tracking. Neither expensive loop-closure detection nor
global optimization is performed, but the pose error correc-
tion is made at only a small additional cost when it appears
to be necessary by comparing the current frame with the
reference frames.

Figure 2 gives us a clue to how the idea of adaptive
error correction actually works. Although, sometimes,
the level-two error correction mechanism (“L2-EC”) erro-
neously pushed the poses away from the exact trajectory,
in the adverse situation that the erroneous pose estimated
for the last reference frame is assumed correct and the ex-
act pose to be estimated for the next frame is unknown, it
effectively suppressed the tendency of the original frame-to-
frame tracking method (“Naı̈ve”) toward the rapid accumu-
lation of both translational and rotational errors, eventually
leading to a significant improvement in the camera tracking
result. Also, the error correction had the effect of temporal
filtering of the live RGB-D stream so that the frames with
sufficiently close camera poses were culled automatically,
enabling efficient generation of 3D point set data.

Figure 2. Adaptive pose error correction. The translational errors
generated from a living room sequence of the ICL-NUIM bench-
mark dataset [6] are displayed for the first 495 frames. The adap-
tively selected reference frames are marked in dots.

3.2. Adaptive selection of reference frames

A simple and effective way to adaptively choose the in-
tervals between the reference frames is to reflect the ac-

tual motion of the camera whereby an additional pose er-
ror correction is executed if predicted camera pose devi-
ates markedly from that of the last reference frame. Let
Tc,r = T (Rc,r, tc,r) be the accumulated relative rigid transfor-
mation from a current frame Fc to the last reference frame
Fr, where Rc,r ∈ SO(3) and tc,r ∈ R3 are the rotational and
translational components, respectively. Given distance and
angle thresholds εd and εa, respectively, we regard that an
error correction is needed if either the translational distance
|| tc,r ||2 or the rotation angle cos−1 tr(Rc,r)−1

2 exceeds the re-
spective threshold, where tr(·) denotes the trace of a square
matrix. Therefore, in our current implementation, the func-
tion call comp(T (R, t),(εd ,εa)) in Figure 1(b) returns YES
if and only if at least one of the following conditions is met:
|| t ||2 > εd and tr(R)< ε∗a with ε∗a = 2cosεa +1.

3.3. Error analysis using benchmark datasets

We evaluated the accuracy of the presented approach us-
ing two benchmark datasets: the ICL-NUIM dataset [6],
which provides RGB-D sequences with and without sim-
ulated sensor noise for synthetic scenes, and the TUM
dataset [16], which is composed of real RGB-D sequences
captured by a Microsoft Kinect sensor. Table 1 summa-
rizes the performance statistics measured on the PC plat-
form where the simple frame-to-frame tracking (“Naı̈ve”)
was compared to the two enhanced versions (“L1-EC” and
“L2-EC”) whose pose error correction were applied up to
level one and two, respectively. For all these tests, the mo-
tion thresholds for our adaptive error correction were set
to (εr1

d ,εr1
a ) = (30mm,7◦) for the first level and (εr2

d ,εr2
a ) =

(120mm,12◦) for the second. For depth filtering, which will
be explained in the next section, the angular thresholds for
the normal- and contour-based depth removal were εn = 28◦

and εg = 7◦, respectively. Furthermore, the relative gain for
the depth component in the cost function was equally set to
λ = 1.8 for the tested sequences.

As clearly indicated by the measurement of the absolute
trajectory root-mean-square error metric in meters (“ATE
RMSE”), the pose estimation errors of the simple frame-to-
frame tracking (“Naı̈ve”) decreased significantly when they
were adaptively corrected on the fly up to level one (“L1-
EC”) or level two (“L2-EC”), indicating that the idea of
multi-level error correction worked solidly (refer to Fig-
ure 3 to see an example of how nicely the errors decreased
through error correction). The extra temporal overhead
of correcting the pose estimation errors can be revealed
by comparing the measures of how many times the basic
frame-to-frame registration was performed, i.e. how many
times the function MOT ION(·) was called. Here, the differ-
ences in the numbers between the simple tracking (“Naı̈ve”)
and the level-one error correction scheme (“L1-EC”) show
the additional costs, which reveal how many level-one ref-
erence frames were chosen during the camera tracking. On



ICL-NUIM benchmark dataset [6] TUM benchmark dataset [16]
kt0 kt1 kt2 kt3 fr1/desk fr1/desk2 fr1/xyz fr1/room

(1,509) (966) (881) (1,241) (573) (620) (792) (1,352)

Naı̈ve
ATE RMSE (m) 0.1212 0.1714 0.4653 0.1451 0.1526 0.1470 0.0258 0.2157

motion est.s 1,508 965 880 1,240 572 619 791 1,351
ref. fr.s (L1/L2) - - - - - - - -

L1-EC
ATE RMSE (m) 0.0116 0.1671 0.4564 0.1258 0.0836 0.1117 0.0345 0.2142

motion est.s 1,812 1,095 1,240 1,534 896 935 1,045 2,125
ref. fr.s (L1/L2) 304/0 130/0 360/0 294/0 324/0 316/0 254/0 774/0

L2-EC
ATE RMSE (m)

0.0071 0.0964 0.4531 0.1128 0.0452 0.0799 0.0210 0.1616
(0.0063) (0.0925) (0.4176) (0.1105) (0.0449) (0.0678) (0.0207) (0.1540)

motion est.s 1,895 1,111 1,339 1,609 1,123 1,127 1,102 2,402
ref. fr.s (L1/L2) 305/82 116/30 359/100 292/77 323/288 334/174 258/53 764/287

KinFu [11] - - - - 0.057 0.420 0.026 0.313
RGB-D [14] 0.3603 0.5951 0.2931 0.8524 0.023 0.043 0.014 0.084

ICP [20] 0.0724 0.0054 0.0104 0.3554 - - - -
ICP+RGB-D [18] 0.3936 0.0214 0.1289 0.8640 - - - -
RGB-D SLAM [5] 0.026 0.008 0.018 0.433 - - - -

MRSMap [15] 0.204 0.228 0.189 1.090 0.043 0.049 0.013 0.069
DVO SLAM [10] 0.104 0.029 0.191 0.152 0.021 0.046 0.011 0.053

VolumeFusion [19] - - - - 0.037 0.071 0.017 0.075
ElasticFusion [21] 0.009 0.009 0.014 0.106 0.020 0.048 0.011 0.068

Table 1. Performance statistics for the RGB-D sequences in two benchmark datasets, whose numbers of input frames are given in parenthe-
ses. The ATE RMSE results of three variations of our local approach were generated on the PC, and then compared to the state-of-the-art
techniques, whose figures were collected from [6], [21], and [10]. The ATE RMSE values in parentheses of the level-two error correction
were measured only for the selected reference frames. The total number of frame-to-frame motion estimations applied by each varia-
tion (“motion est.s”) were counted along with the numbers of selected reference frames at each level (“ref. fr.s (L1/L2)”), which imply the
temporal overhead of correcting pose errors. The extra spatial overhead was just to keep one or two last reference frames during camera
tracking. Whereas our low-cost method, which guarantees a compact implementation on mobile platforms, dose not handle the jerky cam-
era motion and intractable lighting condition, often found in the TUM benchmark, as effectively as the previous methods, it still provides
acceptable camera tracking results for usual smooth camera motions, which will be discussed in the result section.

one hand, the differences with the level-two scheme (“L2-
EC”) include the extra costs incurred by performing it.

(a) Naı̈ve (b) L1-EC (c) L2-EC

Figure 3. Trajectories on the kt0 sequences assuming noise. Pose
errors between our estimate and ground truth are shown in red.

For the four living room sequences with the sensor
noise from the ICL-NUIM benchmark (kt0 to kt3), the
level-two correction (the level-one correction as well) pro-
duced quite competitive and sometimes more accurate re-
sults compared with the ATE RMSE results of the state-
of-the-art techniques. We find that our solution demanded
roughly 1.30 and 1.58 (for the L1 correction scheme) and
1.44 and 1.78 (for the L2 correction scheme) times more

tracking computations, respectively, than the simple frame-
to-frame tracking, which is quite acceptable considering the
increased precision in the pose estimation and no extra need
for memory space.

Compared with the ICL-NUIM benchmark dataset, the
sequences from the TUM benchmark often included fast
and jerky camera motions in addition to sudden changes
of lighting conditions on specular surfaces. Therefore, this
dataset was quite challenging for frame-to-frame tracking
methods like ours because, in some portions of the se-
quences, the camera moved very fast at a high angular ve-
locity, which often resulted in motion blurs and abrupt view
changes in the captured images. The jerky camera move-
ment made both registration between successive frames and
error correction between neighboring frames very ineffec-
tive. As shown in the table, our approach did not perform
better than the compared state-of-the-art techniques in the
tested TUM sequences. Despite the unfavorable tracking
situations, however, we observe that our method effectively
showed the capability of keeping the pose errors to quite



lower levels than those for simple frame-to-frame tracking.
In summary, we observe that our method, which is a local

method with low computational burden designed primarily
for mobile devices, may not cope with the abrupt camera
motions and challenging lighting conditions as effectively
as the state-of-the art methods. However, if the user tends to
move the camera somewhat carefully, our method adopting
the adaptive error correction can also be quite useful for ma-
nipulating such usual smooth camera motions, as demon-
strated with the sequences from the ICL-NUIM benchmark.
More importantly, our method requires basically no spatial
overhead because only one last reference frame per correc-
tion level needed to be kept during camera tracking. Thus,
unlike to those previous methods that perform the frame-to-
model tracking and/or some kind of global optimization, de-
manding nontrivial additional computational resources, our
camera tracking scheme guarantees an efficient implemen-
tation particularly on mobile platforms.

4. Developing a mobile visual odometry system

4.1. Overall system design

To show the effectiveness of the presented low-cost pose
estimation method, we have implemented a visual odom-
etry system that is fully optimized for mobile platforms.
Figure 4 illustrates the step-by-step procedure of our cam-
era tracking system in which the adaptive error correction
scheme is implemented into the “Adaptive EC” module. To
evaluate our mobile system, we generated test datasets by
first performing camera tracking on a Lenovo Phab 2 Pro
smartphone using the Tango C API and then dumping the
captured live RGB-D streams into files.

As shown in the system flowchart, each major task was
implemented as an independent parallel thread, which al-
lowed to fully exploit the multithreading capability of the
recent mobile processors. Each thread has a dedicated FIFO
queue that keeps the frame data from preceding stage. Since
the threads were designed to always work if their queues
have frames to process, the overall system was run naturally
in a parallel pipeline. Note that the life time of each RGB-
D frame in input streams differs to each other in our multi-
level pose error correction scheme because several different
kinds of frames, classified as “current,” “previous,” “level-
one reference,” and “level-two reference,” and so on, may
exist in the system at the same time. So we had to develop
an efficient way of managing the collection of valid image
data. In our system, the “Frame Pool” module was designed
to keep a reference count for each frame in the storage, in-
dicating the number of parallel threads that need the cor-
responding frame. Then, by updating the reference counts
when needed and periodically examining them, it was pos-
sible to safely remove unnecessary frames from the system.

RGB-D camera

Color image

Depth image

Bilateral Filter

Unprojection

Calc Gradient

Adaptive EC

Input Thread

Normal Filter

Contour Filter

Gen Frame

Filter Thread

Acc Point Clould

Render

Tracker Thread

Geometry Thread

Renderer Thread

Frame Pool

Figure 4. System architecture of our mobile visual odometry sys-
tem. The “Adaptive EC” module is the core component that per-
forms the 6-DOF pose estimation based on the presented multi-
level pose error correction scheme. In addition to the conventional
bilateral filter, we also included two depth filters in the “Normal
Filter” and “Contour Filter” modules, respectively, to enhance the
stability of the mobile camera tracking system.

4.2. Removal of unreliable depth values

Despite the bilateral filtering on perceived raw depth
data, the resulting depth map D̄i(u) usually contains faulty
depth values which often undermine significantly the ro-
bustness of the pose estimation. Thus we applied two
extra depth value removal steps in the filtering stage, re-
spectively called normal filtering and contour filtering, that
aim to detect possibly troublesome pixels in the depth im-
age and remove them from consideration in the pose es-
timation (and surface reconstruction) (see Figure 4 again).
First, we observed that the reliability in the normal vector
ni(u) at pi(u), estimated from D̄i(u) by applying a divided-
difference scheme to (noise-prone) back-projected points, is
often a good indicator of confidence in the captured depth
values around the pixel u. To check this, two unit normal
approximations were computed in two different divided-
difference directions: np

i (u) in the principal axis direction
and nd

i (u) in the diagonal direction. Then, if the angle
between np

i (u) and nd
i (u) was greater than a given angu-

lar threshold εn, we assumed that the captured depth val-
ues around u are not sufficiently dependable, and culled
out the depth pixel from the subsequent computation (see
Figure 5(a)). For a surviving pixel u, their average direc-
tion was used as ni(u), enabling the use of more reliable,
smoothed normal vectors in the point cloud generation.

The second depth value removal technique is to get rid
of those pixels around which depth values change suddenly.
When a pixel is transformed during the pose estimation
from source to target frame through a warping process, the



(a) Normal-based removal (b) Contour-based removal

Figure 5. The effects of two extra depth filters. Figures (a) and (b)
show depth images of a frame, where unreliable pixels that were
removed as a result of the respective filters are colored in red.

inevitable roundoff errors cause the resulting pixel location
to be moved, which, although slight, may entail a significant
change in the depth value. In order to decrease the possibil-
ity of incorrect depth values to be supplied in the optimiza-
tion computation, we also removed the possibly problem-
atic pixels in the areas with high depth gradient magnitude.
In this process, instead of approximating the depth gradient
in the 2D pixel space, we found out through experiments
that estimating the depth change in the 3D camera space
is more intuitive and effective in culling out such pixels:
for each pixel u = (ux,uy), if the angle made by the vector
(pi(u−1,0)−pi(u))× (pi(u0,−1)−pi(u)) and the view vec-
tor pi(u) is in the range of [90◦− εg,90◦+ εg] for another
angular threshold εg, it was assumed that the depth value
undergoes a drastic depth transition at u, and, for a safety
reason, the pixels in the 3×3 pixel area centered at u were
removed from the subsequent process (see Figure 5(b)).

5. Results
To evaluate how effectively the adaptive error correction

scheme combines with frame-to-frame tracking on mobile
platforms, the visual odometry system was implemented on
two smartphones: the Lenovo Phab 2 Pro using the Qual-
comm Snapdragon 652 chipset with the Qualcomm Adreno
510 GPU, and the Samsung Galaxy S8 using the Samsung
Exynos 8895 chipset with the ARM Mali-G71 MP20 GPU.
As a Google Tango-enabled device, the Lenovo smartphone
has a depth sensor, allowing the generation of live RGB-D
streams at 320×180 pixels.

We first tested the mobile version with the ICL-NUIM
and TUM benchmarks and confirmed that the ATE RMSE
results behaved quite similar to those produced on the PC,
trying to keep the pose errors to levels much lower than
those from the simple frame-to-frame tracking. However,
the achieved frame rates were quite low for those streams
of 640× 480 images. Then, we generated several RGB-D
sequences of 320×180 images on the Lenovo phone using
the C API provided by the Google Tango SDK where, to
enable precise comparison between different methods, each
sequence was saved in a file. For these real-scene datasets,

a proper application of the additional depth removal filters
was especially important because the mobile depth sensor
usually generated less accurate depth maps.

Figures 6 (a) to (d) show four RGB-D sequences whose
runtime performance is reported in Table 2. In this test,
the iterative pose estimation process proceeded in multi-
scale fashion, in which the RGB-D images formed by sam-
pling every other eight, four, and then two pixels were used
to progressively refine estimated camera poses. Overall,
our visual odometry system took about 25 to 30 ms per
input frame on average for camera tracking on the Sam-
sung phone when the level-two error correction mechanism
was applied. The figures in the “motion est.s” rows give
a clue to the extra overhead of correcting the pose esti-
mation errors produced by a simple frame-to-frame track-
ing. We find that our solution demanded roughly 1.11 to
1.27 times more tracking computations on average than the
faulty naı̈ve frame-to-frame tracking, which is quite accept-
able considering the increased precision in the pose estima-
tion. As clearly implied by the timings in the last three rows
in Table 2, the times taken by the two parallel, filtering and
tracking threads were effectively overlapped through the
time steps in the pipelined architecture of our camera track-
ing system (please compare their sums to the total times).

Note that the size of the point sets created on the fly as a
result of 3D reconstruction (“generated pt.s”) grew progres-

Venus Table Office Room
(500) (170) (219) (400)

Naı̈ve

motion est.s 499 169 218 399
ref. fr.s(L1/L2) - - - -

Tracker 17.39 ms 16.64 ms 17.70 ms 18.36 ms
generated pt.s 14,073 K 3,982 K 7,395 K 13,712 K

L1-EC

motion est.s 604 248 322 631
ref. fr.s(L1/L2) 105/0 79/0 104/0 232/0

Tracker 18.81 ms 18.32 ms 20.43 ms 19.78 ms
generated pt.s 2,994 K 1,875 K 3,519 K 7,890 K

L2-EC

motion est.s 637 282 375 741
ref. fr.s(L1/L2) 105/33 79/34 109/48 234/109

Tracker 19.39 ms 18.48 ms 21.64 ms 23.30 ms
generated pt.s 3,016 K 1,875 K 3,641 K 7,970 K

L2-EC
Filter 22.49 ms 19.25 ms 21.01 ms 22.65 ms

Tracker 19.39 ms 18.48 ms 21.64 ms 23.30 ms
Total 28.20 ms 24.51 ms 25.89 ms 30.69 ms

Table 2. Performance statistics on the Samsung Galaxy S8 smart-
phone. The applied control parameters were εn = 45◦, εg = 20◦,
(εr1

d , ε
r1
a ) = (30 mm, 3◦), (εr2

d , ε
r2
a ) = (70 mm, 7◦), and λ = 1.8.

“Filter” and “Tracker” respectively indicate the average times per
frame taken by the corresponding threads in our visual odome-
try system illustrated in Figure 4. Also, “Total” shows the total
average times per frame, excluding the rendering time which var-
ied with the number of accumulated points. All computations ex-
cept for the Filter thread, which was accelerated using the OpenCL
API, were done by the mobile CPU alone without GPU assistance.



(a) Venus (b) Table (c) Office (d) Room

(e) “Naı̈ve” (f) “L2-EC” (g) “Naı̈ve” (h) “L2-EC”

(i) Tango API (j) Ours (“L2-EC”) (k) Tango API (l) Ours (“L2-EC”)

Figure 6. Camera tracking on the mobile platform. Figures (a) to (d) show four test sequences captured by a Lenovo Phab 2 Pro smartphone,
which generated RGB-D streams at 320× 180 pixels. Figures (e) and (f), and (g) and (h) respectively compare parts of reconstructed
surfaces, represented in point sets, where the 3D reconstruction quality markedly improved via our adaptive pose error correction scheme.
Figures (i) and (j), and (k) and (l) also compare parts of the surfaces by our method with those produced on the Lenovo Phab 2 Pro
smartphone using the Tango C API. A direct comparison of the pose estimation times between these two methods was not possible because
we could not directly call the Tango C API function to initiate the pose estimation process against the RGB-D streams loaded from files.

sively; this is often burdensome for mobile devices to han-
dle. Often, the mobile phone crashed due to excessive mem-
ory usage if the frame-to-frame tracking method without
error correction (“Naı̈ve”) tried to collect all back-projected
3D points. (Therefore, the point sizes had to be measured on
the PC for some troublesome cases.) Our approaches (“L1-
EC”/“L2-EC”) were able to automatically filter dense live
RGB-D streams via adaptively selected reference frames,
preventing the point set from growing excessively.

Figures 6 (e) to (h) offer qualitative comparisons be-
tween the simple and enhanced tracking techniques. In
these typical examples, we find that the 3D reconstruction
quality was markedly improved in several regions around
which the simple frame-to-frame tracking produced poor re-
construction. Figures 6 (i) to (l) also compare the point sets
generated by our method to those generated using the stan-
dard method from the Google Tango SDK. In general, the
camera tracking method performed a stable pose estimation
on the Lenovo phone. However, we observe that our adap-
tive error correction technique often generated point clouds

that are visually more detailed as shown in these figures.

6. Conclusion
In this paper, we presented an adaptive pose error cor-

rection scheme for tracking a low-cost RGB-D camera, and
showed that it can be used to significantly enhance the ac-
curacy of the drift-prone frame-to-frame camera tracking
method without seriously harming the computational effi-
ciency. The proposed camera tracking model is simple and
efficient enough to allow a compact implementation on mo-
bile devices, and was demonstrated to produce quite accept-
able tracking results on the tested smartphones, especially
for usual smooth camera motions.
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