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Figure 1: Adaptive ray sampling on mobile ray-tracing GPUs. Similarity test classifies the samples into similar (yellow) and dissimilar (blue)
(left). The similar samples are shaded by linear interpolation instead of full ray tracing. Compared with reference rendering (FSAA2×2)
(middle), our implementation achieves 1.83 times better performance-power efficiency without compromising quality (PSNR 30.5dB) (right).

Abstract

We present an adaptive multi-rate ray sampling algorithm target-
ing mobile ray-tracing GPUs. We efficiently combine two existing
algorithms, adaptive supersampling and undersampling, into a sin-
gle framework targeting ray-tracing GPUs and extend it to a new
multi-rate sampling scheme by utilizing tile-based rendering and
frame-to-frame coherency. The experimental results show that our
implementation is a versatile solution for future ray-tracing GPUs
as it provides up to 2.98 times better efficiency in terms of perfor-
mance per Watt by reducing the number of rays to be fed into the
dedicated hardware and minimizing the memory operations.

Keywords: ray tracing, GPU, mobile, low-power, resampling

Concepts: •Computing methodologies→ Ray tracing; Graph-
ics processors;

1 Introduction

As the recent mobile market is growing continuously, real-time ray
tracing has attracted considerable attention for future graphics ap-
plications, such as UX/UI, high-quality AAA games, and virtual
reality. However, real-time ray tracing on the current mobile CPUs
and GPUs continues to be a challenge because of their limited com-
puting power, memory bandwidth, and energy budget. Therefore,
recently, various hardware-based ray tracing solutions such as fully
dedicated hardware [Nah et al. 2014], hardware-software hybrids
[Lee et al. 2013], and GPU IPs [McCombe 2014], has been pro-
posed to solve these problems in mobile devices.

Today’s ray-tracing hardware IPs for mobile devices exhibit reason-
able performance (∼300 Mrays/s) and achieve real-time rendering
of basic ray-tracing effects, such as shadows, reflections, and oc-
clusions, at FHD resolution (1920×1080) in cooperation with ras-
terization GPUs, which is called hybrid rendering. However, it still
cannot support the requirements of production-level applications,
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such as game engines with full ray tracing (1−3 Grays/s) [John-
stone et al. 2015]. Furthermore, these computing requirements can
be increased because future graphics applications might require ex-
tremely high resolution (>4K).

In order to narrow this gap, we can consider the adaptive ray sam-
pling approach, which can reduce the computing cost while main-
taining the image quality. The key idea behind this approach is
utilizing the pixel-to-pixel coherence contained in graphics applica-
tions and reusing the results of the ray-tracing of neighboring pixels
for current pixels. That is, once it has traced rays for sparse samples
and classified the remaining samples into two types – similar and
dissimilar (to the sparse samples) – then it replaces the ray-tracing
operation with inexpensive linear interpolation for similar samples.

In this paper, we present an adaptive multi-rate ray sampling algo-
rithm for improving the performance-power efficiency of the mo-
bile ray-tracing GPU, which is called SGRT (Samsung GPU based
on Ray Tracing) [Lee et al. 2012; Lee et al. 2013]. We combine
the existing two algorithms targeting commodity GPUs, adaptive
ray supersampling [Jin et al. 2009] and adaptive ray undersam-
pling [Kim et al. 2016], into a single framework and efficiently map
it to the programmable shader core, which can significantly reduce
the computing cost in fixed-function hardware. Unlike the previous
works, our implementation aggressively utilizes tile-based render-
ing, which allows the operation to be performed using the on-chip
internal memory without having to access the external memory. In
addition, we extend this algorithm to a new multi-rate sampling
scheme to apply the variable sampling rates according to the ra-
tio of similarity in a tile, which can provide additional performance
improvements. The experimental results show that our implementa-
tion is a versatile solution for future ray-tracing GPUs, as it achieves
up to 2.98 times better efficiency in terms of performance per Watt
by substantially reducing the computing cost of the dedicated hard-
ware and minimizing the memory operations. To summarize, the
main contributions of this paper are:

• Integration of adaptive ray supersampling and subsampling
algorithms into a single framework,

• Proposing a new multi-rate sampling scheme to control sam-
pling rates according to the similarity ratio in the tile, and

• Implementation of optimized algorithms to improve the
performance-power efficiency for mobile ray-tracing GPUs.
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Figure 2: Overview of adaptive ray sampling on ray-tracing GPUs. Additional kernels for similarity check and linear interpolation are
easily implemented because the SRP supports full programmability. Our tile-based approach allows these operations to be performed using
on-chip internal memory without having to access external memory

Figure 3: (a) Reference (red) and intermediate samples (green).
(b) Rays shot to the reference and the intermediate samples.

2 Related Work

Despite the recent advance in mobile computing, the need for
developing dedicated hardware has been great concern to allow
high-quality graphics based on high performance and low power
solutions. Spjut et al. [2012] proposed a version of the MIMD
TM [Kopta et al. 2010] in which the number of thread multiproces-
sors and active threads was reduced, making it suitable for mobile
devices. Kim et al. [2012] also proposed a dedicated multi-core
processor for mobile ray tracing, which can be configured to both
SIMT and MIMD modes. However, the above architectures could
not provide a sufficiently high performance (less than 30 Mrays/s)
for real-time ray tracing of real-world applications.

Lee et al. [2012] firstly presented a mobile GPU based on ray trac-
ing called SGRT which combines the advanteges of programmable
DSP cores called SRP (Samsung Reconfigurable Processor) [Lee
et al. 2011] and a dedicated hardware, called T&I unit. This archi-
tecture has been revised with advanced features such as 2-AABB
traversal units [Lee et al. 2014], Reorder Buffer [Lee et al. 2015b],
and hybrid number system [Hwang et al. 2015]. Recently, a com-
mercial mobile GPU featuring ray-tracing hardware blocks, called
PowerVR GR6500 [McCombe 2014], has been announced. A key
feature of this GPU is to adopt the hybrid rendering to combine the
advantages of ray tracing and rasterization. Lee et al [2015a] also
proposed a hybrid rendering architecture based on tile-based mo-
bile GPUs. The above architectures realize real-time rendering of
basic raytracing effects but it is still not enough to support AAA
games and high-resolution VR applications.

Adaptive sampling in ray-tracing domain has been an important
topic and was extensively utilized in past research such as hierarchi-

cal adaptive supersampling [Whitted 1980], optimal stochastic sam-
pling [Dippe and Wold 1985], adaptive hierarchical sampling [Ka-
jiya 1986], and two-level sampling method [Mitchell 1987]. These
algorithms utilized the geometry information in image and object
space for adaptive sampling. Recently, these algorithms evolved
to be more advantageous to commodity PC and mobile GPUs.
Jin et al. [2009] presented a selective and adaptive supersampling
method, optimized for massively parallel modern GPUs. Kim et
al. [2016] adopted this algorithm to adaptive undersampling method
with novel post-correction filters, optimized for mobile GPUs.

Rasterization domain has also considered adaptive sampling ap-
proaches [Vaidyanathan et al. 2014; He et al. 2014; Clarberg et al.
2014] as the complexity of the fragment shading was sharply in-
creased in commercial graphics applications such as AAA games.
According to the various factors such as importance, interest, level
of detail (LoD) and camera effects, these algorithms adaptively
control the shading rates. However, these rasterization-based ap-
proaches are not extendable for ray-tracing GPUs though they are
similar to the method presented in this paper.

3 Adaptive Multi-Rate Ray Samping on SGRT

In this paper, we present an adaptive multi-rate ray sampling algo-
rithm targeting mobile ray-tracing GPUs. As a baseline algorithm,
we utilize two adaptive methods, supersampling [Jin et al. 2009]
and undersampling [Kim et al. 2016], developed for a commodity
GPU ray tracer. Though these were invented for a different pur-
pose, the key idea behind them is the same: to reuse the results of
the ray tracing of the neighboring pixels for the current pixel. The
brief operation flow is as follows. Initially, the screen area is par-
titioned into two types. Figure 3 shows an example of partitioning
through 2×2 blocks, where regularly distributed set, marked as R,
forms a group of reference samples (R-samples). The other sam-
ples, marked as I, are called intermediate samples (I-samples). This
example shows 2×2 pixel partitioning, but this can be changed (e.g
3×3, 4×4) according to the sampling ratio. We integrate the super
and undersampling algorithms into a single framework. A sample
can be mapped to a sub-pixel in the supersampling mode, and it can
be mapped to a pixel in the undersampling mode. The rendering
consists of three steps.

• Ray tracing for R-samples are carried out. In this step, the
sample color is computed and the additional geometry infor-
mation to be used in the next step is collected (Figure 3b).
The geometry information includes the hit object id, normal
vector, position vector, and shadow bits of the hit point. The



Figure 4: Visualization of the similarity check for the six frames extracted from the animation sequence of Provence scene (yellow: similar,
blue: dissimilar). Frame numbers are 1, 150, 340, 400, 600, and 700. Similarity ratio can be variant across the tiles in the same frame, and
also variant across the frame for the same tiles.

Figure 5: Operational flow of the proposed adaptive multi-rate ray
sampling using frame coherency.

shadow bits are set if and only if a shadow is cast at the surface
hit point with respect to the corresponding light source.

• Given this geometry information, the similarity check is con-
ducted between the adjacent R-samples. This can be con-
ducted with several tests if the object ids are the same, if the
directions of normal vectors are similar, and if the shadow bits
are the same. This test consists of two sub-steps for the X- and
the Y-direction.

• Operations for I-samples are carried out. If the current I-
sample passes the similarity check, the color can be calcu-
lated by linear interpolation of the neighboring R-samples.
Otherwise, the normal ray-tracing for the current I-sample is
conducted. For the secondarys, the above procedures can be
applied with the same manner.

We extend this algorithm and efficiently map it onto the ray-tracing
GPU. As a target GPU, we utilize SGRT [Lee et al. 2012; Lee
et al. 2013], which consists of two components: dedicated hardware
called the T&I unit and a programmable shader called SRP [Lee
et al. 2011]. The T&I unit accelerates the traversal and intersection,
which is the dominant operation in ray tracing. The other oper-
ations are implemented by software and can be executed in SRP.
The communication between these two components is efficiently
performed via a direct interface [Shin et al. 2013] without any ex-
ternal memory overhead. Figure 2 shows the overview of ray trac-

ing based on adaptive ray sampling on SGRT. For a simple expla-
nation, the procedures for secondary rays are omitted. Additional
kernels for adaptive ray sampling, such as the similarity check, in-
terpolation, and color update, are easily implemented by the SRPs
full programmability. Conversely, the architecture using fully ded-
icated hardware [Nah et al. 2014] has to add additional logic to
support these new features due to lack of flexibility, eventually in-
creasing area costs. In addition, unlike the previous works [Jin et al.
2009; Kim et al. 2016], we adopt the tile-based approach to avoid
expensive memory operations. In other words, we conducted ray
tracing on a per tile (a subdivided area of the screen) basis, which
can localize the buffer-storing geometry data, called the tile-buffer,
into the internal memory in the SRP. Thus, the access to the external
memory can be minimized during the rendering time.

The operational flow of our implementation is as follows. The rays
for R-samples generated from the kernel in the SRP are transmitted
to the T&I unit through the direct interface. The T&I unit per-
forms the traversal and intersection operation and sends hit points
back to the SRP. The shading kernel in the SRP is executed with
these hit points. Additionally, the shading kernel stores the geom-
etry and the color information for each hit point of the tile buffer
in the internal memory. For the I-samples, the similarity check ker-
nel is executed with the geometry data in the tile buffer and stores
the binary results, test pass or fail, in the tile buffer again. This
kernel produces two data streams based on the results of the sim-
ilarity test. The I-samples that have passed the similarity test are
fed into the interpolation kernel, and the I-sample that have failed
the test are fed into the ray-generation kernel to restart normal ray
tracing. Each kernel is implemented with the inspector-executor
model [Hwang et al. 2014] to reduce the side-effects of branch di-
vergence and maximize the efficiency of stream processing. If the
color computation for the current tile is finished, the color data in
the tile buffer are flushed into the external frame buffer by the DMA
(Direct Memory Access) function. In the supersampling mode, the
color update includes more steps to average the sample colors into a
pixel color; thus, this mode allocates more memory with proportion
to the sampling rate compared with the undersampling mode.

In addition, we extend the baseline algorithm to a more aggressive
multi-rate sampling method by utilizing the tile-based approach and
frame-to-frame coherence. Figure 4 is the visualization of the sim-
ilarity check for the six frames extracted from the animation se-
quence of the Provence scene (yellow: similar, blue: dissimilar).
the similarity ratio can be variant across the tiles in the same frame
and across the frame for the same tiles. Thus, the tiles with a rel-



Figure 6: Test scenes. Teapot (15K triangles), Chess (42K), BMW (55K), Chemical Lab.(98K), and Provence (600K).

atively high similarity ratio can use the lower sampling ratio in the
similarity check step (e.g. one R-sample per 2×2 block→ one R-
sample per 4×4 block), which can reduce the additional computing
cost without significantly damaging the image quality. This can en-
able the multi-rate sampling to apply different sampling rates to the
tiles according to the similarity ratio. The per-tile similarity ratio
can be referenced from the previous frame, and this value is com-
pared with the predefined thresholds. Based on this result, we can
dynamically control the sampling rates on a per-tile basis, as shown
in Figure 5. Alternately, we can switch the threshold values in order
to avoid temporal aliasing caused by discretization jump when the
sampling rates are changed. Finally, our adaptive ray sampling with
multi-rate feature can significantly improve the performance-power
efficiency by reducing the number of rays to be traced.

4 Experimental Results

To verify and evaluate how our framework can reduce the comput-
ing cost of the T&I unit, we utilized the cycle accurate simulator
of the SGRT integrated with the energy model. This simulator pro-
vides rendered images, total execution cycles, hardware utilization,
cache statistics, and expected performance. We used the energy
and power model of [Lee et al. 2015b] which utilized a custom
model based on the database built with the power values per compo-
nent from Synopsys PrimTime PX [SYNOPSYS 2016] with SAM-
SUNG 14nm LPP process technology [Samsung 2016]. Cycle ac-
curate simulator produced the activation counters for each hardware
blocks and the aggregated power value can be obtained from this
energy and power model. The hardware configuration of the T&I is
the same as the T&I unit 2.0 [Lee et al. 2014]. As the test scenes, we
used five datasets (Figure 6), Teapot (15K triangles), Chess (42K),
BMW (55K), Chemical Lab.(98K), and Provence (600K). These
scenes have enough secondary rays including shadows, refractions,
and reflections. Test scenes were all rendered at 2048×1024 res-
olution. To make a comparion of the performance and quality, we
choosed two reference conditions:

• FSAA (Full Scene AntiAliasing) 2×2: four rays are shot to
each pixel of the target resolution.

• Standard 1×1: one ray is shot to each pixel of the target reso-
lution.

These two references are compared with adaptive supersampling
and adaptive undersampling mode, respectively.

Figure 7 shows the relative performance, power consumption, and
their ratio (performance per Watt), which are measured for T&I
unit applied by two adaptive ray-sampling approaches. Overall, the

Table 1: PSNR of the rendered scenes by adaptive ray sampling

Sampling mode Teapot Chess BMW
Chemical

Lab.
Provence Average

Adaptive
supersampling

48.99 28.53 34.11 36.28 30.50 35.68

Adaptive
undersampling

42.13 34.73 41.68 42.60 37.71 39.77

adaptive methods outperforms the reference methods up to 3× be-
cause the ray tracing for the similar I-samples can be replaced with
interpolation operation in the SRP and the corresponding rays are
not transmitted to the T&I unit. The performance improvements are
proportional to the number of rays cut because the access to the ex-
ternal memory was minimized by tile-based rendering. In terms of
power consumptions, the adaptive methods consumed slightly more
powers ( 9%), this is because of the faster rendering speed and the
higher pipeline utilization (but, the trends can be reversed if this
values are translated into energy). As a result, the adaptive methods
are advantageous as it achieves up to 2.98 times better efficiency in
terms of performance per Watt. There are variants among the test
scenes. The scenes with a higher similarity and lower frequency
(Teapot, BMW) exhibit the better gains (2.43−2.98×). Even in the
case of the scenes with a relatively higher frequency (Chess, Chem-
ical Lab., Provence), they exhibit at least 1.53× gains. Lastly, we
have to consider the overheads for additional kernels in the SRP. In
our profiling results, the decomposition of the execution cycles in
the SRP, we found that the overhead was 11% (5% for similarity
check and 6% for interpolation) and it cannot hinder the execution
of the T&I unit.

To evaluate the image quality, we computed the PSNR values to the
references for each test scene (Table 1). In average, we obtained the
values of 35.68 and 39.77 dB which are visually tolerable levels as
shown in Figure 1. We believe that the image quality can be better
if we will add more test conditions for similarity check in image
space (e.g. texture and color difference) and apply post-correction
method [Kim et al. 2016] to adjust the errors.

5 Conclusion and Future Works

In this paper, we presented an adaptive multi-rate ray sampling al-
gorithm targeting mobile ray-tracing GPUs. We efficiently com-
bined two existing algorithms into a single framework and extended
it to a new multi-rate sampling scheme by utilizing tile-based ren-
dering and frame-to-frame coherency. Our adaptive ray sampling



Figure 7: Relative performance, power consumption, and the ratio
of performance per Watt (to reference), for the execution of T&I
unit applied by two adaptive sampling approaches.

could achieve up to 2.98 times better efficiency in terms of perfor-
mance per Watt by reducing the number of rays to be fed into the
dedicated hardware and minimizing the memory operations.

In our current framework, the multi-rate sampling has not yet been
applied. In near future, we will add this feature for further perfor-
mance improvements and equip the more accurate similarity tests
and post-correction filter to make the better quality by covering the
corner cases like thin objects [Kim et al. 2016].
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