
Volume 18, (1999) number 1 pp. 3-15

Wavelet-Based 3D Compression Scheme
for Interactive Visualization
of Very Large Volume Data

Insung Ihm and Sanghun Park

Department of Computer Science
Sogang University

Seoul, Korea
{ihm,hun}@graphlab.sogang.ac.kr

Abstract
Interactive visualization of very large volume data has been recognized as a task requiring great effort
in a variety of science and engineering fields. In particular, such data usually places considerable
demands on run-time memory space. In this paper, we present an effective 3D compression scheme
for interactive visualization of very large volume data, that exploits the power of wavelet theory. In
designing our method, we have compromised between two important factors: high compression ratio
and fast run-time random access ability. Our experimental results on the Visual Human data sets
show that our method achieves fairly good compression ratios. In addition, it minimizes the overhead
caused during run-time reconstruction of voxel values. This 3D compression scheme will be useful in
developing many interactive visualization systems for huge volume data, especially when they are based
on personal computers or workstations with limited memory.

Keywords: very large volume data, wavelets, 3D compression, fast random access, Visible Human
data, interactive visualization

1. Introduction

Volume visualization is one of the most actively re-
searched topics of scientific visualization 1. It deals
with scalar and vector data, called volume data, de-
fined on three- (or higher-) dimensional grids. In vari-
ous fields such as computational fluid dynamics, earth,
space and environmental science, and medical science,
volume data are often so huge, ranging from several
hundred megabytes to several dozen gigabytes, that
they need special treatment for effective manipula-
tion 2, 3, 4.

A few years ago, the National Library of Medici-
ne (NLM) created computed tomography (CT), mag-
netic resonance imaging (MRI), and color cryosection
images of male and female human cadavers in an ef-
fort to provide a complete digital atlas of the human
body 5. The “Visible Man” data set consists of axial

scans of the entire body taken at 1 mm intervals at
a resolution of 512 pixels by 512 pixels, where the
whole data set has over 1870 cross-sections (frozen
CT: 1877 slices, fresh CT: 1882 slices). The “Visible
Woman” data set consists of cross-sectional images
taken at one-third the interval of the male. The data
sets amount to 15 Gbytes and 40 Gbytes, respectively.

Visualizing such very large volume data needs dif-
ferent approaches to those used in previous work. Most
volume rendering techniques, for example, assume, im-
plicitly or explicitly, that the whole volume data is
loaded in the main memory during rendering. In spite
of the rapid fall of memory costs, it is still not com-
mon to equip a general purpose workstation or per-
sonal computer with, say, several giga bytes of main
memory. Compression of huge volume data is a natu-
ral solution to this problem. Our motivation for this
research was to develop a 3D compression method that

c© The Eurographics Association 1999. Published by Blackwell

Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 238 Main

Street, Cambridge, MA 02142, USA.

enables users to load a whole compressed Visible Hu-
man data set into a main memory of moderate sizes,
say 64 to 128 mega bytes, and to visualize them inter-
actively as if the original data were in the memory.

One of the most important requirements in develop-
ing such a compression method is that it must allow
quick random access to an individual voxel of com-
pressed data. The general concern of most lossy com-
pression techniques is to achieve the best compression
rate with minimal distortion in the reconstructed im-
ages, and compression techniques often impose some
constraints on random access ability 6, 7. For instance,
when data are compressed by variable-bitrate or differ-
ential encoding schemes, such as the Huffman or arith-
metic coders used in the JPEG (Joint Photographic
Experts Group) or MPEG (Moving Pictures Experts
Group), or the adaptive differential pulse code mod-
ulation coder, it is hard to decode efficiently individ-
ual data items that are accessed in a random fashion.
When volume data are handled for interactive visual-
ization, the access patterns change in somewhat com-
plicated ways. Hence, those compression schemes are
not suitable for our purpose.

In 8, a compression scheme based on vector quan-
tization was proposed. Vectors in this method con-
sist of the density values and the precomputed nor-
mal fields of voxels in the partitioning subblocks. They
were quantized into a codebook and each subblock was
represented by an appropriate index. Ray casting with
parallel projection was accelerated by shading only the
vectors in the codebook, and composing the partial
images in the correct order. Since voxel decoding is
just a simple access of the codebook, it provides fast
random access to voxel values. In this study, a com-
pression ratio of five, rather moderate, for 1283 vol-
ume data with some blockiness and contouring in the
rendered image was reported. The Laplacian pyramid
technique for 2D images was extended to volume data
in 9. They constructed a simple hierarchical structure,
called the Laplacian pyramid, using a Gaussian low-
pass filter, and encoding it by uniform quantization.
Voxel values are reconstructed on the fly by travers-
ing the pyramid from bottom to top. To reduce the
huge reconstruction overhead, they suggest a cache
data structure.

In 10, experimental results, comparing several 2D
lossy compression techniques, were described, where
the method based on wavelet transform was reported
to be best. The wavelet-based method that they ap-
plied to each 2D slice was a typical transform coder
that had three basic components: a wavelet transform,
a vector quantization, and a Huffman or run-length en-
coder. Their method focused on efficient storage and
transmission, rather than on run-time manipulation,

and failed to exploit the considerable degree of redun-
dancy that exists between adjacent 2D slices. The idea
of using a three-dimensional wavelet to approximate
three-dimensional volume data sets was introduced in
11, 12. The 2D wavelet transform was extended to three
dimensions, and was also applied to delete insignifi-
cant wavelet coefficients. While he presented the po-
tential of 3D wavelet transforms for volume visualiza-
tion, the author did not mention whether the encoding
technique actually reduced storage space. In 13, a 3D
subband transformation on image sequences is per-
formed, then the transformed information is encoded
using the zero-tree coding technique, which was orig-
inally introduced in 14, and was improved in 15.

In this article, we introduce a new compression
scheme that can be used effectively in manipulating
and visualizing very large volume data. Our compres-
sion scheme was designed in the hope that users on
a computer with a limited memory could feel as if
they have loaded the whole huge volume data into a
large memory. Most of the previously developed com-
pression techniques trade off random access ability for
higher compression ratios. In designing our method,
we have compromised between these two important
goals so that the method achieves fairly good compres-
sion ratios as well as minimizing the overhead caused
during random access to voxel values. The method
is based on the 3D wavelet transform, and hence pro-
vides a multi-resolution representation of volume data.

The rest of the paper is organized as follows: In
Section 2, we begin by introducing the basic theory
of wavelet transforms, and wavelet-based compression.
In Section 3, we provide a detailed description of our
compression scheme for very large volume data. Ex-
perimental results on the Visible Human data set, are
reported in Section 4. Finally, we present conclusions
and directions for further research in Section 5.

2. Preliminaries

Wavelets are a mathematical tool for representing
functions hierarchically, and have recently had a great
impact in several areas of computer graphics (For an
introduction and discussion of applications, refer to
16, 17, 18, 19, and 20.). They provide a toolkit for de-
composing functions in multi-resolution form, which
can be very usefully applied to a variety of functional
data found in computer graphics applications, such as
images, geometric models, global illumination models,
animation and volume data.

The simplest example of wavelets is the Haar
wavelet. Consider a sequence Xn = {xn,i, 0 ≤ i < 2n}
of samples of a function, where the size of Xn is as-
sumed to be a power of two, for convenience. When

c© The Eurographics Association 1999

I. Ihm et al. / Wavelet-Based 3D Compression Scheme 5

each adjacent pair of samples is averaged, a new se-
quence Xn−1 = {xn−1,i, 0 ≤ i < 2n−1} is obtained,

where xn−1,i =
xn,2i+xn,2i+1

2
. This new sequence,

which is half the original size, can be regarded as an-
other representation of Xn with a coarser resolution.
Since some information has been lost in this down-
sampling, we need to keep extra information that
is necessary for going back to the original sequence,
and that can be expressed in the sequence Y n−1 =
{yn−1,i, 0 ≤ i < 2n−1}, where yn−1,i =

xn,2i−xn,2i+1
2

.
The process of decomposing 2n samples into 2n−1 av-
erages and 2n−1 differences, called the detail coeffi-
cients, is considered as applying 2-channel subband
filters, the smoothing, or scaling filter, and the de-
tail, or wavelet filter, respectively. It is easily seen
that the original samples can be reconstructed by re-
versing the operations: xn,2i = xn−1,i + yn−1,i, and
xn,2i+1 = xn−1,i − yn−1,i.

We can apply the same decomposition to the coarser
samples Xn−1 repeatedly, until we get X0 = {x0,0}
with one sample. As a result of this wavelet transform,
or wavelet decomposition, we obtain a new sequence
of 2n numbers, made of the overall average x0,0 and a
sequence of the detail coefficients, Y 0, Y 1, · · · , Y n−1.
The original data can be reconstructed to any res-
olution by repeatedly adding and subtracting the de-
tail coefficients from the lower-resolution versions. The
new sequence of data is, hence, a multi-resolution rep-
resentation of the original samples.

The Haar wavelet is simple and computationally
cheap because it can be implemented by a few ad-
ditions, subtractions, and shift operations. Hence it
is very effective in applications that require fast de-
composition and reconstruction. However, it does not
perform as well in terms of quality as other popular
wavelets, such as Daubechies’ wavelets.

Note that the detail coefficients are sample-to-
sample differences. Hence, they tend to be small in
magnitude, especially when the sampled data are
from smooth signals. Since recursive application of
the smoothing filter makes the samples smoother, a
large fraction of the detail coefficients will often be
very small in magnitude. The basic idea of wavelet
compression is that deleting these small coefficients,
that is, replacing them by zeros, introduces only small
errors in reconstructing the original samples. It is
straightforward to prove that when the wavelet ba-
sis is orthonormal, the best way to pick some number
of wavelet coefficients and make the resulting error as
small as possible, measured in the L2 norm, is simply
to select the coefficients with the largest absolute val-
ues. By replacing the deleted coefficients by zeros, the
original information can be approximated by a smaller
set of samples.

LLH
 1

HLH
 1

HLL
 1

LHL
 1

LHH
 1

HHL
 1

LLH 2

HLH 2
HLL 2

HHL 2

LHL 2LHH 2

LLL 2

16

16

16

a unit block a decomposed unit block

Figure 1: Unit Block and Decomposed Unit Block

3. A New Compression Scheme

3.1. 3D Wavelet Transforms

The one-dimensional wavelet transforms discussed in
the previous section can be extended naturally into a
three-dimensional space. Muraki 11, 12 presented the
idea of using a three-dimensional wavelet to approxi-
mate three-dimensional volume data sets. In his work,
he built a 3D orthonormal wavelet basis using all pos-
sible tensor products of one-dimensional basis func-
tions. The wavelet transform was applied to volume
data to compute wavelet coefficients. The insignifi-
cant coefficients were removed, then an approxima-
tion of the original data was reconstructed using only
the remaining coefficients. This procedure is typical in
wavelet compression. However, he did not mention by
how much storage space was reduced.

Notice that there are two problems to be addressed:
one is how to reduce the number of coefficients needed
to approximate volume data, and the other is how
to encode and store the necessary information in a
smaller number of bits. In our framework, we first par-
tition a given 3D volumetric data set into subblocks,
called unit blocks, whose size is 16× 16× 16. For each
unit block, a three-dimensional wavelet transform is
repeatedly applied twice. We use a simple transform
based on the Haar wavelets whose eight-band filter
bank can be expressed as:

clll = (c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8)/8

cllh = (c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8)/8

clhl = (c1 + c2 − c3 − c4 + c5 + c6 − c7 − c8)/8

clhh = (c1 + c2 − c3 − c4 − c5 − c6 + c7 + c8)/8

chll = (c1 − c2 + c3 − c4 + c5 − c6 + c7 − c8)/8

chlh = (c1 − c2 + c3 − c4 − c5 + c6 − c7 + c8)/8

chhl = (c1 − c2 − c3 + c4 + c5 − c6 − c7 + c8)/8

chhh = (c1 − c2 − c3 + c4 − c5 + c6 + c7 − c8)/8,

where ci, 1 ≤ i ≤ 8, on the right side are eight coef-
ficients in each 2 × 2 × 2 subregion of a unit block,
clll represents their average, and the remaining coef-
ficients on the left side are the detail values corre-

c© The Eurographics Association 1999

sponding to the filtering sequences (for example, chlh

is obtained by applying the high-pass filter, the low-
pass filter, then the high-pass filter.) This decompo-
sition transform arises from the separable application
of filters in three dimensions. Two applications of the
3D wavelet transforms are enough, considering that a
smaller number of transforms results in faster recon-
struction, and that most of the data 63

64
(= 1 − 1

82)
is already decomposed into wavelet coefficients. The
decomposition process converts each unit block into
a decomposed version that can be stored in an array
with the same number of elements, using a proper or-
dering of the coefficients (See Figure 1.).

The information in a unit block can be expressed
as a weighted sum of wavelet basis functions whose
weights are stored in its decomposed unit block. The
theory behind wavelet compression, as mentioned,
shows that the best way to pick some number of
wavelet coefficients, making the resulting error, mea-
sured in the L2 norm, as small as possible, is simply to
select the coefficients with the largest absolute values.
In other words, we keep only the coefficients greater
than some appropriate threshold value, and replace
the remaining coefficients by zeros. Then the original
information can be approximated by a smaller number
of non-zero wavelet coefficients.

3.2. Encoding Wavelets Coefficients

Now, we describe how we solve the second problem,
that of encoding and storing the necessary information
in a smaller number of bits. A typical wavelet compres-
sion algorithm has three basic components: transform,
quantization, and encoding. The transform stage sepa-
rates the input data into different bands of frequencies
using wavelet filters. The wavelet coefficients are then
quantized to restrict the values of the coefficients to
a limited number of possibilities. Note that usually
all of the information loss occurs in this stage. Then
the encoding stage takes the string of symbols coming
from the quantizer, and attempts to represent the data
stream as efficiently as possible without loss. Popular
variable length coders, such as Huffman or arithmetic
coders, work well. However, such techniques are not
appropriate for the situation where an individual data
item must be quickly reconstructed in an arbitrary
sequence.

In addition to the quantized wavelet coefficients, in-
formation about the positions of the significant coef-
ficients that have survived the truncation of insignif-
icant coefficients, must be encoded. In Shapiro 14, it
is shown that determining the positions of the few re-
tained coefficients consumes a significant portion of
the bit budget at low rates, and is likely to become
an increasing fraction of the total cost as the rate de-

offset :

0

0

0
1

0
0

1 1
0 0

0 0

1 0

0
0

1 1
0101

0
0

0
0
0

01

0 1

0
0

0

01
0

0 0
0

0
10

0
0

0

10

0

0
0

0
0
0

00
0
0

1

0 0 01

35 14 51

41

24

53

1
0

0

0
1

0
0

1 1
0 0

1 0

1 0

0
0

1 1
0010

0
1

0
1
0

0

0

0 0

0
0

1

00
0

0 0
0

0
00

0
0

0

00

0

1
0

0
0
0

00
0
0

0

0 0 10

1

0

1

0
1

0
0

0 0
0 1

1 0

1 1

0
0

0 0
00

0
0

0
0

0
1
0

10

0 0

0
1

0

10
0

1 0
0

0
00

0
0

0

00

0

0
0

0
1
0

00
0
1

0

0 1 00

1

significance map significance map significance map

a decomposed unit block

cell information

offset :offset :

one-byte stream

two-byte stream

threshold 63

7 8 9
cell tag table

0
1

16
17
18
19

62
63

20

0001000
0001001

0001010

1
0

1
00000000
00000000

123
46

7

8

12
10

0
0

0

5

9
0

0
0

0

0

0

00

0

0

0

0

13

0 0

0

0 0 0

00
0

0
16

16

16

Figure 2: Wavelets Encoding Scheme

creases. Run-length encoding is very attractive, con-
sidering the fact that most of the coefficients are usu-
ally zeros, although the technique is not well suited to
random access of individual data items. Another tech-
nique, called zerotree encoding 14, greatly improves
the performance of a wavelet encoder, but is much
slower.

When an encoding scheme is designed, we take into
consideration the tradeoff between compression rate,
speed, and quality. To design an encoding technique
appropriate for our goal, we have compromised be-
tween a good compression ratio and fast random ac-
cess. As emphasized before, when compressed volume
data are loaded in the main memory for processing,
it is important to be able to quickly reconstruct the
value of an individual element, and the access patterns
change in somewhat complicated ways.

Figure 2 illustrates how the surviving wavelet coef-
ficients and positional information are encoded. (We
explain our scheme in terms of the format of the Vis-
ible Human data sets. The basic idea can be applied
easily to other formats.) Consider a decomposed unit
block of size 16× 16× 16, which is a level-two multi-
resolution representation of the corresponding original
unit block. Note that a large portion (say, more than
90%) of coefficients, less than a threshold τ , have al-

c© The Eurographics Association 1999

I. Ihm et al. / Wavelet-Based 3D Compression Scheme 7

ready been replaced by zeros. Considering the usual
spatial coherence in the data, it is quite possible that
the zero coefficients exist in thick clusters. We sub-
divide the decomposed unit block into 43 (= 64) sub-
blocks, called cells, where each cell represents a 4×4×4
subregion.

The cells in the decomposed unit block are enumer-
ated one-by-one in front-to-back, top-to-bottom, and
left-to-right order, tagging with zero the cells whose
coefficients are all zero, and with positive integers in
increasing order, the cells that contain at least one
non-zero coefficient. When each tag is represented in
1 byte, 64 bytes of storage is necessary for the cell tag
table.

During decomposition, we use enough precision, say
four bytes per voxel, to calculate the average and
detail coefficients without round-off errors. Since the
original voxel values, stored in 12 bits, range from 0
to 212 − 1, the averages fall between 0 and 212 − 1,

and the details between − 212−1
2

and 212−1
2

. The cells
with a non-zero tag, that is, having at least one non-
zero coefficient, are classified into two groups: the first
group contains the cells all of whose coefficients are in
the intervals [−(τ + 128),−τ] or [τ, τ + 127], and the
second one contains the remaining cells. We quantize,
offset by τ , each non-zero coefficient of the cells in the
first group in a signed character (one byte), rounding
the fractional part. Note that the maximum round-off
error is 0.5. We then represent each non-zero coeffi-
cient of the cells in the second group in a signed short
integer (two bytes). Since the integral part of the coef-
ficient can be stored in 12 bits, we use the remaining 4
bits for the fractional part, again rounding the less sig-
nificant portion. In this case, the maximum round-off
error is 1

25 . The information on which group a cell is
included in can be encoded in the most significant bit
of its tag. (Notice that this bit is free because positive
integers less than or equal to 64 can be represented in
the remaining bits.)

These two groups of non-zero coefficients are put
in two arrays, called one-byte stream and two-byte
stream, respectively. To store the coefficients, the 64
coefficients in a cell with a non-zero tag are enumer-
ated, putting only the non-zero coefficients in the cor-
responding stream. For retrieval, the positions of non-
zero coefficients in the corresponding stream must be
encoded. We allocate an additional chunk of memory,
called cell information, for each cell that consists of
a 4 × 4 × 4 one-bit flag block and offset information.
This block of one-bit flags requires 8 bytes and con-
tains a significance map, or the binary information as
to which of the coefficients in the cell are non-zero. The
offset information offset, stored in two bytes, contains

d , i = 1, 2, ..., 70
i

c0

d , i = 1, 2, ..., 71

2i d , i = 1, 2, ..., 71

8i
d , i = 1, 2, ..., 71

1i

Level 0

Level 1

64 voxel values

Figure 3: Octree Representation for a 4× 4× 4 Sub-
region

the address, in the corresponding stream, of the first
non-zero coefficients of a cell in the ordering.

Figure 2 illustrates an example of this encoding.
Consider the cell numbered 9. It is the 17th one
(counting from zero) in the cell ordering. From the
tag 00001001 for this cell, we see that its cell infor-
mation is in the 8th block (counting from zero). In
addition, the most significant bit 0 tells that the co-
efficients are found in the two-byte stream. (In our
implementation, 0 means the two-byte stream and 1
means the one-byte stream.) Assume that we are re-
trieving the coefficient in boldface. There are 10 flags
set on before the coefficient, meaning that it is the 11th
non-zero coefficient in the cell. Hence the address in
the two-byte stream can be obtained by adding 10 to
the offset: 10 + 14 = 24.

3.3. Reconstructing Voxel Values

The process of extracting a voxel value from wavelet-
compressed data consists of two stages of computa-
tion: all the wavelet coefficients necessary for recon-
struction are first retrieved from encoded unit blocks,
then, the reconstruction formula is applied to the co-
efficients. Since the wavelet transforms are applied
twice for decomposition, each 4 × 4 × 4 subregion
of a unit block can be considered as represented by
an octree in Figure 3. The average coefficient c0 of
the root node is the average of all the voxel val-
ues in the subregion, and the seven detail coefficients
d0

i (i = 1, 2, · · · , 7) provide the necessary information
that can, with the average, reconstruct the averages
of the eight 2 × 2 × 2 subregions, represented by the
nodes on level 1. In turn, each set of the seven detail
coefficients d1

ji (j = 1, 2, · · · , 8, i = 1, 2, · · · , 7) of the
level 1 nodes are used to reconstruct the eight voxel
values of the corresponding subregion. To extract the
value of a specific voxel, it is necessary to traverse the

c© The Eurographics Association 1999

Input: a 16× 16× 16 encoded unit block and
an index (i, j, k)

Output: the decoded value of the
coefficient with index (i, j, k)

1. Find the cell C that contains the index (i, j, k).
2. If the tag for C is 0, return 0. [case 1]
3. Compute the relative index (i′, j′, k′) in C.
4. If the bit-flag for (i′, j′, k′) is 0, return 0. [case 2]
5. Count the number of preceding non-zero coefficients
by table access.
6. Add the displacement to the offset to compute the
correct address.
7. Access the appropriate data stream, and return the
value. [case 3]

Figure 4: Wavelets Decoding Algorithm

octree from the root down to the corresponding leaf,
applying the reconstruction transforms twice.

The reconstruction process is the reverse of decom-
position. For the Haar wavelets we use, the reconstruc-
tion formulae are:
ĉ1 = clll + cllh + clhl + clhh + chll + chlh + chhl + chhh

ĉ2 = clll + cllh + clhl + clhh − chll − chlh − chhl − chhh

ĉ3 = clll + cllh − clhl − clhh + chll + chlh − chhl − chhh

ĉ4 = clll + cllh − clhl − clhh − chll − chlh + chhl + chhh

ĉ5 = clll − cllh + clhl − clhh + chll − chlh + chhl − chhh

ĉ6 = clll − cllh + clhl − clhh − chll + chlh − chhl + chhh

ĉ7 = clll − cllh − clhl + clhh + chll − chlh − chhl + chhh

ĉ8 = clll − cllh − clhl + clhh − chll + chlh + chhl − chhh

The algorithm in Figure 4 describes how a wavelet
coefficient is retrieved from a 16 × 16 × 16 encoded
unit block. To decode a coefficient with index (i, j, k),
we access the cell tag table for the tag of the cell that
contains the coefficient. If it is zero, the coefficient is
simply null ([case 1]). Otherwise, we look at its cell
information for further processing. Let (i′, j′, k′) be
the relative index of the coefficient (i, j, k) in the cell.
If the bit-flag for the index (i′, j′, k′) is 0, then the
coefficient is zero ([case 2]). If not, the coefficient is
non-zero, and it is in the data stream indicated by
the most significant bit of the tag ([case 3]). To access
the coefficient value, we need to compute its address
in the data stream. It can be computed by adding its
displacement value to the offset value. The displace-
ment is the number of the non-zero coefficients with
flag 1 that precede it in the enumeration. To count the
number efficiently, we use a precomputed indexing ta-
ble T(∗) with 216 = 65536 entries. Given a word made
of two bytes, corresponding to 16 bit flags, the table
returns the number of 1 bits in the word. Hence, the
correct number can be counted by accessing the ta-

ble only a few times (Note that the correct number of
zeros must be padded in the word, from the position
(i′, j′, k′) in the last access).

3.4. Analysis of Performance

We now analyze the costs that must be paid to access
a voxel value in a compressed unit block. To recon-
struct the value, an octree is traversed, applying the
proper reconstruction formulae twice. Since seven ad-
dition/subtraction operations need to be carried out
per formula, evaluation of 14 additions/subtractions
are necessary. Furthermore, 15 wavelet coefficients (8
on level 0, and 7 on level 1) must be decoded from
the encoded unit block. When a wavelet coefficient is
decoded, there are three cases (See the decoding al-
gorithm again.). When the tag for the subblock that
contains the coefficient is zero, or its one-bit flag is 0,
that is, when the coefficient is zero ([case 1] and [case
2]), the cost is trivial. When its flag is 1, indicating
that the coefficient is non-zero ([case 3]), a few table
accesses, 2.5 on the average, and a few additions are
necessary to compute the correct address in the proper
stream. In our implementation, we usually have a pro-
portion of non-zero coefficients after wavelet compres-
sion of 3 to 10 per cent, implying 90 to 97 per cent of
decoding belongs in ([case 1] and [case 2]). From this
analysis, we see that retrieving a wavelet coefficient in
an encoded unit block involves little cost.

In many applications, voxel access patterns show
some degree of locality. (Recall how voxels of volume
data are visited in the ray casting or splatting algo-
rithms.) To enhance efficiency, each 4×4×4 subregion
of a unit block can be regarded as a reconstruction
unit. In this case, the whole octree is traversed for
64 voxel values, evaluating the 8 reconstruction for-
mulae 9 times. Although there appears to be 56 (=
7 · 8) addition/subtraction operations in each applica-
tion of the 8 formulae, a simple optimization technique
for removing redundant computations shows that 24
operations are enough. Since the number of necessary
additions/subtractions is 9 · 24, 3 3

8
(= 9·24

64
) opera-

tions must be evaluated on average per voxel. Also,
since each wavelet coefficient in the 4 × 4 × 4 subre-
gion is decoded once, the average number of necessary
decoding operations is one per voxel. Hence, the costs
for retrieving a voxel value are one decoding operation
and 3 3

8
additions/subtractions. Some other operations

such as bit-wise operations and address computations
must be carried out, but the total cost is quite cheap
considering the benefits we get from data compression.

Before turning to the next section, we report a quan-
titative analysis of the compression ratios. Each unit
block of size 16× 16× 16 takes 16× 16× 16× 2 bytes
before compression. To store the threshold value and

c© The Eurographics Association 1999

I. Ihm et al. / Wavelet-Based 3D Compression Scheme 9

the tag table, 2+64 bytes of memory is necessary (See
Figure 2 again.). For each cell that contains at least
one non-zero coefficient, auxiliary memory is allocated
where 8 bytes (4 ·4 ·4 bits) are used for the significance
map, and 2 bytes for the offset.

Let α be the proportion of cells with non-zero tags
that contain at least one non-zero coefficient, that is,
of non-null cells

64
, then (8+2)·64·α bytes are required

to store the cell information.

The non-zero coefficients used after wavelet com-
pression are partitioned into the one-byte stream
and the two-byte stream. Let β be the ratio of the
number of coefficients in the one-byte stream to the
total number of non-zero coefficients used, that is,
of coefficients in one-byte stream
of all non-zero coefficients used . Furthermore, as-

sume that the rate of non-zero wavelet coefficients we
use for compression is γ. Then the compression rate ρ
is:

1

ρ
= {2 + 64 + (8 + 2) · 64 · α +

16 · 16 · 16 · γ · (β + 2(1− β)}/(16 · 16 · 16 · 2)

=
33

4096
+

5 · α
64

+ γ · (1− β

2
)

≈ 0.008057 + 0.078125 · α + γ · (1− 0.5 · β)

Notice that the first and the second terms in 1
ρ

are the costs that must be paid to store the neces-
sary cell tag table, threshold, and cell information. In
our scheme, this information allows low-cost random
access. It could be further compressed using the en-
coding techniques such as the zerotree, but that only
places constraints on random access to the compressed
data.

4. Experiments

Our new compression scheme has been implemented
on an SGI Octane workstation with a 175Mhz R10000
CPU. We have generated a test volume data set from
the original fresh CT data of the Visible Man. The
pixel size and slice spacing of the CT data vary along
the vertical axis, where the slices are grouped into
nine sections. In case of the fresh CT data, some por-
tion of slices in the Legs section (slice number 2264
to 2687) are missing. For a performance test, we took
the existing slices from the fresh CT, and rebuilt a
512× 512× 1440 volume data set. Two bytes are used
for each voxel, in which 12 bits are actually used, and
the whole data set takes up 720 Mbytes.

4.1. Compression Quality

Statistics for the compression of the test volume data
are summarized in the table of Figure 5. As explained

in Section 3, a proper threshold value τ needs to be
specified to truncate smaller wavelet coefficients. In
our framework, we specify, instead, a desired ratio γ̄
of nonzero wavelet coefficients to be used, then cor-
responding threshold values are automatically com-
puted. The ideal way to compute τ for given γ̄ is to
sort first all the wavelet coefficients, and then find the
(γ̄ · the total number of voxels)-th largest coefficient.
This is not practical when, as in our case, the volume
data set is very large.

Recall that we use 16 × 16 × 16 subblocks as unit
blocks. When the resolution of the volume data set
is 512 × 512 × 1440, the data consist of 92,160 (=
32 · 32 · 90) unit blocks. We first apply wavelet trans-
forms to each unit block i, and compute the ratio
ri of nonzero wavelet coefficients to the whole num-
ber 4096 (= 163) of coefficients. This ratio is a good
approximate measure that indicates how rapidly the
voxel values change in the unit block. The total num-
ber of nonzero coefficients to be used for the whole
data is adaptively distributed to unit blocks according
to their complexity. It is reasonable that more nonzero
coefficients are assigned to unit blocks with higher ra-
tios.

When the data size is 512×512×1440, 5122 ·1440 · γ̄
nonzero coefficients are to be distributed to 92,160
unit blocks. For the unit block i, we allocate ni =

ri∑
j

rj
· 5122 · 1440 · γ̄ coefficients, where the weight

ri∑
j

rj
is the relative measure of data complexity.

Now, the ni-th largest wavelet coefficient becomes the
threshold value of the corresponding unit block, and
coefficients smaller than the threshold are replaced by
zeros. We find that this adaptive decision on thresh-
olds diminishes the “blockiness” effect that often oc-
curs when a single threshold value is applied to the
whole wavelet image. Notice that the actual ratio γ,
as shown in the table, is not always the same as the
desired ratio γ̄. This is because unit blocks often con-
tain more than one wavelet coefficient having the same
value as the threshold. α and β in the table show the
averages of the corresponding values, as explained in
Subsection 3.4, over the whole unit blocks.

We tested with the five desired ratios γ̄ =
0.03, 0.05, 0.07, 0.10, 0.15, and achieved the compres-
sion rates 8.4 to 27.4. Figures 7 shows sample slices
from the uncompressed data, and the three com-
pressed data sets with γ̄ = 0.03, 0.05, 0.07. We observe
that our compression technique reconstructs slices
very faithfully. Figures 8 and 9 illustrate ray-cast im-
ages for two classifications of bone and skin. When
the ratio is 0.10 or 0.15, it is hard to distinguish be-
tween the volume-rendered images from the uncom-
pressed and compressed volume data. When the ra-

c© The Eurographics Association 1999

tio is 0.03, the rendered image is visibly different,
but most features are still preserved. Figure 10 shows
volume-rendered images of the Visible Man, classified
with opaque bone and semitransparent skin.

To look at distortion or difference between the orig-
inal and reconstructed voxel values, we measured two
objective fidelity criteria. The mean-square signal-to-
noise ratio SNR (dB) is a measure of the size of the
error relative to the signal, and the mean-square peak-
signal-to-noise ratio PSNR (dB) measures the size of
the error relative to the peak value of the signal. We
also examined the fidelity of the reconstructed nor-
mal vectors. The normal vector plays an important
role in volume visualization, and is often approximated
at each voxel using the popular central-difference for-
mula. The normal vector is one of the most important
factors that determine the quality of volume-rendered
images. It is also used in correctly classifying materials
in volume data. We measured the average angular de-
viations from the actual normal for both classifications
of bone and skin. The statistics show our compression
technique produced very favorable compression per-
formances.

Note that there are larger errors in normal vectors
for the bone case. We speculate that the material sur-
rounding the body, that we could not eliminate by
classification, introduced additional errors. Consider-
ing the fact that the process of approximating differ-
entials using the central difference is ill-conditioned,
we think the experimental results are satisfactory.

4.2. Voxel Reconstruction Time

Due to the limited main memory, we took the 512
slices corresponding to the upper body for a perfor-
mance evaluation. The test data may not be consid-
ered very large enough. However, the basic unit in our
compression scheme is the 16 × 16 × 16 unit block.
Hence, experiments with larger volume data would
produce similar results.

Two situations were considered to evaluate over-
heads for reconstructing voxel values from compressed
volume data (See Figure 6.). First, the timings for
pure random access were taken by repeatedly fetching
voxel values with randomly generated indices (i, j, k).
To measure the reconstruction overheads, we first
accessed randomly selected voxels from the uncom-
pressed volume data in a simple 512×512×512 array
one million times. Then the same measurement was
taken for each compressed data. The “Pure Random”
timings show that fetching voxel values takes roughly
four times as long for the compressed data.

Frequently, voxels of volume data are accessed with

some regular pattern. For example, the splatting al-
gorithm traverses voxels slice by slice in front-to-back
order along the viewing direction. This kind of ac-
cess pattern can often be simulated by enumerating
the 4 × 4 × 4 cells and then traversing voxels within
cells both in front-to-back order. The indices of cells
in the volume data were repeatedly generated, and
all the 64 (= 43) voxels were accessed simultaneously.
Recall that our encoding scheme offers more efficient
reconstruction when the voxels are decoded cell by
cell. First, we compared the timing performance for
the case in which all the cells in the 512 × 512 × 512
volume data were reconstructed in the front-to-back
order. We also measured the timings for reconstruct-
ing only the cells in the unit blocks that contain at
least one voxel, classified as skin. To do this, a sim-
ple spatial partitioning data structure was used in
which the min-max pair for each 16 × 16 × 16 unit
block is stored. All the unit blocks were scanned in
the front-to-back order, reconstructing only the cells
in the unit blocks whose min-max intervals intersect
with that of the classification for skin. There were
11,000 unit blocks (163 · 11, 000 voxels) reconstructed
for this classification. We observe that it took about
1.6 times longer for the compressed data. The timings
in “Cell-Wise (Skin)” show that the performance dif-
ferences are about 3.4 to 6.3 seconds between the un-
compressed and compressed data. They are impercep-
tible in many CPU-intensive applications such as, for
example, volume rendering which usually takes more
than a hundred seconds.

5. Conclusions and Future Work

We have described an effective 3D compression scheme
for very large volume data that exploits the power of
wavelet theory. Our experimental results on the Vi-
sual Human data sets show that our scheme achieves
fairly good compression ratios and also provides fairly
fast random access to individual voxels. It can be very
useful in many applications where users want to load
the whole huge volume data into a main memory and
visualize the data interactively. We believe that our
compression method makes it more feasible to visual-
ize very large volume data on popular personal com-
puters or low-end workstations, making visualization
technology accessible to a much wider range of users.

Some topics deserve further investigation. The Haar
wavelet filter is computationally efficient, but it is in-
ferior, as a filter, to other popular wavelet filters used
in image compression. We are currently experiment-
ing with several orthogonal Daubechies’ wavelets. The
trade-offs of accuracy and efficiency between several
filters need to be analyzed. When our compression
scheme is implemented with various visualization al-

c© The Eurographics Association 1999

I. Ihm et al. / Wavelet-Based 3D Compression Scheme 11

γ̄ : Desired Ratio of the Wavelet Coef’s Used

3% 5% 7% 10% 15%

Compressed 26.31 38.27 48.98 63.69 85.99
Compression Data Size (MB)
Performance Compression 27.4 : 1 18.8 : 1 14.7 : 1 11.3 : 1 8.4 : 1

Ratio
α 0.1156 0.1901 0.2481 0.3165 0.4014
β 0.6559 0.7327 0.7771 0.8185 0.8600
γ 0.0293 0.0481 0.0667 0.0946 0.1407

Errors in SNR (dB) 22.64 25.94 28.57 31.99 36.37
Voxel Values PSNR (dB) 44.49 47.79 50.41 53.84 58.21
Errors in Skin (deg) 15.41 11.35 8.60 5.98 3.88
Normals Bone (deg) 24.65 18.98 15.00 10.76 6.68

Figure 5: Experimental Results on Compression Quality

Uncompressed γ̄ : Desired Ratio of the Wavelet Coef’s Used

3% 5% 7% 10% 15%

Pure Random 2.18 7.75 8.20 8.62 9.15 9.84

Cell-Wise
All 19.95 30.31 31.58 32.52 33.62 35.05

Skin 6.70 10.13 10.75 11.32 12.10 13.02

Figure 6: Experimental Results on Voxel Reconstruction Time

gorithms, it would be desirable to have an efficient
cache data structure which temporarily holds decoded
voxels. Considering the locality or coherency of voxel
access, it could save a great deal of redundant com-
putation. Finally, we are applying our compression
scheme to the development of an interactive virtual
navigation system for the human body. In our cur-
rent implementation, a user can interactively select a
proper view volume for an interesting region from the
three axial views, and render the region via volume ray
casting or splatting. We find out that the data recon-
struction time is imperceptible compared to the time
taken by volume rendering. This system, based on di-
rect volume rendering, will complement the polygon-
based navigation systems such as 21.

Acknowledgements

The authors wish to thank Mr. Gee-Bum Koo for his
efforts to prepare our experiments. This work was sup-
ported in part by grant from Korea Science and Engi-
neering Foundation (KOSEF: 981-0926-138-1).

References

1. A. Kaufman, ed., Volume Visualization. IEEE
Computer Society Press, (1991).

2. G. M. Nielson and B. Shriver, eds., Visualization
in Scientific Computing. IEEE Computer Society
Press, (1990).

3. L. Rosenblum et al., ed., Scientific Visualization:
Advances and Challenges. IEEE Computer Soci-
ety Press, (1994).

4. T. M. Rhyne, ed., Visualizing and examining
large scientific data sets: a focus on the physical
and natural sciences. ACM SIGGRAPH, (1994).
ACM SIGGRAPH ’94 Course Notes.

5. NLM, “http : //www.nlm.nih.gov/research/vi-
sible/visible human.html”, (1997).

6. R. C. Gonzalez and R. E. Woods, Digital Image
Processing. Addison-Wesley Pub. Comp., (1993).

7. K. Sayood, Introduction to Data Compression.
Morgan Kaufmann Publishers, (1996).

8. P. Ning and L. Hesselink, “Fast volume rendering
of compressed data”, in Proceedings of Visualiza-
tion ’93, (San Jose), pp. 11–18, (October 1993).

9. M. H. Ghavamnia and X. D. Yang, “Direct ren-
dering of Laplacian pyramid compressed volume
data”, in Proceedings of Visualization ’95, (At-
lanta), pp. 192–199, (October 1995).

10. G. R. Thoma and L. R. Long, “Compressing and

c© The Eurographics Association 1999

transmitting Visible Human images”, IEEE Mul-
timedia, 4(2), pp. 36–45 (1997).

11. S. Muraki, “Approximation and rendering of vol-
ume data using wavelet transforms”, in Proceed-
ings of Visualization ’92, (Boston), pp. 21–28,
(October 1992).

12. S. Muraki, “Volume data and wavelet trans-
forms”, IEEE Computer Graphics and Applica-
tions, 13(4), pp. 50–56 (1993).

13. Y. Chen and W. Pearlman, “Three-dimensional
subband coding of video using the zero-tree
method”, in Proceedings of SPIE - Visual Com-
munications and Image Processing ’96, (Or-
lando), pp. 1302–1312, (March 1996).

14. J. M. Shapiro, “Embedded image coding using
zerotrees of wavelet coefficients”, IEEE Transac-
tions on Signal Processing, 41(12), pp. 3445–3462
(1993).

15. A. Said and W. Pearlman, “Image compression
using the spatial-orientation tree”, in Proceedings
of IEEE Intl. Symp. on Circuits and Systems,
(Chicago), pp. 279–282, (May 1993).

16. C. K. Chui, An Introduction to Wavelets. Aca-
demic Press Inc., (1992).

17. I. Daubechies, Ten Lectures on Wavelets. SIAM,
(1992).

18. A. Fournier, ed., Wavelets and Their Applica-
tions in Computer Graphics. ACM SIGGRAPH,
(1995). ACM SIGGRAPH ’95 Course Notes.

19. P. Schröder and W. Sweldens, eds., Wavelets in
Computer Graphics. ACM SIGGRAPH, (1996).
ACM SIGGRAPH ’96 Course Notes.

20. E. Stollnitz, T. DeRose, and D. Salesin, Wavelets
for Computer Graphics: Theory and Applications.
Morgan Kaufmann Publishers, (1996).

21. L. Hong, S. Muraki, A. Kaufman, D. Bartz, and
T. He, “Virtual voyage: interactive navigation in
the human colon”, in Proceedings of ACM SIG-
GRAPH ’97, (Los Angeles), pp. 27–34, (August
1997).

c© The Eurographics Association 1999

I. Ihm et al. / Wavelet-Based 3D Compression Scheme 13

(a) Original (b) γ̄ = 0.07

(c) γ̄ = 0.05 (d) γ̄ = 0.03

Figure 7: Slices of the Visible Man

c© The Eurographics Association 1999

(a) Uncompressed (b) γ̄ = 0.07

(c) γ̄ = 0.05 (d) γ̄ = 0.03

Figure 8: The Ray-Cast Visible Man (Upper Body - Bone)

c© The Eurographics Association 1999

I. Ihm et al. / Wavelet-Based 3D Compression Scheme 15

(a) Uncompressed (b) γ̄ = 0.07

(c) γ̄ = 0.05 (d) γ̄ = 0.03

Figure 9: The Ray-Cast Visible Man (Upper Body - Skin)

c© The Eurographics Association 1999

(a) γ̄ = 0.03 (b) γ̄ = 0.05

Figure 10: The Ray-Cast Visible Man (Whole Body)

c© The Eurographics Association 1999

