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Abstract — Nonuniform meshes are often inevitable for discretizing
structures with fine details because it is critical to keep the number of
produced mesh cells at reasonable size. This paper presents an
automatic mesh genmeration algorithm which produces effective
nonuniform rectangular meshes for FDTD simulations. In generating
meshes, our algorithm attempts to minimize the total number of mesh
cells, while satisfying the conditions on the maximum mesh spacing and
the maximum grading ratio. We briefly describe the algorithm, and
report its performance.

I. INTRODUCTION

For an effective analysis of electromagnetic waves through
Finite-Difference Time-Domain (FDTD) simulations[1], it is
important to produce a quality mesh for a given structure.
Simple uniform rectangular meshes are frequently used in
tessellation, however, they often entail an enormous number
of cells when structures with fine details have to be resolved
precisely. A more efficient way is to generate nonuniform
meshes that adapt the grid spacing according to the various
properties of structures. This paper presents an automatic 3D
mesh generation technique that produces effective
nonuniform rectangular meshes. Our technique attempts to
minimize the number of mesh cells, while satisfying the
requirements, imposed by users, on the maximum mesh
spacing and the maximum grading ratio. In this abstract, we
outline our mesh generation algorithm and then discuss its
performance.

I1. PROBLEM DEFINITION

Consider a 3D structure, composed of elementary objects
which may be either an axis-aligned rectangular
parallelepiped (cuboid), a sphere, or an axis-aligned cylinder.
Each elementary object is associated with the respective
upper limit d,, on the maximum grid spacing, which
requires that any generated cells inside the object may not
have edges longer than the imposed limit.

When the elementary objects are projected orthogonally
onto three axis-aligned planes and then, repeatedly, onto
three principal axes, we obtain three sets of initial
subdivision intervals. Fig.1. illustrates one such set on x-axis:
it is made of m (m = 10 in this figure) intervals where each
interval is associated with its length & and the upper limit

d™, inherited from the projected object(s). While we are
concerned with the tessellation of 3D models, the mesh
generation problem may be considered as one of adaptive
subdivisions of three sets of 1D intervals, one for each axis.
In order to generate an effective nonuniform rectangular
mesh, we impose the following three requirements on the 1D
interval tessellation problem:

1. [Minimization requirement] Minimize the number of
subintervals generated from the tessellation of the initial
subdivision intervals. This condition is to optimize the time
and space complexity of the analysis process.

2. [d™ requirement] The lengths of all tessellated
subintervals in the ith interval must be shorter than 4™ .
This condition is to satisfy the maximum mesh spacing
constraint.

3. |[¢@™ requirement] The ratios of the lengths of any
two adjacent subintervals must be smaller than a
user-specified ™™ value. This condition is to satisfy the
maximum grading ratio constraint.
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Fig. 1. Projection of a 3D model onto x-axis

I1I. THE PROPOSED ALGORITHM

Given a set of m initial subdivision intervals, we first focus
on tessellating each interval. Consider the /th interval. Due to
the d™ requirement, it can not be subdivided using fewer
than = ceil(d,/d™*) intervals. Since one of the most
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important factors in tessellation is to minimize the number of
cells, we attempt to tessellate each initial interval using »;

subintervals. In the process of fulfilling thea™™ requirement,
however, it is frequently forced to increase the number of
subintervals (imagine two adjacent initial intervals with
steeply varying d™* values). In the presented technique, the
interval is tessellated symmetrically, in other words,
where ¢;; (j =0, 1, ..., n-1) is

- 1 % »
€.j SCin-i-j> am“se;J+1 o™
the length of the jth subinterval. There are two cases of the
tessellation: the first one is that the subintervals’ lengths
increase gradually with ratio ¢ and then in turn decrease
symmetrically. In the second one, the lengths vary the other
way around. The key in this stage is how to appropriately
select the length e;, (=efﬂr1) of the boundary subintervals.

Note that, if the ith interval is to be subdivided using »;
subintervals, e;o must be chosen from a feasible range

[e;".j",e‘"a“] that is determined by the 4™ and theg™

requirements (we will show how to derive this range in the
full paper).

Now, we have m such feasible ranges from which each ¢;,
needs to be selected. One strategy is to assign a properly
chosen value e, identically to all e,y values. Suppose that
the intersection of the m ranges is non-empty. Because it is
desirable to set e’ as large as possible, we compute it as
. ;59 s When the intersection is null, this is the case
where the feasible range of some initial subdivision interval,
say, interval j, is simply to the right of e”5. We need to move
such a range to the left by inserting more subintervals, that is,
by increasing n; gradually until a non-empty intersection
exists. By adapting such bad intervals one by one, e’ can be
chosen as we wish at the expense of increasing the number of
subintervals. Once e’ is set, the proper a, value is
determined per interval using it and then the tessellation
process proceeds.

While the described technique produces a tessellation
which fulfills both the 4™ and the g™ requirements, it
turns out that the restriction that all initial subdivision
intervals share the same e¢;o value is too severe, often
resulting in rapid increases in the number of subintervals. A
more efficient way is to allow each interval to have a distinct
€0 value. We have developed a selection scheme which
reduces the number of generated cells remarkably. The main
idea is to decide the e, values one by one from the interval
whose eﬂ;‘}“is the minimum first. According to the relation

to its adjacent intervals, e;¢ is chosen from the four cases:
€0 » min{g_o-Q, em)"}’ min { eﬂ,"‘, RN 2L and
min{e,_ @, 5, €,,0-@}" As expected, we find that this

adaptive assignment produces a much more efficient
tessellation of the initial intervals (see the full paper).
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IV. THE PERFORMANCE

Fig.2. illustrates three tested 3D models, that are made of
cuboids, spheres, and cylinders, and TABLE I shows how
well the presented mesh generation algorithm works.

(a) Test data 2
Fig. 2. Three example data
In the table, ‘Cells’ represents the number of produced
mesh cells, and ‘x-’, ‘y-’, and ‘z-axis’ indicate the numbers of
tessellated subintervals along the respective axes (g™ = 1.3).
The figure given in the column named Lower means the
optimal lower bound to each quantity. For instance, one in

(a) Test data 1

(a) Test data 3

the ‘x-axis’ row indicates the sum

t of all initial »;s. Note that this

B3t = lower bound is often impossible to

i achieve. Usually, the actual lower

bound is higher since  the 4; and

the 4™ values along with the

- - i ™ condition enforce  an

i

i increase in the real lower bound.
In the column named Qurs, two numbers per row are given.
The number in the parenthesis is one produced when an
identical e; value is applied to all
intervals. The other one is the
figure that is obtained when e;qis
selected adaptively as proposed in
this paper. Considering the fact

that the lower bound in the
Lower column can not usually be
realized practically, we believe the
presented  mesh generation
algorithm is quite effective.
TABLEI Performance statistics
Test data 1 Test data 2 Test data 3
Lower ours Lower Ours Lower OQurs
32,736 115,056 131,625
Cells | 23,520 (40.392) 717,326 (370,668) 112,320 (467,840
x-axis 28 31(33) 46 51(68) 104 | 117272
y-axis 28 32(34) 41 48(69) 120 [ 125(172
z-axis 30 33(36) 41 47(79) 9 9(10
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