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Abstract f3(s,)
z = Fi(s.0) (2)

We present a method for generating low degéée ) . . - .
continuous piecewise algebraic surfaces for revolviiere thef; are again polynomials with coefficients in

objects. The approximating pieces are implicitly d- The "’,‘Igepr?ic degreef an algebr'aic curve or sur-
fined algebraic surfaces whose profile curves can &€ (in implicit or parametric form) is thewazimum
obtained algebraically or parametrically from digitized€9r€€ of any defining polynomial. Tigeometric de-
points. We show that degreé surface patches Cangreeof an algebraic plane curve or surface (in implicit

be used for approximations with inter-patcH con- OF Parametric form) is thenazimum possible num-
L . _ r of inter ions with any line. The inter ion
tinuity as high ask = [4*2°=12| for evend, and ber of intersections with any line. The intersections

) are counted with respect to a plane for algebraic space
fo= [WHEDEDZI ) for odd d. As an example, we cypyes [2].

constructC! cubic surfaces an@? quartic surfaces for  Thig paper presents two main ideas to be used in fit-

revolved objects from digitized profile curves. ting low degree, piecewise algebraic surfaces (in the
Keywords : Algebraic surface, approximatioG;” implicit or parametric form) to data sampled from arbi-
continuity, curves, digitized data, polynomial, revolugrary houndary surfaces of solids of revolution. One is
tion the use of degree restricted bases for the piecewise ap-
proximation of the generating curve of revolution sur-
faces to yield approximating surfaces of the same alge-
braic degree as the degree of the piecewise curves. The
other new idea arises in the development and ugg*of

Algebraic curves and surfaces can be representecirﬂ?l'c't a(ljgebralc _spllrt1_es fofr degreet_restrlcted 'nﬁﬁf'
animplicit form, and sometimes also inp@arametric ation ancd approximation ot generating Curves. e

form. The implicit form of a real algebraic surface irliraditional fitting schemes are predominantly based on
R®is piecewise parametric representations[5, 6], we show

_ here that implicit representations are also quite appro-
flz,y,2) =0 (1) . : . S
_ _ _ o _ priate and in fact better equipped for restrictions on the
where f is a polynomial with coefficients ifR. The bases and the degrees of the involved polynomials.
parametric form, when it exists, for a real algebraic sur- From Bezout's theorem[11], we realize that the in-

1 Introduction

face inIR” is tersection of two implicit surfaces of algebraic degree
" d can be a curve of geometric degrééd?). Further-
_ fl(sv ) . . . .
T = Fas,0) more the same theorem implies that the intersection of
f4 ( 7t) two parametric surfaces of algebraic degidezan be a
2(S,

y = curve of degre®(d*). Hence, while the potential sin-
fa(s,t) gularities of the space curve defined by the intersection

*Supported in part by NSF grants CCR 90-00028, DM 91-0142f two implicit surfaces defined by polynomials of de-
AFOSR contract 91-0276 and NASA grant NAG-93-1-1473. greed can be as many &3(d*), the potential singulari-




y ject to f(r(y),y) = 0. The equationF(z,y,z) =
0 of the surfaceS, hence, becomes$'(z,y,z) =

_________________________ f(\/22 + Z,y) = 0 where F(z,y, 2) is not neces-

e sarily algebraicdue to introduction of the square root.
By allowing only even-powered’s (z°, 22, z*, ---) in
f(x,y), we can forceF'(z,y, z) to be algebraic. Ge-
ometrically, this restriction, imposed on the revolved
X curve, that maintainalgebraicity, means that the curve
C: an algebraic curve f(x,y) = 0is symmetric to the axis.

For quadric curveg(x,y) = 0, 22 is the only pos-
sible factor of terms inf. Hence, f includes a 4-
dimensional vector spadéf of polynomials over real
numbers that is spanned by the bagis, y2,y,1}. In
case of cubic curveg(z,y) = 0, the vector space
V}j is spanned by the basigr?y, 22, %, 3%, y, 1} with
Himension 6. Quartic curveg(z,y) = 0 can be
chosen from a more abundant vector spb(ﬁeof di-
mension 9, generated by the baséis!, 2%y?, 2%y, 22,
y*,y3,9%,y,1}. The bases of vector spacé@i for
ties of the space curve defined by the intersection of twigher degree curves are formulated in the same fash-
parametric surfaces defined by polynomials of degreéon.
can be as many a9(d®)[2]. Hence keeping the de- Each algebraic curve of degrekin V¢, revolved
gree of fitting surfaces as low as possible benefits baffbund an ellipse, results in an algebraic surface of the
the efficiency and the robustness of post processing éime degree. Then we naturally come to the following
modeling and display[1]. question : “Is a surface, generated by revolving around

The rest of this paper is as follows. Sectirhar- an ellipse an algebraic curve that is notifi, algebraic
acterizes the appropriate degree restricted bases gpall?” In fact, the surfacis algebraic, though the sur-
implicit and parametric algebraic curves which woulthce’s degree gets doubled. This doubling of the degree
yield revolution surfaces of the same algebraic degrggses from the single squaring required to remove the
as the degree of the curves. Sectiocharacterize§’  square root from odd-poweredfactors. For example,
continuous piecewise surfaces of revolution and theénsider a circlef(z,y) = (x —5)2 + (y —5)2 — 1 =
construction from sampled data points. Sectiode- 32 — 10z + 2 — 10y + 49 = 0 of radius 1, centered at
scribes the development and details for constructing qd; 5). This conic curve is not Wf because of the term
bic implicit algebraicC'' and C* splines for approxi- 10z. However, by movingl0z to the right hand side,
mating generating curves of surfaces of revolution. and then squaring both sides, we can obtain a quartic
curve in VJ? which generates a torus (of degree 4) by
rotation. Intuitively, the squaring operation has an ef-
fect of putting another circle of the same shape to the

. . other side of they axis in order to artificially make the
2.1 Algebraic Surfaces of Revolution curve symmetric to thg axis. Any algebraic curve of

Consider an algebraic surface which is obtained by @greed which is not inV can be made to be i
volving an algebraic curvef(z,y) = 0 (on thezy Py moving all terms with odd-poweredfactors to one

plane) around the axis. (See Figure 1.) Rather tha§ide, and squaring both sides.

restricting ourselves to a circular rotation, we consider a

more general elliptic revolution where the rotation patREMARK 2.1. Let C : f(x,y) = 0 be an algebraic

. . . 2 .

is described by an ellipsB : 2 + % = {r(y)}* with curve of degreel, and E : 2> + 2, = {r(y)}2 be an

a > 0. Here,r(y) is thex coordinate of the pointr, y) ellipse of a rotation path. Then, the algebraic surface

Figure 1: Revolution of an Algebraic Curve along al
Ellipse

2 Surfaces of Revolution

on the curvel : f(z,y) = 0. _ S : F(z,y,z) = 0, resulting from revolving” around
Now, the surface that results from revolving 1, has degreel if C is symmetric around thg axis, or
along E is specified as #? + 2; = {r(y)}* sub- 2d otherwise.



L -

(@) (b) (@) (b)

Figure 2: Two Quartic Algebraic Curves Figure 3: Degred and8 Algebraic Surfaces of Revo-
lution

A geometric interpretation to Remark 2.1 is as foE 5 p tric Surf fR It
lows : Consider a line on they plane parallel to the “- arametric surfaces of kevolution

axis. This line intersects withi’ at mostd times. Now, Now, we get to a question : “Is it also possible to find
imagine the intersection between the line @hdVhen g restricted bases odtional parametriccurves that re-

C'is symmetric, the number of intersection remains thg,t in rational parametricsurfaces of theame geomet-

same. However, it” is not symmetric, the number ofric gegree after revolution around an axis?” Consider a
degrees, creates the same number of line-curve inter-

sections. v (t)
It is important to understand that, the degrees of free- (t) = Y )= (¢

dom, in choosing a curvé(z, y) = 0 of degreed from t)

PR ; . . :
Vi, isdim(V) — 1 wheredim(x) is the dimension of & \ oo the degrees of the polynomialg), (t), and

vector space. Since all the polynomials on a lin&fh (1) are at mosti. The surface obtained by revolving
that passes througfi and 0 describe the same curveC(t) aroundy-axis along an ellipsé : 22 + 5722 _

we have one less thahm(Vfd) degrees of freedom. It{r(y)}Q with @ > 0 can be represented @%(s. {) =
is not hard to come up with the expressiondan(V{) (X(s,t),Y(s,t), Z(s,t)), where

< 2|8
]

=t

2s  x(t
(d+2)* e o X(st) = 1+ s2 w((t))
dim(Vé) = i~ if dis even
T T @) s odd y(t)
1 Y(s,t) = ==
w(t)
In many situations as will be shown later, the curve a(l —s?) z(t)
f(z,y) = 0is to be designed such that it satisfies given Z(s,t) = 1+s2 w(t)

geometric requirements. We are interested in design-

ing piecewise curves from given digitized data, and re- First, this representation answers that the revolved
volving them in a complicated manner to model sonwirface is always rational parametric. Then, the second
class of objects with low degree algebraic surfaces. gestion on the degree 6f(s, t) must be answered. We
will be explained below how the degrees of freedom &re interested in lowering both tladgebraicdegree in
piecewise algebraic curves of a given degree limit thiee polynomials inF'(s,t) and thegeometricdegree of
geometric continuity between them. F(s,t) (the maximum possible intersection 6Xs, t)

with a line). In construction of rational parametric re-
volved surfaces, we follow the same path we did in the
tic algebraic curvess? + y2)? + 32%y — 1° = 0 and previous subsection. From Remark 2.1, we know that

. an algebraic curve of degreegenerates an algebraic
ot + 2%y? — 222y — 2y + 4% = 0, respectively [12]. g garesg g

/ ) : syrface of the same degree only when it is symmetric
The curves, after rotation, result in algebraic surfacesg;j

d 4and 8 tivel dsh i Fi 3 ound an axis. Since every rational parametric curve
aﬁgr?be) and o, respectively, and shown in Figure )degreei is an algebraic curve of degrédewe are led

to the fact that'(s, t) is of degreel if C'(¢) is symmet-
ric around they-axis.

EXAMPLE 2.1. Figure 2 (a) and (b) displays two quar



A rational parametric curve is symmetric if there is The class of the above rational parametric curves

a parametrizatio'(¢) = (X (¢),Y (t)) = (i((g, %) contains symmetric parametric curves that intersect

such thatX (t) = —X(—t) andY (t) = Y(—t). That with y-axis. The set of all such curves is only a proper

is, subset of all symmetric parametric curves. Another in-
teresting class of symmetric rational parametric curves
x(t) _z(=t) (3) Isdefined ag(t) = (X (1), Y (1)) = (2, 40 such
w(t) w(=1) that X () = —X(—1) andY(t) = Y(=1)'. It still
y(@) (=t (4) "emains open how to specify all the bases of symmetric
w(t) w(—t) rational parametric curves of a given degree.

The above conditions are met dither z(¢) is an EXAMPLE 2.2. Recall the “three-leaf clover” in Ex-
odd function (all the terms with nonzero coefficients a@mple 2.1. Its parametric form () =
. 4 2 . .
odd—powered), ang(t),w(l_f)_are even functions (a”the(ﬁf{t?i - t4t+§t32t_h1)_ After C|rcular_ reyolutlon and
terms with nonzero coefficients are even-powered), the above mentioned reparametrization, the quar-

x(t) is an even function, ang(t), w(t) are odd func- tic surface is Flu,v) = ( u(u®+v®—3)

n N appe . . I’ - (u2+v2)2+2(u2+v2)+1’
tions. Itis not difficult to see that the polynomials in the 2 40?)_3(uP %) o(u® 10 —3)

second case can be converted into the first case polyf@=v2)2r2(u2+v2)+1° (u2+1)2)2+2(11.2+1)2)+1) and

mials by multiplying¢ to both numerator and denomishown in Figure 3 (a).
nator, and vice versa. In fact, any polynomials that sat-

isfies the conditions (3) and (4) fall in the above twg Construction of Piecewise Ck

categories. i ]
, Continuous Revolved Objects
LEMMA 2.1. Letx(t), y(t), andw(t) be polynomials

in ¢ such thatz(t) and w(t) are relatively prime, and So far we have discussed about revolution of a single
y(t) andw(t) are relatively prime. Them;(¢) is anodd algebraic curve, represented in either the implicit or the
function, andy(t), w(t) are even functions if and onlyparametric form. A revolved object with a complicated

if 20 = — 224 and £0) = X0, shape, however, cannot be modeled by rotating only one
low degree curve. Instead, it is more appropriate to ap-
PROOF: See [3].0 proximate a revolved object using surface patches meet-

_ ing together with some order of geometric continuity.
~ From now on, we assume thaft) is an odd func- Hence, the revolved object design problem leads to the
tion, andy(¢) and w(t) are even functions withoutfollowing basic problem: design piecewi§& contin-

loss of generality. Since a degrelecurve C(t) = uous algebraic curve segments, with restricted bases.
(X(),Y() = (%, %) is symmetric around- In this paper we focus on the design of piecewise

axis, the surface made by revolving it aroupeixis C* continuousimplicitly represented algebraicurve

is a surface of geometric degrée The surface equa-segments. Designing with parametric splines is ex-

tion F(s,t) given above is represented by degideg 2 plained in [5] in detail. Also, we shall exhibit that de-

polynomials. In [3] we show it is possible to reduce thgigning with symmetric (restricted bases) implicit alge-

algebraic degree of the parametric surface equationdtaic curves is no more difficult than with the complete

d by applying a transformation tB'(s, t). basis. The corresponding case of designing with sym-
metric parametric curves does not directly follow from

REMARK 2.2. LetC : C(t) = (ff}((?),%) be a ra- the general parametric case and is a an open problem

tional parametric curve of degreé wherez(t) is an for further research.

odd function, andy(t), w(t) are even functions, and

E : 22 + 2 = {r(y)}? be an ellipse of a rota- 3.1 Algebraic Curves and Geometric

tion path. Then, the algebraic surface: F(s,t) = Continuity

(X (s,t),Y(s,t),Z(s,t)) in the rational parametric

form, resulting from revolving” around E, has geo- N this subsection, we describe how to compute two al-

metric degreel, and can be parameterized in the Wagebraic curves that meet withi* continuity at a point.

that X (s, 1), Y(s,t), and Z(s, t) are degreed rational !For example, a hyperbola is in this class.

polynomials. 2From now on, by “algebraic”, we mean “implicit algebraic”.




First of all, we assume the geometric information abostraints must be satisfied. Hence, in order for an alge-
a pointp is expressed in terms of a (truncated) powéraic curve of degreé to exist,d must be chosen such
seriesC(t) of degreek, whereC(t) = (z(t),y(t)) = that(?}?) — 1 > 2k + 2, that is, the number of the de-
ptecit+eat?+- - +cpt®, andC(0) = p. This truncated grees of freedom in coefficients of the curve is greater
power series approximates the local geometric propettyan or equal to the constraints f6 continuity. Ex-
(up to orderk) of a curve about the point within a radiugctly the same process is applied for symmetric implicit
of convergence. (We will discuss later how this powetgebraic curves of degrekwith restricted bases, with
series is computed.) the difference being that the number of degrees of free-
Now, given a (truncated) formal power seri€$t) dom is given bydim(Vfd) — 1 as shown in section 2.1.
about a poinp, we find an algebraic curv&(x,y) = 0

whose power series expansiorpds the same as'(t) 3 » Computation of a Truncated Power
at p. If all terms upto degreé agree forf(z,y) =

0 and C(¢t) at p then f(z,y) = 0 is considered to Series
meet C(¢) with C* continuity atp. Let f(z,y) = There are various forms of divided-difference methods
> itj<a®ijz'y’ = 0 be an algebraic curve of degreenat extract geometric information around a point, from
d, and a given list of points [5]. In our case, we choose a
parabola to locally approximate the points about a junc-
cit) = ( x(t) ) tion point, and take out tangential information from the
y(t) parabola. The junction points themselves are for now,

_ Pz + Crat + Cogt? + -+ cppth computed using the dynamic programming scheme in
N ( Py + Ciyt + coyt® + -+ + cpyth ) [8] which minimizes the error for a piecewise linear
approximation (with fixed number of segments) to a
be a given parametric polynomial such th@{0) = set of digitized points. Consider a sequence of points
(pz,py) = p. The relations on the coefficients of .. pi o, pi1,PisPis1,Dive,--- around the junction
f(z,y) can be extracted by repeatedly differentiatingoint p, and an imaginary power serig§(¢) from
f(C(t)) up to orderk, making all the derivatives vanishwhich, we assume, the digitized points neararise,

att = 0 [7]. The first few partial derivatives are : and whose parameter valuetis= 0 for p;. Then, the
tangent vector of’(¢) att = 0 can be approximated by
f((C((t)))) li=o = f(p)=0 the approximation :
af(C(t /
= o = fo(0)2(0) + £,(p)y (0) O ~ Ti T
dt (O) ~ diSt(p‘ Py )(pz—i-l pz)
= crfalp) + e fy(p) = 0 {pisbi
d?f(O(t "% (=i
D s = Julolr e
dist(pi—1,pi : ;
+2 gz (0)y ( ) where o; = dist(piypii’)’wisf(;i_'l’m and dist(x, %) is
(0 the distance between two points.
+fyy(P)y ( ) . . . .
g Repeatedly applying this approximation formula, we
+fo(0)2" (0)+ £,(1)y" (0)  introduce a divided-difference :
2
Clefﬂw( ) + Clwclyfa:y(p) n if i=0
ety fuy(P) + Confa(p) Nop =4 5 Gt P~ 21
+eayfy(p) =0 +m071 —p-1)) ifj>0

Using this divide-difference operator, a truncated power
For each derivative off (C(t)), a linear equation in series is represented &(t) = A%; + Alpit +
terms of the unknown coefficients; of f is generated, A%p;t? + - -- + AFp;t*. Note that the geometric infor-
hence, any solution of the homogeneous linear systemation, stored in the coefficients of the power series is
of k + 1 equations becomes coefficients of algebra@xtracted from a sequenceZif+ 1 neighboring points,
curves of degre@ meetingC(t) with C* continuity. centered at the junction point. This locality in the con-
Since an algebraic curve segment needs to satisfy seeiction of a power series enables an interactive local
C* conditions at both end pointgk + 2 linear con- modeling operation.
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(a) (b)
Figure 5: SymmetricZ! Cubic andC? Quartic Alge-

b

(@) (b)

Figure 4: Digitized Engine and Goblet with Truncateg, ¢ Splines
Power Series

ExAMPLE 3.1. In Figure 4, two sets of digitized points
are illustrated. (a) shows three lists of points that moc
engine party and (b) is a sequence of points that mot
els agoblet. Each point sequence is displayed with trt
cated power series of order two at junction points.

3.3 Families of Algebraic Curvesf(x,y) | > >

In order to compute each curve segmérite,y) = 0 @) (b)

that interpolates two truncated power serigst) and Figyre 6: Symmetric> and ArbitraryC? Cubic Alge-
Ci+1(t) at two end pointp; and p;1, respectively, prajc Splines

we construct a linear systeml;x = 0 where the un-

knowns are coefficients of;(z,y) = 0. The linear

system is made o2(k + 1) equations that are gen-only dim(Vﬂ) — 1 degrees of freedom for degréeand
erated for both truncated power series. Note that ttiés number must not be less thagk + 2), the max-
rank of M1 must be less than the number of unknowrnsum possible rank for a homogeneous linear system
for a nontrivial solution to exist. Any nontrivial solu-that needs to be satisfied for ordecontinuity. For in-
tion represents an algebraic curve that még(s) and stance, forC'! continuity, symmetric cubic curves are
Ci41(t) atp; andp; 41, respectively, withC* continu- necessary, while ordércontinuity requires symmetric
ity. One heuristic that we have often used is to seleqhiartic curves.

a nice curve segment is to generate a sequence of ad-

ditional points between the end points that approximate . . K .

a curve segment, and then, apply least-squares appl%')éL PIQCEWISGC Continuous Revolved
imation to these additional points. In the case of cubic ~ Objects

algebraic curves, in Section 4 we derive a condition ?ﬂgure 5 (a) displays piecewigé' approximation with

the Bernstein-Bezier coefficients of cubic curves, in ei-2". laebrai in th tricted basik Not
ther the general or the restricted basis, that guarantggg'c algebraic curves in the restricte f% ote

. . o
a smooth single curve segment inside a given contfBpt @ Symmetric cubic curve iify can have a tan-
triangle. gent line parallel tac-axis only at points on thg-axis.

In case all possible terms of degréare used as gHence, the orderof geometr;]c contllnwty 'S Odﬁly#hﬁ h
basis off;(z,) = 0, then there aréd;Q) unknowns, extreme junction points on the cowls around which the

curve segments make vertical turnabouts. With sym-
and hence(*}?) — 1 degrees of freedom. However 9 y

) p metric quartic algebraic curves ¥, it is possible to
if we choose a curve fronif’, we have fewer degrees _ _ g o
proximate the point data with“ continuity every-

of freedom due to restriction in the basis. There a\aﬁ}ere. (See Figure 5 (b).) For the goblet data, cubic

3This data originated from 3D scanned engine data from NASAcurves inV3, again, successfully model the data with




or the general basis.

Paluszny and Patterson [9] considered a special fam-
ily of implicit cubic curves which yields tangent contin-
uous cubic splines. Our method here differs in that both
tangents and curvatures are specified and the splines are
not limited to be convex inside the bounding triangles.
Bajaj and Xu [4] show how to construct® continuous
(@) (b) cubic algebriac splines, however their method is not di-
rectly applicable for symmetric restricted bases.

Figure 7: C'!' Cubic andC? Quartic Revolved Surface
Models _ ) _ _
4.1 Interpolation with Cubic Algebraic

Curves

A general* cubic algebraic curve in the Bernstein basis
is de_fined aSB_d(u,v) = Zi—&-j_§3 wijB_fj(u,v) = 0.

(For introduction to barycentric coordinates, see [6].)
Sederberg [10] proposed to view an algebraic curve as
the intersection of the explicit surfage = B%(u,v)

with the planew = 0, hoping to associate geometric
meanings to the coefficients of the polynomial. Espe-
cially, the coefficients in the polynomial are considered
Figure 8: C' Cubic andC? Sextic Revolved Surfaceas thew coordinates of the control net of a triangular

Models Bernstein-&zier surface patch, where the coefficient
w;; corresponds to the control poiby; = (3, 3%) in

1 T , the Bernstein basis. The coefficients; is relative to
C* continuity in Figure 6 (a). Figure 6 (b) shows’& selection of a control triangl@ = (Pyg, P39, Pos) in

approximation of the same data with cubic curves {e hower basis. There are ten coefficients, and since
the general basis, which, hence, may not be symmetjiGiging the equation out by a nonzero number would
about theg—aX|s._ ) ] “not change the algebraic curve, we see that there are
Once algebraic splines are constructed to fit the digjie degrees of freedom. For symmetéstrictedcu-
tized data, their revolution surface models are easily iy a|gebraic curves in the Bernstein basis there are only
tained, with the appropriate surface degree boudds. fiye degrees of freedom. Hence, three degrees of free-
approximation with cubic algebraic surfaces is shown gy m are left aftei2 interpolation with general cubic

Figure 7 (a) and are a revolution of the cubic splines Hlgebraic curves, and one f6f" interpolation with re-
Figure 5 (a). Quartic algebraic surfaces approximate t§icted cubics.

same object well witlC'? continuity in Figure 7 (b) and

are a revolution of the quartic splines in Figure 5 (b). A

C! cubic algebraic surface goblet is illustrated in Figh.2 Computation of Effective Cubic Alge-
ure 8(a) and is obtained by revolving the symmetric cu-  braic Spline Curves

bic spline in Figure 6 (a). Thé” goblet in Figure 8(b) o i .

is obtained by revolving the arbitrary cubic splines i)/& describe in some detail the case (@t continu-

Figure 6 (b), and is made of degree 6 algebraic surfac84 general algebraic cubic splines. Computation of
C" continuous restricted algebraic cubic splines can be

achieved along similar lines. Létg, (t) andCp, (t) be
4 Cubic Algebraic Splines two truncated power series of degree two that describe
geometric properties at two pointg andm,, respec-

In this section, we focus on implicitly defined cubic alt-'\./ely' One of goals we try to accomplish is to find a

gebraic curves, and give conditions on the coefficier}{% nt of a cubic alaebraic curve is confined such that
of cubic algebraic curves that guarantee nice propert[gg 9

inside regions boun_ded by tr'?-ngles- These Cond'.t'ons‘lWe use the adjectivegeneralandrestrictedto distinguish cubic
can be equally applied to cubic curves in the restrictadebraic curves in the general and the restricted bases, respectively.




y sible values of\;, i = 0,1, 2, 3, the curve segment is
a single piece withirZ. Note that the feasible values
of \;, ¢ = 0,1,2,3, are those for which the triangular
Erandlipe | Bernstein-Bezier surface patch corresponding tm-
tersects the plane = 0 within 7" exactly onceand as

shown in Figure 10.

C: an algebraic curve

LEMMA 4.1. Let ten coefficientsv;; of B3(u,v) be
expressed linearly in terms of;, 7 = 0,1,2,3 af-

ter C* interpolation of C, (t) and C, (t) at 7o and

m, respectively, with respect to a control triangie
Then, there exists an effective cubic algebraic spline
associated withZ” if and only if there exists somk;,
Figure 9: An Effective Spline Curve j = 0,1,2, 3 such that the univariate cubic polynomial
G(z) ¥ B3((1 — a)z, az) = g3(a)2® + go(@)2? +
g1(@)z+ go(a) has one and only one rootih< z < 1
for all o € [0, 1]. Theg;(a), (i =0, 1,2, 3) are polyno-
mials of degree in o with coefficients which are linear
relations onw;; and hence of the free parameters,

DEFINITION 4.1. Let 7 be a triangle made of three(j = 0,1,2,3).

vertices Py, Py, Pog. Consider a smooth curve seg-

ment of degreex on B%(u,v) = 0 whose two end PROOF: See [3].00

points are on the two sideRy) Py and Py Pyg. The

curve segment is callezh effective algebraic spline as- Due to the limited space, we now present only the

sociated with the bounding triang(E if the curve seg- final results Details can be found in [3]. Consider the

ment intersects exactly once a line segment connectthgee cases wherg (), (i = 0,1, 2, 3) is a degre@ —i

Py and any point on the sidB;y Pyg. polynomial ina and a linear combination of the above
g:(c) polynomials. The coefficients @f;(«) are linear

The restriction imposed in the definition of an efcombinations of the free parametexs (j = 1,2,3) :
fective spline reomves disconnected curve segments,

loops, unwanted extra pieces and singularities frome [CASE 1] ha(a) = 1 > 0, ha(a)? —

within the bounded triangle. It also forces the spline  3hs(a)hi(a) <0, ho(a) <0

curve segment to subdivide a bounding triangle into a

positive and a negative space. The ability of finding ane [CASE 2]  hs(a) =1 > 0, (either ho(a) > 0

effective spline with a proper bounding triangle is es-  or iy (a) < 0), ho(a) < 0

sential in that it allows easy implementations of many

geometric modeling operations [1]. A point can be eas-® [CASE 3]  h3(a) = 1 > 0, ha(a) < 0,

ily classified as in, out, or on the boundary of an object 1 () > 0, ho(r) < 0, ho(@)? — 3hs(a)hi(a) >

that is made of several algebraic splines. This point- 0, (—27ho(a)hs(a)? + 9h1(04)h2(04)h3()024) -
«

the curve segment achiev€® continuity atr, andn,
and subdivides the triangle into a positive and a negat
space. (See Figure 4.2.)

classification operation is a primitive operation to high ~ 2h2()?) > 0,  (2Tho(a)?hs( -
level geometric modeling operations. 18ho(a)hi(@)ha(@)hz(e) + 4hi(a)hs(a) +
For a spline curve segment thatGg continuous at 4ho(@)ha(a)® = hi(a)?ha(a)?) >0

the end pointsry and m; within the triangle7, in-

terpolation of the respective truncated power seriesTatEOREM4.1. Let ten coefficients);; of B3(u,v) be
these points with a cubic polynomial generates six coexpressed linearly in terms of;, 7 = 1,2,3 with
straints, leaving three degrees of freedom. After soluy, = 1 after C? interpolation of Cz, (t) and Cg, (t)

ing the homogeneous linear system with ten unknowrag, 7, and 71, respectively, with respect to a control
and six linearly independent constraints, the ten coeffilangle 7. Then, there exists an effective cubic alge-
cients can be expressed in terms of linear functionshraic spline associated with if and only if there exists
four free parametery,, A1, A2, andA;. We next set up some);, j = 1,2, 3 such that, for alle € [0, 1], either
constraints on these free parameters such that for fE@2ASE 1] , [CASE 2], or [CASE 3] is satisfied.
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Figure 10: C? Continuous Cubic Algebraic Spline

Curves

Theorem 4.1 generates inequality constraints whose
expressions are linear, quadratic, cubic, and quartic in

A1, A2, A3. Hence, all the feasible solutionk,( Az, A3)

of those constraints comprise a union of subspaces [R]
the three dimensional; A; A3 solution space bounded

by linear, quadratic, cubic, or quartic algebraic surfaces.
Choosing an effective cubic algebraic spline associated
with a bounding triangle becomes equivalent to finding
feasible points in these subspaces. In our implemerr3]
tation we currently use standard nonlinear numerical
optimization techniques to compute feasible solutions.
Given the low dimensionality of the solution space and
the bounded degree of the constraints, we are currently
experimenting with symbolic methods which yield a[4]
cell decomposition of the feasible region for easy so-

lution point generation and navigation.

ExXAMPLE 4.1. Figure 10(a), shows three instances
of cubic algebraic curves tha€? interpolate the [6]

two endpoint truncated power serié%(t) = (1 +
t,t%) and Ci(t) = (t,1 — 2t?) with respect to
7 = ((0.0,-1.0),(1.5,0.5),(0.0,1.5)). The three

curves chosen from the four dimensional space arfg]

folz,y) = 0.75733323 — 1.199332%y — 0.76866722 +
0.534667xy> + 0.2zy — 0.734667x + 0.004y° —
0.246y% — 0.504y + 0.746, fi(z,y) = 4.082° —
7.372%y—5.9922+0.062y% +0.20y —0.262 — 1.42y> —
1.67y% + 0.92y + 2.17, and fo(z,y) = 0.4213332> —
0.575333x2y — 0.24066722 + 0.582667xy? + 0.22y —
0.782667x 4 0.148y* — 0.102y> — 0.648y + 0.602. As
C? continuity implies,f;(C;(t)) = O(t*), i = 0,1,2,

J =0, 1. Figure 10(b) illustrates how a cubic Bernstein[g]
surface patch intersects once with the bounding triangle

to produce an effective cubic algebraic spline.

5 Conclusion

We have presented a comprehensive characterization
and computation of the appropriate degree restricted
bases for implicit and parametric generating spline
curves which would yield revolution surfaces of the
same algebraic degree as the degree of the curves. A
number of open problems remain, as mentioned in this
paper, and we are currently pursuing these.
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