
On Enhancing the Speed of Splatting

Using Both Object- and Image-Space Coherence

Rae Kyoung Lee Insung Ihm
Department of Computer Science

Sogang University
Shinsu-Dong 1, Mapo-Ku

Seoul, Korea 121-742
E-mail: lrk@grmanet.sogang.ac.kr, ihm@ccs.sogang.ac.kr

August 11, 2004

Abstract

Splatting is an object-order volume rendering algorithm that produces images of high quality,

and several optimization techniques have been proposed. This paper presents new techniques that

accelerate splatting algorithms by exploiting both object-space and image-space coherence. In

particular, we propose two visibility test methods suitable for octree-based splatting. The first

method, based on dynamic image-space range tree, offers an accurate occlusion test, and does

not trade off image quality. The second one, based on image-space quadtree, uses an approximate

occlusion test that is faster than the first algorithm is. Although the approximate visibility test may

produce visual artifacts in rendering, the introduced error is usually found very little. Tests with

several datasets of useful sizes and complexities showed considerable speedups with respect to the

splatting algorithm, enhanced with octree only. Considering that they are very easy to implement,

and need little additional memory, our techniques will be used as very effective splatting methods.

Keywords: splatting, optimization, coherence, visibility, octree, range tree, quadtree

1 Introduction

Volume visualization is a research area that deals with various techniques to extract meaningful and

visual information from abstract and complex volume data [6, 15]. Volume data are scalar- or vector-

data defined on various types of grids in three- or higher-dimensional spaces, and are widely generated

in many scientific and engineering areas. One of the most frequently applied techniques for visual-

ization is direct-volume rendering, which produces 3D rendered images of high quality, directly from

volume data.

Splatting [20, 21] is a popular direct volume rendering method, which is widely used along with

ray-casting [9, 19, 23] and shear-warping [7]. It has been originally introduced as an object-order

algorithm, while the splatting computation can also be performed in image-order [14]. In the object-

order splatting approach, voxels are traversed in either front-to-back or back-to-front order consistent

with a given view point. During the traversal, each voxel is classified and shaded by user-supplied

opacity and material transfer functions. Then it is projected into image plane, and its contribution is

accumulated to an image buffer using a projected reconstruction kernel, called a footprint.

If splatting were implemented as visiting all the voxels regardless of their density values and

visibility, a large portion of computation time would be wasted on traversal of voxels that do not

contribute to computation of a final image. The splatting algorithm can be accelerated by both (a)

avoiding traversal of those voxels whose density values are not in intervals of interesting materials, and

(b) neither shading, projecting nor accumulating those voxels of interest that are occluded by other

opaque voxels.

The first property (Property (a)) was explored in several object-order acceleration techniques which

utilize object-space coherence, inherent in volume data, by restricting volume traversal to voxels of in-

terest. In [5, 1, 13], a variety of indexing schemes for iso-voxel lists were proposed to quickly extract only

the voxels whose density values fall within a specified density interval. Spatial subdivision techniques

such as octree and k-d tree have been also employed with great effectiveness in exploiting object-space

coherence of volume data. The min-max octree of the type used to accelerate iso-surfacing [22], is

naturally combined with object-order splatting, and can be used in skipping regions of no interest

efficiently during voxel traversal. A different form of octree was also used in [8] to splat volume data

in a manner of progressive refinement. Each node in this octree stores an average value of pre-shaded

RGBA colors for all its children along with a variable that indicates the average error associated with

the node. In this splatting algorithm, the traversal of octree is adaptively controlled by a user-supplied

allowable error in such a way that more computational efforts are made in more complicated regions

of volume.

One disadvantage to object-order splatting is that it is not simple to explore the second property

(Property (b)) which requires an efficient resolution of the visibility problem, also known as hidden

element removal and occlusion culling. It has existed as one of the most important tasks in computer

2

graphics and visualization, and a variety of software/hardware solutions have been developed in ren-

dering of polygonal and volumetric models. A good method for the visibility problem needs to cull

hidden elements efficiently as well as compute the correct visibility.

The early ray termination technique [10, 2] offers an effective solution for the visibility problem

in volume visualization. Although it is very natural for image-order algorithms, such as ray-casting,

this method is not easily combined with object-order algorithms like splatting. During rendering, a

single occlusion test can often resolve the visibility of objects/voxels that cover a collection of pixels

in image plane. Since opaque pixels usually exist in thick clusters, several previous works on volume

visibility attempted to exploit image-space coherence along with object-space coherence.

The idea of exploiting coherence in both spaces first appeared in volume visualization in [12], where

an object-space octree and a dynamic image-space quadtree are utilized for 3D image synthesis. Each

node of a quadtree contains the binary value E or F for transparent and obscured regions, respectively,

and provides information that determines whether an octree node being traversed is visible or not. A

similar idea was also employed in [4] for efficient culling of occluded polygons in rendering of polygonal

models. In this work, a quadtree, called a Z pyramid, was built for the values of a depth buffer, and

was used to quickly resolve the visibility of polygons.

The dynamic screen algorithm employed a linearly-linked list on each scanline of an image screen

to run-length encode transparent pixels [18]. Similarly in the shear-warping algorithm [7], spatial

data structures, also based on run-length encoding, were constructed to make use of spatial coherence

present in both volume data and intermediate image. The RLE data structures are very effective

in quickly skipping across opaque image scanline segments and empty object regions simultaneously.

They are, however, built for the renderers that access both object and image plane in scanline order.

Hence, they are not well suited to splatting where a voxel projects onto a rectangular area of pixels.

Recently, hierarchical tiles, originally proposed in [3], was used as a mean for culling invisible octree

nodes and extracted triangles in a view-dependent iso-surfacing technique [11]. In this method, the

visibility problem is resolved partially in software, and the graphics accelerator is exploited to complete

the visibility test. In [13], an average opacity buffer for splatting was employed to decide, in constant

time, if a voxel being projected is fully occluded. In order to maintain the average opacity buffer

dynamically, the convolution operation with a box filter of the size of a footprint must be performed

to update the image area that receives actual splat contribution. Although it does not fully utilize

coherence in image-space, this technique offers an effective solution to the visibility problem for a

3

variation of the splatting algorithms driven by the indexing data structures [5, 1, 13].

As mentioned, indexing data structures and octree spatial subdivision are two popular methods

that accelerate splatting by exploiting object-space coherence. In this paper, we present new solutions

to the visibility problem, suitable for splatting that employs the octree-based volume traversal. We

extend the idea, introduced in [12, 4], to the splatting algorithm, and propose two new techniques for

efficiently culling occluded voxels using image-space coherence that, combined with an object-space

octree, result in fast splatting. In our splatting methods, the min-max octree is constructed for volume

data to handle dynamically varying opacity-transfer functions. Object-space coherence is exploited

with the octree by traversing only the voxels of interest, in other words, culling voxels of no interest.

To further cull those voxels that are classified as interesting but are hidden by opaque regions,

two-dimensional spatial data structures are built for the opacity values in image-space. In particular,

two different data structures are examined: First, we employ an image-space range tree, which is

a well-known data structure in computational geometry [17]. With the range tree, we perform an

accurate occlusion test, hence, do not trade off image quality for speed. Secondly, we use an image-

space quadtree as in [12, 4], however, adopt an approximate occlusion test that is faster than the first

test method is. Although the approximate visibility test could lead to visual artifacts in rendered

images, the introduced error is usually found very little.

This paper is organized as follows. In Section 2, we explain how the new visibility test methods

are combined with an octree-based splatting algorithm to enhance the rendering speed by making use

of coherence in both object-space and image-space. The performance results on several datasets of

useful sizes and complexities are described in Section 3, and we conclude the paper in Section 4.

2 Two Visibility Test Techniques for Octree-Based Splatting

2.1 The Splatting Algorithm

Figure 1 summarizes the splatting algorithm that is used in this paper to exploit both object-space

and image-space coherence. Beginning with the root node, the min-max octree for volume data is

recursively traversed in front-to-back order. In case the min-max value of a node does not overlap

that of voxels of interest, the function simply returns (Property (a)). Otherwise, rather than going

down to its children recursively, we project the cube corresponding to the current node into the image

plane, and use range tree/quadtree, dynamically maintained for the pixel opacity values, to see if the

4

/* The splatting algorithm based on both min-max octree in

object-space and range tree/quadtree in image-space */

Splatting (node n, level l) {
if (n’s min-max interval doesn’t overlap that of voxels of interest) {

return;
}
if (l is the lowest level in the min-max octree) {

Determine the traversal order of voxels in the node n;
for each voxel v in front-to-back order {

Shade and project v into the image plane;
Accumulate its footprint into the image buffer;
Update the opaqueness information of the image plane; — Line (1)

}
}
else {

Project the node n into the image plane;
Check if the projected area is already opaque or not; — Line (2)
/* Skip if it is opaque. */

if (it is not opaque) {
Determine the traversal order of the eight children;
for each child node cn in the front-to-back order {

Splatting (cn, l + 1);
}

}
}

}

Figure 1: The Splatting Algorithm

projected area is already opaque. If it is opaque, all the voxels in the cube are hidden, hence can be

skipped without further useless computations (Property (b)).

If this is not the case, we call the recursive function with the eight children in front-to-back order.

When the pre-specified lowest level is reached, all the voxels in the current node are processed in

front-to-back order. To determine the visibility of octree nodes quickly, two lines (Line (1) and (2))

must be implemented efficiently. In this paper, we investigate both the range tree and quadtree as

candidates for the image-space data structure. The following two subsections describe how these data

structures are combined with the min-max octree to enhance the splatting speed.

5

Secondary segment tree

Primary segment tree

A B C D E F G H I J K L M N O P

A

E
I
M

A
E

D

H
L
P

I

M

K

O
C
G

D
H

B
F

L

P

J

N

C

G
K
O

B

F
J
N

A B C D

E F G H

I J K L

M N O P

y

X

Pointer to secondary
segment tree

Figure 2: An Example of Range Tree

2.2 The Accurate Visibility Test with Range Tree

2.2.1 Building Alpha Range Tree

In computational geometry, a data structure called a range tree has been used for effectively manipu-

lating dynamically-varying geometric data in spaces of arbitrary dimensions [17]. We apply the basic

idea of the range tree to hierarchical organization of image-plane’s opacity values that dynamically

change during splatting.

Consider an n × n image where n is, for the sake of simplicity of explanation, assumed to be a

power of two. The n rows in the image can be hierarchically represented by a binary tree, called

a primary segment tree. The primary segment tree partitions rows of the image recursively along

the y-axis, whose nodes represent chunks of rows corresponding to standard intervals. Each node

is then associated with another binary tree, called a secondary segment tree, which organizes the

corresponding chunk of rows hierarchically along the x-axis. Note that each node in the secondary

segment tree represents a rectangular area, called a standard rectangle.

Figure 2 illustrates a range tree for a 4 × 4 image. The primary segment tree depicted in the

solid line represents the primary structure of the range tree, whose nodes have pointers to secondary

6

segment trees in the dotted line. For an n× n image, the range tree consists of one primary segment

tree, and 2n−1 secondary segment trees. A rectangular area in an image is partitioned into a collection

of standard rectangles whose attributes are found in the corresponding nodes of the secondary trees.

For instance, the 3× 3 rectangle in the figure is decomposed into the four standard rectangles.

We use a variant of the range tree, called an alpha range tree, in which the nodes of its secondary

segment trees dynamically maintain the visibility information for the corresponding standard rectan-

gles. The splatting algorithm renders volume data by computing an image consisting of R, G, B, and

A channels. The alpha plane, or A channel, buffers the opacity value of each pixel during rendering.

When the opacity value of a pixel reaches 1.0, it means that one or possibly more opaque materials

have already been accumulated into the corresponding pixel, hence any voxels visited thereafter are all

invisible through the pixel. A leaf of a secondary trees has value 1 if all the pixels in the corresponding

standard rectangle are opaque enough, that is, all the opacity values have reached a user-supplied

threshold, say, 0.95, and zero otherwise. The value is, in turn, added to its parent, and when the par-

ent is opaque, one is repeatedly added to its parent. In this way, a non-terminal node in the secondary

tree keeps the number of its opaque children. A standard rectangle for a non-terminal node is opaque

if and only if the node’s value is two.

As noted in the previous works [12, 4] that are based on the quadtree-based visibility test, the

number of the square regions, called standard squares, that decompose an arbitrary rectangular region

in image-space can be very large, which could lead to inefficient computation. The double-stage scheme

of the alpha range tree provides more flexible dynamic manipulation of subregions of an image than

the quadtree does. Figure 3 shows an example where a 7 × 7 rectangular area is decomposed into a

set of nine standard rectangles, as opposed to 19 standard squares in the quadtree representation.

2.2.2 Alpha Range Tree Update

During splatting, the alpha range tree needs to be updated dynamically whenever at least one pixel

gets opaque (Line (1) in Figure 1). After accumulation of shaded colors and opacities into the image

buffer, we check if the opacity of any pixel reaches a threshold. If there is such a pixel, the relevant

secondary segment trees are updated. Each leaf node of the secondary trees that contains the pixel in

its standard rectangle, is examined to see if the rectangle becomes opaque as a result of accumulation.

If this happens, we add one to its parent. When the non-terminal node becomes opaque, one is added

to its parent again, and is propagated through to coarser levels as necessary.

7

(a) 9 Standard Rectangles (Range
Tree)

(b) 19 Standard Squares
(Quadtree)

Figure 3: Decompostion of a 7× 7 Rectangular Area

Suppose that the resolution of an image being rendered is n×n. Let p be the number of pixels that

become opaque as a result of projection of a voxel. When we use a footprint table of size m ×m, at

most O(m + log n) secondary segment trees are affected. To understand this, consider, for instance, a

256×256 image (n = 256), and a 4×4 footprint table (m = 4), located at the upper left corner of the

image. First, O(m + m
2 + m

4 + · · ·+ m
m) = O(m) secondary trees are possibly affected: for this specific

example, four secondary segment trees of thickness 1 (the rows 0, 1, 2, and 3), two secondary segment

trees of thickness 2 (the rows 0, 1 and 2, 3), and one secondary segment tree of thickness 4 (the rows

0, 1, 2, 3). Also, there are O(log n) additional secondary trees thicker than m that may have to be

updated: the trees of thickness 8, 16, · · · , and 256. This observation concludes that O(m + log n)

secondary segment trees need to be updated in the worst case.

Now, in order to simplify the analysis, we assume that m ≈ log n, which is very reasonable since

the image resolution we consider is at least 256×256, that is, log n ≥ 8, and the footprint table size m

we usually use is 4 to 10. Under the assumption, we see that O(log n) secondary segment trees must

be updated in the worst case. For each secondary tree, the rectangular region that intersects with an

m × m footprint area can be included in, at most, two subtrees of height O(log m). When a voxel

becomes opaque as a result of composition, these subtrees can be updated in log m steps, respectively.

After all p voxels are processed in O(p log m) time, at most, two subtrees are affected, and the change,

if any, are propagated towards the root of the secondary tree, which requires O(log n) time. Hence the

total update time is O(log n · (p log m + log n)) = O(p log n log m + log2 n) in the worst case. Notice

8

Projected Cube

Projected
 Bounding Sphere

Projected Area

x

y

Image Plane

Figure 4: Projected Area of an Octree Node

that the average cost for update is usually much lower than this.

2.2.3 Visibility Test

In the splatting algorithm, we recursively traverses nodes in the object-space min-max octree in front-

to-back order, checking if the projected regions of octree nodes are occluded in the image plane (Line (2)

in Figure 1). In the original splatting algorithm, a spherical kernel was assumed for reconstruction,

and a rectangular footprint table was used to efficiently represent the extent of the kernel’s projection.

When an octree node made of a set of voxels is projected, we need to define the region in the image

plane, that is affected by the voxels. It can be viewed as the union of the extent contributed by each

voxel. For computational efficiency, we define the projected area of an octree node as the bounding box

of the projection of the corresponding cube’s circumscribed sphere in object space (Figure 4). This

axis-aligned rectangle is a good approximation to the affected region.

The visibility test is a simple matter, and is performed accurately. That is, every time an octree

node is projected into the image plane, its projected area is decomposed into a set of standard rect-

angles. Only when all the rectangles are found to be opaque is the projected area opaque. Given

a projected area of size l × l, standard intervals are searched along the x- and y-axes, respectively.

Their Cartesian products then become its decomposition. Since there are O(log2 l) standard rectangles

possible, the visibility test costs O(log2 l) operations in the worst case.

9

2.3 The Approximate Visibility Test with Quadtree

2.3.1 Building Alpha Quadtree

As the second occlusion culling technique, we propose to use an approximate visibility test based on

image-space quadtree. A quadtree in image space, called an alpha quadtree, is built similarly. Each

leaf node of the alpha quadtree, corresponding to a pixel, has value 1 when the pixel has been made

opaque enough, and 0 otherwise. The four adjacent values at each level are then added to their parent

at the next coarser level. When a non-terminal node in the alpha tree has value 4, it indicates that the

corresponding standard square in the image plane is opaque, hence one is added to its parent node.

Otherwise, its region is not opaque, and there is still a chance that some voxels may be accumulated

into the region.

2.3.2 Alpha Quadtree Update

Updating the alpha quadtree dynamically, when a voxel is projected into the image plane, is also a

simple matter. During accumulation of the shaded colors and opacity values into the image buffer,

each pixel in the projected footprint area is checked to see if its opacity reaches a threshold value.

If this is the case, the value of the corresponding leaf node in the alpha quadtree becomes one, and

the value of its parent node is increased by one. When the value reaches four, it means that its four

children’s pixels just become opaque, and we recursively add one to the node in the next coarser level.

This process is repeated through the tree until the parent’s value is not four. Again, suppose that the

resolutions of rendered image and footprint table are n×n and m×m, respectively. Then a footprint

table area in image space is included in, at most, four subtrees, having height O(log m), of the alpha

quadtree. Let p be the number of pixels that become opaque as a result of projection of a voxel. The

subtrees that contain such pixels can be updated in O(log m) time. When the partial updates are

done for all p voxels after O(p log m) computation, at most, four subtrees have been updated. These

changes, if any, must be propagated towards the root of the alpha quadtree, which can be performed

in O(log n) time. Therefore, the update cost becomes O(p log m + log n) in the worst case. Notice

again that the average cost is much lower.

10

Projected Area (6x6)

Four "Overlay"
 Windows (16x16)

Figure 5: Accurate but Unnecessarily Large “Overlay” Area [12]

2.3.3 Visibility Test

While the quadtree is a useful data structure that hierarchically organizes two-dimensional data, a

drawback is that the standard squares are not flexible enough. That is, the standard squares are

only squares of exponentially-related size, and their positions are very restricted. In order to test the

visibility of an octree node, we need first to find a set of all the standard squares which are at least

partially covered by its projected area, and must access the corresponding nodes in the alpha quadtree.

A node is invisible, hence, can be culled, if all the standard squares are opaque. This visibility test is

accurate, but the computational cost could be unacceptable since a projected area can be subdivided

into a large number of standard squares.

A simpler test is to find the finest-level standard square that contains the projected area, and

check its visibility. This conservative method is accurate and faster, but is not particularly effective

in culling invisible octree nodes. A very large standard square may have to be examined for a small

projected area. For instance, imagine the worst case in which a small projected area covers a point on

the horizontal or vertical line that halves an image. In [4], a procedural test in polygon rendering was

used, where the basic test above is applied recursively through the quadtree until a polygon is found

to be hidden. This works well, but may often be expensive. In [12], Meagher used, for the visibility

test, four neighboring finest-level standard squares of the same size, called overlays, whose edge length

is longer than or equal to that of a projected area. With this method, the visibility of a projected area

can be determined accurately in constant time. However, the actually tested area is often too large,

which results in inefficient occlusion culling (Figure 5). We discuss more on this issue in Section 3.2.

11

Projected Area
Approximate
 Projected Area

(a) Approximation of Projected
Area without Error

Projected Area
Approximate
 Projected Area

(b) Approximation of Projected
Area with Error

Figure 6: Approximate Projected Area

In our framework, we use a constant-time approximate visibility test. For a projected area, an

approximate projected area is formed by four adjacent standard squares, at the lowest possible level, in

such a way that its size is equal to or larger than the projected area. The approximate projected area

is positioned so that it covers the projected area as completely as possible. Figure 6 shows two cases

in which the approximate projected areas are correct and error-prone, respectively. The visibility test

is performed by checking the opacities of the four corresponding nodes in the alpha quadtree. This

test is not always accurate since the approximate projected area can fail to enclose the projected

area (Figure 6 (b)). Our strategy can cause errors during splatting when the test culls octree nodes

that, in fact, need to be rendered. In polygon rendering, this kind of test errors may introduce missing

polygons that often produce unpleasant artifacts. In splatting, the test error entails visual errors

possibly along the boundary of projected area where some visible voxels fail to be accumulated into

the image buffer. Recall how the projected area is defined in our scheme. Since the weights of footprint

tables are usually very small in their boundaries, the test errors would introduce only a small change

in the content of final image. See Subsection 3.3 for more consideration on the introduced visual

artifacts.

12

2.4 Notes on Projection of Octree Nodes

During the traversal of an octree node, the size and position of its projected area in the image plane

must be computed efficiently. In the case of orthographic projection, the front-to-back traversal order

is easily decided depending on the viewing direction, and is fixed for the entire traversal. The size of

projected area is the same for all nodes on the same level, and can be pre-computed. Furthermore,

their positions in the image plane can be computed in an incremental fashion.

For perspective projection, however, caution is necessary in determining the traversal order. The

order is computed with respect to the distances from the eye, or center of projection, to the centers of

nodes. It is possible that the traversal order of eight nodes on a level is different from those for their

child nodes. In addition, the size of projected area must be recomputed according to the distance to

each node. Hence, more computations are required for octree-traversal.

3 Experimental Results

3.1 Test Datasets

We have implemented our splatting algorithm on an SGI workstation with a 195 MHz R10000 pro-

cessor, and have evaluated the proposed visibility test methods with several datasets having various

sizes and complexities. Table 1 summarizes the datasets and classifications we used. The classifica-

tions BRAIN, HEAD, BONESKIN, and ENGINE are from the test datasets provided by University

of North Carolina at Chapel Hill. The dataset for VM1BONESKIN was generated from the fresh CT

data of Visible Man, disseminated by National Library of Medicine (NLM) [16]. We took the top 384

slices of size 512× 512, and cropped them to remove the background region. Two more classifications

VM2BONE and VM2SKIN were tested using a decimated version of the Visible Man dataset. Due

to its huge size, we partitioned the 587 × 341 × 1878 data into subblocks of size 128 × 128 × 128,

and produced final images by composing partially rendered images. Timings for this dataset are the

total times spent on rendering only. Figure 9 and 10 present rendered images for orthographic and

perspective projections, respectively.

3.2 Timing Performances

In order to measure the rendering times, we generated multiple images of non-trivial resolutions

with gradually varying viewing parameters, and averaged their timings. Table 2 shows how many

13

Data Size Classification

UNC Brain 256× 256× 167 BRAIN (skin)

UNC Head 256× 256× 225 HEAD (bone)

BONESKIN (bone & trans. skin)

UNC Engine 256× 256× 110 ENGINE (block)

Visible Man 1 384× 384× 384 VM1BONESKIN (bone & skin)

Visible Man 2 587× 341× 1878 VM2BONE (bone)

VM2SKIN (skin)

Table 1: Test Data Summary

voxels are visited during splatting for the various cases. The “Octree Only” column indicates the

number of voxels traversed when only object-space coherence is exploited using a min-max octree.

The “Octree/Range Tree” and “Octree/Quadtree” columns show how much the numbers are reduced

by additionally using image-space coherence. In general, we see that occluded voxels are removed

pretty well with the proposed visibility test methods. The statistics reveal two interesting, intuitively

clear, facts observed when image-space coherence is exploited during rendering. First, the idea of

occlusion culling by exploiting of image-space coherence works best when a large contiguous region of

the screen gets opaque quickly by the front opaque surfaces of objects in volume data, as in BRAIN,

ENGINE, VM1BONESKIN, and VM2SKIN. In this case, the occluded voxels behind the front surfaces

are effectively culled during octree traversal, which results in high rendering performance. On the other

hand, when surfaces have holes or chinks as in HEAD, are discontinuously opaque as in VM2BONE, or

are transparent as in BONESKIN, it is inherently difficult to efficiently remove occluded voxels using

image-space coherence. In this case, it is probable that a large number of visibility tests can simply

waste time. Secondly, it usually works better for perspective projection than orthographic projection.

In perspective projection, octree nodes in the back are foreshortened, and have higher chances to be

hidden by the opaque voxels in the front.

These two properties are also observed in Figure 7 that illustrates how octree nodes are traversed

during splatting for BRAIN ((a), (b), and (c)) and HEAD ((d), (e), and (f)), where the objects in

the volume data are projected to the right. The figures are slices cut in the middle of the entire

octree cubes, and display the nodes that are actually visited. Figures (a) and (d) are when splatting

is performed with octree only. It is clear that the min-max octree explores object-space coherence

effectively, but fails to avoid traversing occluded voxels. When the octree is combined with an alpha

quadtree, the effect of the image-space data structure is prominent. For BRAIN ((b) and (c)), only

14

Classification Image Octree
Orthographic Perspective (fov = 60◦)

Resolution Only Octree/ Ratio Octree/ Ratio
Range Tree (%) Range tree (%)

BRAIN 256× 256 1841140 125605 6.82 74781 4.06
512× 512 ” 145172 7.88 75352 4.09

HEAD 256× 256 1041109 404140 38.82 250071 24.02
512× 512 ” 404367 38.84 248817 23.90

BONESKIN 256× 256 3593793 1252323 34.85 965060 26.85
512× 512 ” 1157769 32.22 931888 25.93

ENGINE 256× 256 1111569 152259 13.70 123384 11.10
512× 512 ” 167240 15.05 114455 10.30

VM1BONESKIN 384× 384 6152250 922612 15.00 605368 9.84
768× 768 ” 759773 12.35 685184 11.14

VM2BONE 340× 1024 6684695 2214662 33.13 1522817 22.78
VM2SKIN 340× 1024 84222607 4512176 5.36 2680970 3.18

(a) Octree and Range Tree (Accurate Visibility Test)

Classification Image Octree
Orthographic Perspective (fov = 60◦)

Resolution Only Octree/ Ratio Octree/ Ratio
Quadtree (%) Quadtree (%)

BRAIN 256× 256 1841140 144107 7.83 75968 4.13
512× 512 ” 114999 6.25 74153 4.03

HEAD 256× 256 1041109 412407 39.61 253023 24.30
512× 512 ” 392558 37.71 247550 23.78

BONESKIN 256× 256 3593793 1246309 34.68 980304 27.28
512× 512 ” 1126928 31.36 926174 25.77

ENGINE 256× 256 1111569 147302 13.25 122394 11.01
512× 512 ” 151573 13.64 114239 10.28

VM1BONESKIN 384× 384 6152250 972882 15.81 611788 9.94
768× 768 ” 769964 12.52 684415 11.12

VM2BONE 340× 1024 6684695 2556224 38.24 2071589 30.99
VM2SKIN 340× 1024 84222607 6105606 7.25 4500617 5.34

(b) Octree and Quadtree (Approximate Visibility Test)

Table 2: Average Ratios of Voxels Visited

15

7.83 (orthographic projection) and 4.13 (perspective projection) per cent as many voxels are visited

with respect to the octree-only rendering. For HEAD ((e) and (f)), 39.61 (orthographic projection)

and 24.30 (perspective projection) per cent of voxels are visited, where the occlusion culling is not as

efficient and is inherently more difficult due to its holes and chinks on the skull.

In Table 3, we show complete timing results that compare the rendering times of the accelerated

splatting algorithms. In most tested cases, a simple addition of visibility test based on image-space

data structures produces substantial speedups with respect to the splatting algorithm optimized with

octree only. As analyzed in the above, both visibility test methods tend to perform better when the

a large continuous portion of the front surface is opaque and/or perspective projection is used.

In addition, we observe another tendency that governs the rendering times. As indicated by the

timings in the table, the approximate visibility test based on quadtree generally results in faster

rendering than the accurate test based on range tree. An exception is found in rendering the second

Visible Man data (VM2BONE and VM2SKIN) where the accurate test method is faster. In the two

rendering cases, the accurate method accidentally outperform the approximate method in occlusion

culling pretty much (see the ratios of visited voxels in Table 2.), hence turned out faster despite its

higher costs. Furthermore, the efficiency of the two proposed visibility tests drops off as the image

size increases. These properties of our visibility test methods are, in fact, well explained by the time

complexities, summarized in Table 4. Recall that n, m, and l are dimensions of rendered image,

footprint table, and projected area, respectively, and p is the number of pixels that become opaque

as a result of splatting. These are the costs that must be paid to efficiently cull occluded voxels.

Although these complexities are for the worst case, and the average costs are much lower, they offer

a clue for understanding how the timing performance varies as the four parameters change. Clearly,

the accurate test method is more expensive. Notice also that when we increase the image size n for a

fixed volume data size, all other parameters usually become bigger. This entails the cost increase in

tree update and visibility test, that cancels the gain obtained by culling invisible voxels, hence often

deteriorates the general performance.

Before turning to the next subsection, we report an experimental result that compares the proposed

methods with another possible visibility test method. As discussed in Subsection 2.3.3, a different

accurate visibility test, called the overlay technique, was used in [12]. While the method was not

proposed for splatting, it can be easily implemented in our splatting algorithm. Table 5 shows its

performances for the selected datasets. The overlay technique offers an accurate visibility test, however,

16

(a) BRAIN (ON) (b) BRAIN (OQ, OP)

(c) BRAIN (OQ, PP) (d) HEAD (ON)

(e) HEAD (OQ, OP) (f) HEAD (OQ, PP)

Figure 7: Octree Nodes Visited During Splatting (ON:Octree Only, OQ:Octree + Quadtree,
OP:Orthographic Proj., PP: Perspective Proj.)

17

(Unit: Sec.)

Classification Image
Orthographic Perspective (fov = 60◦)

Resolution Octree Octree/ Speed- Octree Octree/ Speed-
Only Range Tree up Only Range Tree up

BRAIN 256× 256 2.50 0.49 5.10 4.59 0.58 7.91
512× 512 3.22 1.16 2.78 5.44 1.01 5.39

HEAD 256× 256 2.03 1.41 1.44 3.28 1.60 2.05
512× 512 3.08 2.96 1.04 4.14 2.82 1.47

BONESKIN 256× 256 6.59 4.08 1.62 11.43 5.74 1.99
512× 512 10.64 8.86 1.20 15.18 10.39 1.46

ENGINE 256× 256 1.73 0.61 2.84 3.05 0.90 3.39
512× 512 2.14 1.36 1.57 3.58 1.66 2.16

VM1BONESKIN 384× 384 8.37 2.63 3.18 15.23 3.43 4.44
768× 768 10.49 5.28 1.99 16.85 5.88 2.87

VM2BONE 340× 1024 15.17 9.10 1.67 25.80 10.56 2.44
VM2SKIN 340× 1024 113.94 17.07 6.67 203.24 17.90 11.35

(a) Octree and Range Tree (Accurate Visibility Test)

(Unit: Sec.)

Classification Image
Orthographic Perspective (fov = 60◦)

Resolution Octree Octree/ Speed- Octree Octree/ Speed-
Only Quadtree up Only Quadtree up

BRAIN 256× 256 2.50 0.46 5.43 4.59 0.49 9.37
512× 512 3.22 0.80 4.03 5.44 0.78 6.97

HEAD 256× 256 2.03 1.34 1.51 3.28 1.48 2.22
512× 512 3.08 2.45 1.25 4.14 2.39 1.73

BONESKIN 256× 256 6.59 3.88 1.70 11.43 5.49 2.08
512× 512 10.64 7.96 1.34 15.18 9.45 1.61

ENGINE 256× 256 1.73 0.52 3.33 3.05 0.79 3.86
512× 512 2.14 1.03 2.08 3.58 1.35 2.65

VM1BONESKIN 384× 384 8.37 2.50 3.35 15.23 3.23 4.72
768× 768 10.49 4.44 2.36 16.85 5.04 3.34

VM2BONE 340× 1024 15.17 9.55 1.59 25.80 13.02 1.98
VM2SKIN 340× 1024 113.94 19.45 5.86 203.24 23.94 8.49

(b) Octree and Quadtree (Approximate Visibility Test)

Table 3: Average Rendering Times and Speedups

18

Tree Update Visibility Test

Octree/Range Tree (Accurate) O(p log n log m + log2 n) O(log2 l)
Octree/Quadtree (Approximate) O(p log m + log n) O(1)

Table 4: Time Complexity of the Two Visibility Tests

it takes unnecessarily large area for occlusion checking. As expected, this test method does not cull

invisible voxels as efficiently as our accurate test method based on range tree (compare the “Ratio”

columns in Table 2(a) and Table 5(a).) In spite of its cheap update and visibility test costs, based on

quadtree, the entire rendering times become slower than our accurate method due to its poor capacity

for occlusion culling (Table 5(b)). The graph in Figure 8 shows the relative timing performances of

the three techniques for visibility test, where the timings for our accurate test are normalized to one.

We can see that our test methods considerably outperform the overlay technique. Besides, we observe

that the performance difference is larger in the favorable cases such as BRAIN and ENGINE where the

objects quickly occlude the screen. In the cases such as HEAD and BONESKIN where it is inherently

difficult to exploit image-space coherence, the difference gets relatively smaller.

3.3 Visual Artifacts of the Approximate Visibility Test

A problem with the faster quadtree-based approximate visibility test is that it may introduce aliases

in rendering. It is possible to cull an octree node that, in fact, contains visible voxels. In order to

investigate the visual errors produced by this approximate method, we compared the pixel-by-pixel

differences in images rendered with the two test methods. Figure 11 illustrates the typical pattern of

visual artifacts found in images splatted with the approximate method. The images (c) and (f) are

made by computing the Euclidean distances, in RGB-space, between pixel colors of two corresponding

images (a), (b) and (d), (e), respectively, and coloring them using a linearly varying color map (0-

white, 1-yellow, 2-green, 3-cyan, 4-blue, 5-magenta, 6-red, 7-grey, greater than 8-black). Each dot in

the images (c) and (f) corresponds to a pixel. The visual errors are usually found near the boundary

of objects, however, most of them have the distances less than 6 or 7, which are very hard to discern

visually.

As mentioned before, an error of the occlusion test in polygon rendering can cause missing polygons

that often produce ugly spots on the polygonal surfaces. In splatting, such an error can cause some

of the voxels, affecting image plane pixels, to fail to be accumulated, and the effect is not as severe

as in polygonal rendering. In fact, the splatting algorithm itself approximates the visibility of voxels.

19

Classification Image Octree
Orthographic Perspective (fov = 60◦)

Resolution Only Octree/ Ratio Octree/ Ratio
Quadtree (%) Quadtree (%)

BRAIN 256× 256 1841140 374010 20.31 228755 12.42
512× 512 ” 604015 32.81 273521 14.86

HEAD 256× 256 1041109 636374 61.12 461052 44.28
512× 512 ” 781471 75.06 531907 51.09

BONESKIN 256× 256 3593793 1747621 48.63 1499644 41.73
512× 512 ” 2111928 58.77 1697359 47.23

ENGINE 256× 256 1111569 354015 31.85 275563 24.79
512× 512 ” 486646 43.78 317345 28.55

(a) Ratios of Voxels Visited

(Unit: Sec.)

Classification Image
Orthographic Perspective (fov = 60◦)

Resolution Octree Octree/ Speed- Octree Octree/ Speed-
Only Quadtree up Only Quadtree up

BRAIN 256× 256 2.50 0.82 3.05 4.59 0.99 4.64
512× 512 3.22 1.56 2.06 5.44 1.42 3.83

HEAD 256× 256 2.03 1.68 1.21 3.28 2.14 1.53
512× 512 3.08 3.02 1.02 4.14 3.29 1.26

BONESKIN 256× 256 6.59 4.64 1.42 11.43 7.03 1.63
512× 512 10.64 9.48 1.12 15.18 11.87 1.28

ENGINE 256× 256 1.73 0.86 2.01 3.05 1.24 2.46
512× 512 2.14 1.55 1.38 3.58 2.00 1.79

(b) Speedups over Octree-Only Splatting

Table 5: The “Overlay” Technique for Accurate Visibility Test [12]

20

1.0

1.1

1.8

1.7

1.6

1.5

1.4

1.3

1.2

0.1

0.6

0.7

0.8

0.9

BRAIN

256 256 512512
2 222

op pp ppop

HEAD

256 256 512512
2 222

op pp ppop

ENGINE

256 256 512512
2 222

op pp ppop

BONESKIN

256 256 512512
2 222

op pp ppop

Quadtree (Overlay) - Accurate

Range Tree - Accurate

Quadtree - Approximate

Figure 8: Comparisons between the Three Test Methods

21

Although the approximate test could add more possible errors in voxel visibility, we observe that the

visual artifacts, additionally introduced by the approximate test, are hard to tell in most renderings

we generated. Notice that the visual artifacts could be diminished by enlarging the projected area by

ε-distance without harming the rendering speed of the approximate method. Developing an effective

way of controlling the size is left as the future research.

4 Conclusions

In this paper, we have presented techniques that enhance the speed of splatting by exploiting both

object-space and image-space coherence. In particular, we proposed the two visibility test methods

suitable for octree-based splatting. The first one offers an accurate occlusion test based on dynamically

maintained image-space range tree. The second one employs an approximate test using quadtree, and

provides faster rendering. While it could lead to visual artifacts in splatted images, the aliases are

usually found very small. Our methods accelerate the splatting algorithm by trying to visit only

the voxels that actually affect the rendering computation. Notice that a sequence of floating-point

operations, such as splatting a voxel with a footprint table, is executed very fast by modern CPUs,

equipped with high-performance compilers. Hence, not visiting a voxel may produce infinitesimal

savings in computation. In spite of the additional costs for possibly slower operations for maintaining

object-space and image-space data structures, however, the rendering speed improves on the whole

by avoiding traversal of the vast number of voxels. Tests with several datasets of useful sizes and

complexities showed substantial speedups with respect to the splatting algorithm, enhanced with

octree only. Considering that they are simple to implement, and need little additional memory for

dynamically maintaining image-space data structures, our techniques will be used as very effective

splatting methods.

Acknowledgments

We would like to thank Nelson Max for his insightful comments on the first draft. We are also grateful

to the anonymous reviewers for their helpful comments and suggestions.

22

(a) BRAIN (b) HEAD (c) BONESKIN (d) ENGINE

(e) VM1BONESKIN (f) VM2BONE (g) VM2SKIN

Figure 9: Splatted Images of Test Datasets (Orthographic Projection)

23

(a) BRAIN (b) HEAD (c) BONESKIN (d) ENGINE

(e) VM1BONESKIN (f) VM2BONE (g) VM2SKIN

Figure 10: Splatted Images of Test Datasets (Perspective Projection)

24

(a) BRAIN (Range Tree) (b) BRAIN (Quadtree)

(c) BRAIN (Difference) (d) HEAD (Range Tree)

(e) HEAD (Quadtree) (f) HEAD (Difference)

Figure 11: Visual Artifacts of the Approximate Visibility Test (Color map in (c) and (f): 0-white,
1-yellow, 2-green, 3-cyan, 4-blue, 5-magenta, 6-red, 7-grey, greater than 8-black)

25

References

[1] R. Crawfis. Real-time slicing of data-space. In Proceedings of Visualization ’96, pages 271–279,

October 1996.

[2] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. In Proceedings of the 1992

Workshop on Volume Visualization, pages 91–98, 1992.

[3] N. Greene. Hierarchical polygon tiling with coverage masks. Computer Graphics (ACM SIG-

GRAPH 96), pages 65–74, 1996.

[4] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer visibility. Computer Graphics (ACM

SIGGRAPH 93), pages 231–238, 1993.

[5] I. Ihm and R. Lee. On enhancing the speed of splatting with indexing. In Proceedings of Visual-

ization ’95, pages 69–76, October 1995.

[6] A. Kaufman, editor. Volume Visualization. IEEE Computer Society Press, 1991.

[7] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization of the viewing

transformation. Computer Graphics (ACM SIGGRAPH 94), 28(4):451–458, 1994.

[8] D. Laur and P. Hanrahan. Hierarchical splattings : A progressive refinement algorithm for volume

rendering. Computer Graphics (ACM SIGGRAPH 91), 25(4):285–288, 1991.

[9] M. Levoy. Display of surface from volume data. IEEE Computer Graphics and Applications,

8(3):29–37, 1988.

[10] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–261,

July 1990.

[11] Y. Livnat and C. Hansen. View dependent isosurface extraction. In Proceedings of Visualization

’98, pages 175–180, October 1998.

[12] D. Meagher. Efficient synthetic image generation of arbitrary 3-D objects. In Proceedings of IEEE

Conf. on Pattern Recognition and Image Processing, pages 473–478, June 1982.

26

[13] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. High-quality splatting on rectilinear grids with

efficient culling of occluded voxels. IEEE Transactions on Visualization and Computer Graphics,

5(2):116–134, April-June 1999.

[14] K. Mueller and R. Yagel. Fast perspective volume rendering with splatting by using a ray-driven

approach. In Proceedings of Visualization ’96, pages 65–72, October 1996.

[15] G. M. Nielson, H. Hagen, and H. Müller. Scientific Visualization: Overviews, Methodologies, and

Techniques. IEEE Computer Society Press, 1997.

[16] NLM. http : //www.nlm.nih.gov/research/visible/visible human.html, 1997.

[17] F. Preparata and M. Shamos. Computational Geometry: Introduction. Springer-Verlag, 1985.

[18] R. Reynolds, D. Gordon, and L. Chen. A dynamic screen technique for shaded graphics display

of slice-represented objects. Computer Vision, Graphics, and Image Processing, 38(3):275–298,

1987.

[19] C. Upson and M. Keeler. V-buffer: Visible volume rendering. Computer Graphics (ACM SIG-

GRAPH 88), 22(4):59–64, 1988.

[20] L. Westover. Interactive volume rendering. In Proceedings of the Chapel Hill Workshop on Volume

Visualization, pages 9–16, 1989.

[21] L. Westover. Footprint evaluation for volume rendering. Computer Graphics (ACM SIGGRAPH

90), 24(4):367–376, 1990.

[22] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM Transactions on

Graphics, 11(3):201–227, July 1992.

[23] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer Graphics and

Applications, 12(5):19–28, Sept. 1992.

27

