
Compression-Based 3D Texture Mapping
for Real-Time Rendering1

Chandrajit Bajaj� and Insung Ihm� and Sanghun Park�

�Department of Computer Sciences, The University of Texas at Austin, U.S.A.; and�Department of

Computer Science, Sogang University, Korea; and�TICAM, The University of Texas at Austin, U.S.A.

Received ??; accepted ??

While 2D texture mapping is one of the most effective rendering techniques that

make 3D objects appear visually interesting, it often suffers from visual artifacts

produced when 2D image patterns are wrapped onto the surface of objects with

arbitrary shapes. On the other hand, 3D texture mapping generates highly natural

visual effects in which objects appear carved from lumps of materials rather than

laminated with thin sheets as in 2D texture mapping. Storing 3D texture images

in a table for fast mapping computations, instead of evaluating procedures on the

fly, however, has been considered impractical due to the extremely high memory

requirement. In this paper, we present a new effective method for 3D texture

mapping designed for real-time rendering of polygonalmodels. Our scheme attempts

to resolve the potential texture memory problem by compressing 3D textures using a

wavelet-based encoding method. The experimental results on various non-trivial 3D

textures and polygonal models show that high compression rates are achieved with

few visual artifacts in the rendered images and a small impact on rendering time.

The simplicity of our compression-based scheme will make it easy to implement

practical 3D texture mapping in software/hardware rendering systems including the

real-time 3D graphics APIs like OpenGL and Direct3D.

Key Words: texture mapping; 3D texture; data compression; wavelet; real-time rendering; OpenGL

1. INTRODUCTION

Texture mapping is one of the most powerful rendering techniques that make three-
dimensional objects appear visually more complex and realistic [9]. Two-dimensional
texture mapping has been popular in creating many interesting visual effects by projecting
2D image patterns onto the surface of solid objects. While it has proved very useful
in adding realism in rendering, 2D texture mapping suffers from the limitation that it is

�This work has been supported in part by the Ministry of Information & Communication of Korea under
University Foundation Research Program 2000.

1



often difficult to wrap 2D patterns, without visual artifacts, onto the surface of objects
having complicated shapes. As an attempt to alleviate the computational complications of
wrapping as well as to resolve the visual artifacts, Peachey [14] and Perlin [15] presented
the use of space filling 3D texture images, called solid textures. Many of the textures found
in nature such as wood, marble, and gases, are easily simulated with solid textures that
map three-dimensional object space to color space [5]. Unlike 2D textures, they exist not
only on the surface of objects but also inside the objects. Texture colors are assigned to
any point of the entire solid object simply by evaluating the specified functions or codes
according to their positions in 3D space. The 3D solid texture mapping can be viewed as
immersing geometric objects in virtual volumes associated with 3D textures, and obtaining
necessary texture colors from the solid textures. This 3D texture mapping produces highly
natural visual effects in which objects appear carved from lumps of materials rather than
laminated on the surfaces as in 2D texture mapping. The difference between 2D and 3D
mappings is prominent particularly when objects have complicated geometry and topology
since 3D textures are not visually affected by the distortions that exist in object parameter
space.

Many useful 3D textures are generally synthesized procedurally instead of painting
or digitizing them (Refer to [5] for several interesting examples.). They are based on
mathematical functions or programs that take 3D coordinates of points as input, and
compute their corresponding texture values. The evaluation is usually carried out on the fly
during the rendering computation. While procedural texturemodels providea very compact
representation, evaluating procedural textures as necessary during texture mapping leads
to slower rendering than accessing pre-sampled textures stored in simple arrays.

While using sampled 3D texture maps in 3D volumetric form is faster, they tend to
take up a large amount of texture memory. For example, when a 3D RGB texture with
resolution ��� � ��� � ��� is represented in one byte per color channel, it requires
48 Mbytes (=50,331,648bytes) of texturememory. Although some recent graphics systems
allow the use of main memory for textures, such texture memory costs are an impossible
burden on most current graphics systems. Storing several elaborate textures with higher
resolution, say, ���� ���� ���would be prohibitive even to the most advanced rendering
systems. Obviously, there is a tradeoff between the size of texture memory and the
computation time. Explicitly storing sampled textures in dedicated memory, and fetching
texture colors as necessary, as in the current graphics accelerator supporting real-time 2D
texture mapping, can generate images faster than evaluating them on the fly. To make
this feasible for 3D texture mapping, however, an efficient way of manipulating potentially
huge textures needs to be invented.

This paper presents a new and practical scheme for real-time 3D texture mapping which
is easily implemented. Our technique relies on 3D RGB volume compression and efficient
processing of compressed solid textures. The idea of rendering directly from compressed
textures has been presented first in [3], where they used vector quantization to compress 2D
textures in simple or mipmap form. Texture compression saves memory space for storing
textures aswell as decreases the systembandwidth required for texturing,which allowsmore
detailed textures to be used with improved performance. Recently, several 3D hardware
accelerator vendors have adopted various compression techniques in implementing 2D
texture mapping in hardware [1, 17, 21]. To compress 3D textures, we use a wavelet-based
compression method that provides fast decoding to random data access, as well as fairly
high compression rates [2]. This compression technique exploits the power of wavelet



theory and naturally provides multi-resolution representations of 3D RGB volumes. With
this compression method, we can store mipmaps for 3D textures of non-trivial resolutions
very compactly in texture memory. Its fast random access decoding ability also results in
only a small impact on rendering time. The simplicity of our new 3D texture mapping
scheme makes it easy to implement in software/hardware rendering systems. Furthermore,
3D real-time graphics APIs like OpenGL and Direct3D can be extended with little effort
to include 3D texture mapping without heavy demand for very large texture memory.

The rest of this paper is organized as follows: In Section 2, we provide a detailed
description of the new compression-based 3D texture mapping technique. Experimental
results on various 3D textures and polygonal objects are reported in Section 3, and the
paper is concluded in Section 4.

2. A NEW 3D TEXTURE MAPPING SCHEME

In this section, we describe the new 3D texture mapping method suitable for real-time
rendering of polygonal models. The idea presented here can also be used effectively in
other rendering systems such as RenderMan [16] to enhance the texture mapping speed.
The key point in our texture mapping scheme is to extract only the necessary portion from
the full 3D texture map, then compress it in compact form where fast run-time decoding
for random access to texels is possible. In particular, the compression method we apply
is based on wavelet theory, and naturally supports multi-resolution representations of 3D
textures. This capability of the compression method makes it easy to construct a 3D texture
mipmap using a small amount of texture memory. Fig. 1 illustrates the 3D texture mapping
pipeline in which the first three steps, 3D Texture Modeling, 3D Texture Cell Selection, and
3D Texture Compression comprise the necessary pre-processing stages. In the following
subsections, we provide detailed explanations of the various stages in the pipeline.

2.1. 3D Texture Modeling
Our scheme assumes, as an input texture, a sampled 3D RGB texture stored in a 3D

array. It is generated by sampling texel values from a three-dimensional texture field that is
usually described procedurally. The storage requirements are very high for uncompressed
3D texture images at reasonable resolution: ���� and ���� RGB textures need 48 Mbytes
and 384 Mbytes, respectively. This is one of the reasons which make fast 3D texture
mapping with stored textures appear impractical.

In the texture modeling stage, a polygonal object in its object space � �� � ���� �� ��

� �� � �� �� � � �� is textured by putting it in a 3D texture defined in the texture
space ��� � ���� �� 	� � � � �� �� 	 � ��, and finding the intersection of the object’s
surface and the solid texture. Texturing an object can be viewed as determining a function

 	 ��� �� ���. This function 
 can be chosen arbitrarily.

2.2. 3D Texture Cell Selection
Once a mapping between a polygonal object and a 3D texture map is fixed, the unneces-

sary texture data is eliminated to reduce storage space. Consider an� ������� texture. In
our scheme, the texture data is subdivided into small subblocks of size � �������, called
texture cells (In the current implementation, the resolution of texture cell is 
�
�
.). The
texture cell is a basic unit for selecting texture data that is actually needed for rendering.

In this 3D texture cell selection stage, each polygon on the boundary of an object is
3D-scan-converted to find all the texture cells that intersect with the surface of the solid



3D�Texture�Modeling

3D�Texture�Cell�Selection

Polygonal�Model�with
3D�Texture

Polygonal�Model�with
Compressed�3D�Texture

Polygonal�Rendering

Polygonal�Model�with
�Selected�3D�Texture�Cells

3D�Texture�Compression

Final�Raster�Image

Polygonal�Model 3D�Texture�Map

Subsection�2.1

Subsection�2.2

Subsection�2.3

Subsection�2.4

FIG. 1. Compression-based 3D texture mapping pipeline



object. Notice that texels in the selected texture cells contain all the texture information
necessary for rendering. The cells that are not chosen are replaced by null cells, that is,
cells with black color. By keeping nearby texels surrounding the surface of an object in
this intermediate stage, a large portion of texture data is removed to alleviate the potential
prohibitive storage requirement. The selected texture cells take only a small percentage of
the original texture data. The null cells still exist in the texture map in this stage, and the
texture size remains the same. However, the spatial coherence created by null cells makes
an encoding scheme efficiently compress the 3D texture in compact form in the next stage.

2.3. 3D Texture Compression
2.3.1. Choosing an Appropriate Compression Technique

There exist many data compression methods for efficient storage and transmission. It
is very important to choose a compression technique which is most appropriate for this
specific 3D texture mapping application. We have several issues to consider as similarly
discussed in [3, 11]:

1. High compression rate and visual fidelity. Non-trivial 3D textures are often very
large in size, ranging from a few dozen megabytes to several hundred megabytes. When
a mipmap is used for a pre-filtered multi-resolution representation, the size gets even
larger. Developing real-time applications with such data assumes, implicitly or explicitly,
that the entire data is loaded into main memory for efficient run-time processing. This
places an enormous burden on storage space as well as transmission bandwidth. While
lossless compression techniques preserve data without introducing reconstruction errors,
they often fail to achieve compression rates high enough for practical implementation of
3D texture mapping. The loss of information associated with lossy compression methods,
however, needs to be controlled properly as it is important to minimize the distortion in the
reconstructed textures.

2. Fast decoding for random access. The general concern of most lossy compression
schemes is achieving the best compression rate with minimal distortion in the reconstructed
images [7, 18]. Such compression methods, however, often impose constraints on the
random access decoding ability, which makes them inappropriate for real-time texture
mapping applications where it is difficult to predict data access patterns in advance. For
instance, variable-bitrate or differential encoding schemes such as Huffman or arithmetic
coders coupled to block JPEG or MPEG schemes, do not lend themselves to efficiently
decode individual texels that are accessed in a random pattern during run-time.

3. Multi-resolution representation. Mipmapping is the most commonly used anti-
aliasing technique for 2D texture mapping [22]. A mipmap of a 2D texture is a pyramid
of pre-filtered images obtained by averaging down the original image to successively
lower resolutions. Mipmapping with level-of-detail representations of textures offers fast
and constant filtering of texels, and its simplicity lends itself to an efficient hardware
implementation. The idea naturally extends to 3D textures although mipmaps for 3D
textures are considered even more impractical due to the additionalmemory requirement. It
is highly recommended to choose a compression technique that provides a multi-resolution
representation in its compression scheme.

4. Exploitation of 3D data redundancy. 3D textures are three-dimensional data that
exhibits redundancy in all three dimensions. A compression scheme devised for 2D images
could be applied to compress each slice in 3D textures, however, a good compression



technique must be able to fully exploit data coherence in all three dimensions to maximize
the compression performance.

5. Selective block-wise compression. In some applications like ours, it is more efficient
to selectively compress a certain portion of data rather than the entire dataset. It is very
desirable that a compression scheme includes this selective compression capability in its
encoding algorithm for the effective compression.

2.3.2. The Zerobit Encoding Scheme

The above five desirable characteristics are common to most real-time applications that
must handle discrete sampled data of very large sizes. Vector quantization has been popular
in developing such applications mainly because it supports fast random decoding through
table lookups [6]. Some recent applications of vector quantization in the computer graphics
field, include compression of CT/MRI datasets [12], light fields [11], and 2D textures [3].
Some 3D graphics accelerators, for example, the PowerVR architecture [21], adopted vector
quantization for 2D texture mapping. Some other compression techniques have also been
developed for compressing 2D texture maps. The S3 texture compression scheme S3TC,
which became the basis for the compressed texture format used in DirectX 6.0, breaks a
texture map in 
 � 
 blocks of texels [17]. Each block is stored with a 32 bit bitmap –
2 bits per texel, and two representative 16 bit colors. The two bit index of a texel points
to a four color lookup table, made of the two explicitly encoded colors and two additional
colors that are derived by uniformly interpolating the explicitly encoded colors. The FXT1
scheme of 3dfx also divides a texture image into 
� 
 and/or 
� � texel blocks [1]. It uses
four different compression algorithms, one of which is similar to S3TC. In this scheme, the
best algorithm is chosen per block to generate the highest quality result.

Recently, a new compression scheme for 3D RGB images has been developed as an
alternative to vector quantization [2]. This technique, called zerobit encoding, is suitable
for applications wherein data is accessed in an unpredictable manner, and real-time per-
formance of decoding is required. It extends the idea of the compression scheme [10]
for 3D gray-scale volume data to compression of 3D RGB images, and its new encoding
structure significantly improves decompression speeds. Unlike vector quantization, the
zerobit encoding scheme, based on the wavelet theory, naturally offers a multi-resolution
representation for 3D images. Experimental results on test datasets show that this com-
pression scheme provides fast random access to compressed data in addition to achieving
fairly high compression rates.

Like other transform coding algorithms, the compression scheme consists of three major
stages: transform, quantization and encoding. A 3D RGB image is first partitioned into
�������� blocks,called unit blocks. They are subdivided into 
�
�
 blocks,called cells,
to which the 3D Haar transform is applied twice to exploit data coherence in all of the three
dimensions. The level of wavelet compression is controlled by specifying a target ratio � of
non-zero coefficients that survive the truncation. From this target ratio, the corresponding
threshold value 
 is computed where 
 is the norm of the (� 	 the total number of voxels)-th
largest coefficient. After the transform, the wavelet coefficients with norm that is smaller
than 
 are truncated. Once the truncated coefficients are replaced by zeros, the non-
zero wavelet coefficients are quantized into 8 bit indices with codebooks having 24 bit
codewords. In the last stage of compression, the strings of symbols coming from the
quantizer are losslessly encoded using the zerobit encoding technique, which supports
fast decoding for random access to compressed 3D images (Fig. 2). As a result of two



0�1�1�0�0�1�0�1�0�0�1�0�0�1�0�0

Cell�Information�Array
(CIA)

zerobit offset

average index

detail offset

Cell�Bit�Flag�Table
(CBFT)

Detail�Index�Stream
(DIS)

N

A�16x16x16�Unit�Block

Shared�Codebooks
(SC)

Average Detail

R������G������B R������G������B

0
1
2

255

249

124 233 12 33

-12 44 -37

0�1�0�1�0�0�0�0�0�0�0�1�1�0�0�0

1�0�1�0�0�1�1�1�0�0�1�0�0�0�0�0

0�1�0�0�0�0�1�0�0�0�0�0�0�0�1�0

0�1�1�0�0�1�0�0

0�0�0�0�1�0�0�0

1�0�0�0�0�1�1�1

0�0�0�0�0�1�1�1

0�0�1�0�0�0�1�0

21

24

zerobit offset

average index

detail offset

zerobit offset

average index

detail offset

0�0�0�1�0�0�1�0

0�0�1�1�0�1�0�0

0�0�0�0�1�0�1�0

0�0�1�0�1�0�0�0

28

7 8 9

Number�of�Non-Null�Cells
(NNNC)

19

Zerobit�and�Significance
Map�Stream�(ZSMS)

level-1 zerobits

significance

map

level-0 zerobit

249

35

33

180

45

48

7

N
N

N 0
2

N
5 N

4
N

1 N
3

N
N

N 6 N 7

10 N 11 N

N 16 17 N

N
8

N

14
N

N

N
N

N

+

210

73

36

1 24

124

41

0 28

217

49

N: null cell

FIG. 2. The zerobit encoding scheme [2]



TABLE 1a

Comparisons of the Two Compression Schemes: Compression Rates and Fidelity [2]

Vector Zerobit Encoding
Quantization 2% 3% 4% 5%

buddha Size (MB) 8.81 2.11 2.90 3.63 4.31
Comp. Rate 21.79 91.11 66.26 52.89 44.51
PSNR (dB) 38.00 39.26 41.70 43.63 45.18

dragon Size (MB) 9.52 2.31 3.15 4.09 5.02
Comp. Rate 20.18 83.03 60.87 46.99 38.21
PSNR (dB) 35.58 31.00 32.17 33.37 34.40

TABLE 1b
Comparisons of the Two Compression Schemes: Average Rendering Times (in

Frames Per Second) [2]

Vector Zerobit Encoding
Quantization 2% 3% 4% 5%

buddha st-lerp 9.46 13.60 13.60 13.60 13.60
uvst-lerp 2.68 2.99 2.98 2.98 2.98

dragon st-lerp 17.55 24.60 24.44 24.20 23.97
uvst-lerp 5.66 5.74 5.71 5.66 5.62

applications of the 3D Haar transform, one average coefficient, one set of seven detail
coefficients on level 0, and 8 sets of seven detail coefficients on level 1 are generated that
represent three levels of detail. In order to reconstruct a voxel value, the average, the details
on level 0, and an appropriate set of details on level 1 are necessary. Since only 1 to 10 per
cent of coefficients are usually used in compression, most detail coefficients are zeroed out
after truncation, and the resulting null coefficients exist in thick clusters. The zerobits in
the encoding scheme are flags that indicate whether each set of detail coefficients contains
only null coefficients. When a set includes zero coefficients only, neither decoding of its
seven details nor application of the inverse transform is necessary. The zerobit encoding
scheme is designed to quickly determine null sets of detail nodes using zerobits, which
provides large savings in the reconstruction computation. Refer to [2] for the details on the
encoding scheme. Notice that the texture cell in our 3D texture mapping scheme naturally
corresponds to the cell in this compression technique.

Table 1 shows sample statistics on the performance of the zerobit encoding and vector
quantization used in [11] for two representative light field datasets buddha and dragon
with resolution �� � �� � ��� � ��� (192Mbytes) [2]. To apply the zerobit encoding
technique, the 4D sampled light field datasets were rearranged into 3D images, then were
compressed. While the vector quantization yielded compression rates 21.79 and 20.18 for
buddha and dragon, the zerobit encoding method produced higher rates of 44.51 to 91.11
and 38.21 to 83.03 at the selected four target ratios, respectively (Table 1a) 2. The PSNR
results show that the qualities of reconstructed images are about the same when about 2%

�These rates exclude the gzip compression, that could follow both compression methods for efficient storage
as in [11].



a b

FIG. 3. Image-based rendered images: (a) vector quantization, (b) zerobit encoding (3% of wavelet
coefficients used) [2]

and 5% of coefficients are used in zerobit encoding for the buddha and dragon datasets,
respectively (See Fig. 3 for the portion of two sample buddha images.) 3.

The image-based rendering time, spent on displaying 76 frames of ��� � ��� pixels
with gradually varying viewing parameters, was measured on an SGI workstation with a
195 MHz MIPS R10000 CPU. Two cases of bilinear interpolation on the ��-plane (st-lerp)
and quadralinear interpolation on both ��- and ��-planes (uvst-lerp) were tested (Table 1b).
The timing results show the zerobit encoding scheme generates more frames per second
for both datasets in most cases. Note that the reconstruction cost per data item for vector
quantization is very cheap since decompression is performed through a simple codebook
lookup, and is cheaper than zerobit encoding on average. However, zerobit encoding
decompresses several data items, 
 planes in this case, at the same time, and is very quick
particularly when data in empty background regions is reconstructed, which results in the
overall faster rendering.

While the empirical comparisons for a few applications can not prove that the zerobit
encoding method is always superior to vector quantization, we find the former compares
very favorably to the latter. In our 3D texture mapping technique, we use the zerobit
encoding scheme to compress the selected texture cells. As will be explained in the next
section, it also turns out to be very effective in compressing 3D textures.

2.4. Polygonal Rendering with Compressed Textures
2.4.1. A New Capability for OpenGL 1.2

When applying textures to geometric objects, the necessary texel values are repeatedly
fetched fromzerobit-encoded3D textures using their texture coordinates. The compression-
based 3D texture mapping can enhance the rendering speed in any rendering method
including time-consuming photo-realistic rendering. In our implementation, we applied
our scheme to real-time renderingand extended the OpenGL library to include the feature of
3D texture mapping with zerobit-encoded textures. Note that 3D texture mapping has been a
commonlyavailable extension to several vendor’sOpenGL1.1 implementations, and is now

�The mean-square peak-signal-to-noise ratio (PSNR) is defined as PSNR (dB) = �� �����
��
����

��
where ��

����

is the peak value of the signal, and �� is the mean squared error. It is one of the frequently used objective fidelity
measures that indicates the size of the error relative to the peak value of the signal.



one of the core capabilities that must be supported by all OpenGL 1.2 implementations [19].
The glTexImage1D() and glTexImage2D() functions are extended for 3D texture mapping
where the command for specifying a three-dimensional texture image is defined as

���� glTexImage3D (����	
 target, ����� level, ����� internalformat, ����
�� width,
����
�� height, ����
�� depth, ����� border, ����	
 format, ����	
 type, �����
������ *texels);

With target �� ������� ��, this command reads a texture of size������������������,
that is stored in memory, pointed by texels, in internalformat. For a compressed texture, our
extension adds a symbolic constant �� �������� ���� ���������� for the parameter
type to read a compressed texture, whose texels are stored in unsigned character, on levels
level, level+1, and level+2.

When 3D texture mapping is enabled by calling glEnable(�� ������� ��), and a com-
pressed 3D texture is specified, the texture is assumed to be in compressed form, and texels
are fetched from the zerobit-encoded structure rather than a simple array. The extension
is easy to implement since the new capability can be included simply by adding proper
state variables and decoding functions. Other utility functions, such as creating encoded
3D textures with user-specified compression rates, could also be included in the OpenGL
Utility Library (GLU).

2.4.2. Compact Representation of 3D Mipmaps

A 3D mipmap is an ordered set of 3D arrays representing the same texture where each
successive array has a resolution lower than its previous one. 3D mipmapping is easily
included into our scheme since mipmaps as well as single 3D textures are represented very
compactly. Given a base 3D texture, the zerobit-encoded structure represents three levels
of detail with level number 0, 1, and 2. The reduced images on the next three levels can be
stored in another zerobit-encoded structure. An alternative is to store the texture images
with lower resolutions except on level 0, 1, and 2, in simple 3D arrays. The images on the
higher levels take up only a small amount of storage. For example, when a �����������

RGB texture image in unsigned character is loaded, the entire reduced images on levels
�� 
� 	 	 	 � � require only about 110 (
 ������� 
 ����� 
 	 	 	 ������) Kbytes in total.

2.5. Sharing of a 3D Texture between Multiple Objects
When a texture is compressed object by object, it could lead to a waste of texturememory.

That is, if a 3D texture is shared by multiple polygonal objects, the same 3D texture cells can
be replicated for several objects. We have been extending our method to support three types
of compression modes: The first mode, called zerobit encoding single object is one we
have described in this paper. The second mode zerobit encoding multiple objects is for
the case in which several polygonal objects share a common3D texture image. In this mode,
all the 3D texture cells that are used by at least one object are selected before encoding.
The last mode zerobit encoding entire texture handles the dynamic situation in which
it is difficult or impossible to predict which texture cells shall be used for rendering. For
instance, an interesting animation can be generated by making an object float in a texture
field, dynamically binding texture coordinates. In this case, the first two compression
modes are not appropriate. The third mode compresses the entire 3D texture and loads it
for rendering. While it is the most expensive one, this mode provides flexibility in texture
mapping.



a b

c d

FIG. 4. Sample slices from the four example 3D textures: (a) Bmarble, (b) Gmarbpol, (c) Wood, (d)
Eroded

3. EXPERIMENTAL RESULTS
3.1. Test Datasets

We have implemented our new 3D texture mapping scheme by extending the MESA 3D
Graphics Library which is a publicly available OpenGL implementation [13]. The current
version 3.0 supports the 3D texture mapping feature where the entire texture image is stored
in a simple array without any compression. We added the necessary state variables and
functions to handle zerobit-encoded 3D texture maps.

We have generated four different 3D texture images of size ���� ���� ��� (Fig. 4).
The texture images have three channel RGB colors, and their sizes amount to 48 Mbytes,
respectively. The three textures Bmarble, Wood, and Eroded were created using the
RenderMan surface shaders � 	� 
!"� �#$, %���#$, and �"����#$, respectively [20].
The surface shader &
!"��� � '� ��(#$ for the texture Gmarbpol was written by Larry
Gritz, and is available as a part of the Blue Moon Rendering Tools (BMRT). Our 3D texture
mapping technique has been applied to several polygonal models with various shapes and
sizes, including those listed in Table 2. The teapot model Teapot was polygonized from
a parametric equation. The model Dragon and the next three models Bunny, Sdragon
and Buddha were obtained from Viewpoint and the Stanford 3D Scanning Repository,
respectively. Lastly, the model Head was created by generating an iso-surface from the
UNC CT scan of a human head. The table shows how many 
 � 
 � 
 texture cells are
selected from the entire 262,144 (� �
��
��
) cells in ����������� textures through
the 3D texture cell selection stage. In general, the ratios of selected cells are quite small.
The rate is a little high for Head since the polygonal model has a complicated internal
structure as a result of iso-surfacing.



a b

c d

e f

FIG. 5. Images rendered with �� ������ from compressed textures (10%): (a) Teapot with Bmarble, (b)
Dragon with Wood, (c) Bunny with Eroded, (d) Sdragon with Wood, (e) Head with Gmarbpol, (f) Buddha
with Gmarbpol



TABLE 2

Ratios of Selected Texture Cells

Object # of Faces # of Selected Cells Ratio (%)

Teapot 1,152 7,836 3.0
Dragon 12,078 7,965 3.0
Bunny 69,451 16,137 6.2

Sdragon 202,520 11,950 4.6
Head 203,544 30,881 11.8

Buddha 293,232 9,600 3.7

TABLE 3a

Sizes of Compressed Textures: Bmarble and Gmarbpol (����)

Bmarble Gmarbpol
Object Target Ratio Size (KB) Comp. Rate Size (KB) Comp. Rate

Entire 3% 1154 42.6 1166 42.2
5% 1666 29.5 1602 30.7
10% 2814 17.5 2502 19.7

Teapot 3% 190 258.7 190 258.7
5% 226 217.5 210 234.1
10% 290 169.5 246 199.8

Dragon 3% 182 270.1 174 282.5
5% 222 221.4 198 248.2
10% 278 176.8 238 206.5

Bunny 3% 258 190.5 238 206.5
5% 326 150.8 278 176.8
10% 466 105.5 346 142.1

Sdragon 3% 220 223.4 210 234.1
5% 276 178.1 238 206.5
10% 360 136.5 286 171.9

Head 3% 318 154.6 310 158.6
5% 422 116.5 378 130.0
10% 626 78.5 518 94.9

Buddha 3% 202 243.3 194 253.4
5% 234 210.1 218 225.5
10% 306 160.6 274 179.4

3.2. Performances
To find out how compactly these 3D textures can be associated with the polygonal ob-

jects, we compressed selected texture cells for the entire 28 combinations as shown in
Table 3. In the zerobit encoding scheme, a user specifies a ratio of wavelet coefficients to
be used after truncation in order to control the degree of compression [2]. The number,
shown in the “Target Ratio" field of the tables, represents an approximate ratio of wavelet
coefficients that are actually used in encoding. We compressed 3D textures at three target
ratios 3%, 5%, and 10%, and rendered the polygonal objects with these compressed tex-
tures. In these tables, we compare sizes and compression rates for various cases where
“Entire" is for the zerobit encoding entire texture mode, and the others for the zero-
bit encoding single object mode. Observe that it took less than 1 Mbytes of memory
across all combinations, ranging from 174 Kbytes to 686 Kbytes when the single object
mode was used. Considering that the size of the original textures is 48 Mbytes, we see that
very high compression rates are indeed achieved through texture cell selection and zerobit
encoding.



TABLE 3b

Sizes of Compressed Textures: Wood and Eroded (����)

Wood Eroded
Object Target Ratio Size (KB) Comp. Rate Size (KB) Comp. Rate

Entire 3% 1282 38.3 1218 40.4
5% 1818 27.0 1726 28.5
10% 3006 16.4 2882 17.1

Teapot 3% 194 253.4 194 253.4
5% 230 213.7 226 217.5
10% 318 154.6 298 165.0

Dragon 3% 190 258.7 190 258.7
5% 230 213.7 230 213.7
10% 310 158.6 298 165.0

Bunny 3% 274 179.4 270 182.0
5% 342 143.7 334 147.2
10% 510 96.4 486 101.1

Sdragon 3% 222 221.4 230 213.7
5% 278 176.8 278 176.8
10% 390 126.0 390 126.0

Head 3% 330 149.0 330 149.0
5% 438 112.2 438 112.2
10% 686 71.7 670 73.4

Buddha 3% 206 238.6 206 238.6
5% 246 199.8 246 199.8
10% 334 147.2 330 149.0

Fig. 5 shows sample images rendered with the linear filter �� ����)� from the com-

pressed textures having a target ratio 10%. When the 3D textures are compressed with

target ratios higher than 10%, the texture-mapped images, produced with the linear filter,

are almost free of aliasing artifacts which are often caused by the loss of information during

lossy compression. In Fig. 6, we enlarged a portion of the Bunny images to make the

compression artifacts more visible. When the ratio is 3%, the blocky artifacts are clearly

visible, but most features are still preserved well enough for many real-time applications

such as 3D games and animation.

In order to check the timing performances, we measured the running time, spent on

rendering 54 frames of ���� ��� pixels with incrementally varying viewing parameters.

They include all computations for rendering including 3D texture mapping, view parameter

setting, and displaying the final images. The timings were measured on an SGI Octane

workstation with a 195 MHz R10000 CPU and 256 Mbytes of memory without hardware

graphics acceleration. Table 4 reports the average time per frame in seconds for three

difference rendering modes in which 48 Kbytes of texture cache was used (See the dis-

cussion on texture caching in Subsection 3.4.). The “GSO" field in this table is the time

taken for rendering the objects using Gouraud shading only, and indicates how complicated

is the involved rendering. Then, our new compression-based texturing scheme was com-

pared with texture mapping without compression to evaluate overheads for fetching texels

from compressed textures. Two filtering methods �� ��)���� and �� ����)�were tested

whose performances are shown in the “3DTMN" and “3DTML" fields, respectively. The



a b

c d

FIG. 6. Aliasing artifacts of compression-based 3D texture mapping (2X): (a) uncompressed (48 MB), (b)

compressed (10%, 486 KB), (c) compressed (5%, 334 KB), (d) compressed (3%, 270 KB)



running time is generally proportional to the number of pixels that objects are projected into.

As indicated by the test results, the zerobit encoding method provides very fast decoding

speeds. We observe only a 8 percent and a 9 percent impact on rendering time on average

for the nearest and the linear filter, respectively. Notice that the linear filtering method

takes, for instance, 0.43 second to render Teapot from its uncompressed texture of size

48 Mbytes. On the other hand, the same filtering takes 0.51 second to produce a Teapot

image with few visual artifacts from its compressed texture of size 290 Kbytes (target ratio

= 10%). The benefit from our compression-based 3D texture mapping is evident, and is

critical in particular when the texture memory resource is rather limited.

We have also generated two more elaborate textures of ��� � ��� � ��� whose sizes

are 384 Mbytes, and tested our texture mapping scheme with these huge textures (Table 5).

The experiments indicate that 510 Kbytes to 1.70 Mbytes of memory are required to store

the textures compressed at the target ratios 3%, 5%, and 10%, achieving compression

rates of 225.7 to 771.0 . Compared to the ���� textures, compression-based renderings

take 1.32 (Teapot with Bmarble) and 1.14 (Head with Gmarbpol) times as long on the

average for the ���� textures. We were not able to load the entire uncompressed textures

for rendering onto our workstation with 256 Mbytes of main memory, but expect that the

rendering times will also get slower at the same rate.

Fig. 7 makes a comparison between renderings with four different texture mapping

parameters. When Teapot is rendered from the ���� texture with a target ratio of 10%

and the linear filter (Fig. 7b), the texture pattern on the surface appears much clearer than

in the image, produced from the uncompressed ��� � texture with the same filter (Fig. 7a).

When the faster but inferior nearest filter is applied to the ���� texture with a target ratio

5% or 10% (Fig. 7d), consuming 0.23 second and 618 Kbytes (5%), or 0.26 second and

810 Kbytes (10%), respectively, the qualities are superior to the case in which the slower

but better linear filter is applied to the ���� texture with a target ratio 10%, requiring 0.51

second and 290 Kbytes. Obviously, there is a tradeoff between rendering time, image

quality, and memory requirement, and a choice of various texture mapping parameters

should be made to optimize the application’s needs.

3.3. Implementation of 3D Mipmapping

Implementing the mipmapping minimization filter involves two important tasks: One is

how to represent the mipmap of a 3D texture internally, and the other is how to determine

the level-of-detail factor � that indicates the level of reduced image to be applied. As

explained in Subsection 2.4.2, the zerobit encoding scheme represents three levels of detail

in its encoded structure, hence provides an effective way of 3D mipmap representation.

Computing � can be done by naturally extending the measure used in the 2D mipmapping.

Fig. 8a shows an example rendering of zerobit-encoded Bunny with levels of detail 0, 1,

and 2, where the detail measure � is colored using a linearly varying color map in Fig. 8b.



TABLE 4
Average Rendering Times (in Seconds): GSO - Gouraud Shading Only, 3DTMN -

3D Texture Mapping (Nearest), 3DTML - 3D Texture Mapping (Linear)

Object & Texture Target Ratio GSO 3DTMN 3DTML

Teapot uncomp. 0.05 0.15 0.43

with Bmarble 3% – 0.16 0.48

5% – 0.17 0.49

10% – 0.18 0.51

Dragon uncomp. 0.27 0.50 0.97

with Wood 3% – 0.53 1.06

5% – 0.55 1.09

10% – 0.58 1.13

Bunny uncomp. 1.03 1.44 1.93

with Eroded 3% – 1.61 2.12

5% – 1.65 2.18

10% – 1.72 2.32

Sdragon uncomp. 3.11 3.86 4.13

with Wood 3% – 3.87 4.31

5% – 3.89 4.37

10% – 3.92 4.44

Head uncomp. 2.98 3.90 4.70

with Gmarbpol 3% – 4.10 4.79

5% – 4.14 4.85

10% – 4.22 4.96

Buddha uncomp. 4.40 5.04 5.38

with Gmarbpol 3% – 5.10 5.57

5% – 5.12 5.59

10% – 5.12 5.64

TABLE 5a

Experimental Results on ���� Textures: Sizes of Compressed Textures

Object & Texture Target Ratio Size (KB) Comp. Rate

Teapot with Bmarble 3% 510 771.0
5% 618 636.3
10% 810 485.5

Head with Gmarbpol 3% 1110 354.3
5% 1358 289.6
10% 1742 225.7



TABLE 5b

Experimental Results on ���
� Textures: Average Rendering Times (in Seconds):

GSO - Gouraud Shading Only, 3DTMN - 3D Texture Mapping (Nearest),
3DTML - 3D Texture Mapping (Linear)

Object & Texture Target Ratio GSO 3DTMN 3DTML

Teapot with Bluemarble uncomp. 0.05 – –
3% – 0.21 0.60
5% – 0.23 0.62
10% – 0.26 0.66

Head with Gmarbpol uncomp. 2.98 – –
3% – 4.39 5.61
5% – 4.50 5.77
10% – 4.66 6.00

a b

c d

FIG. 7. Comparison between renderings with ���� and ���� textures (2X): (a) ���� (uncompressed &

linear, 48 MB), (b) ���� (10% & linear, 810 KB), (c) ���� (3% & linear, 510 KB), (d) ���� (10% & nearest,

810 KB)



a b

FIG. 8. 3D mipmapping with zerobit encoding: (a) mipmapped Bunny, (b) mipmap levels of detail

3.4. Texture Caching

Although the zerobit encoding scheme offers fast reconstruction of texel values, texture

caching can improve the rendering performance by exploiting the locality property of

texel reference [8, 4]. In our scheme, when a texel value is necessary, all texels in the


� 
� 
 texture cell containing it is simultaneously reconstructed for efficiency. Rather

than instantly throwing away used decompressed cells, storing them in a cache for the later

use can possibly saves decoding computations. In order to see how texture caching affects

the rendering performance, we experimented with a simple caching scheme. The texture

cache we used is a circular list of cells where they are pre-empted with an LRU replacement

policy. Note that each cell takes up 192 (= 
� 
� 
� �) bytes.

Table 6 presents the timings when the 3D linear filter was used over the various cache

sizes: 0 KB (no cache), 12 KB (64 cells), 24 KB (128 cells), 48 KB (256 cells), 96 KB (512

cells), and 192 KB (1024 cells). We tested with four representative combinations of

polygonal objects and 3D textures using the same renderingparameters as in Subsection 3.2.

When a fragment is textured with the linear filter, eight adjacent texels must be accessed.

Thus, there exists a significant amount of spatial locality as adjacent fragments generated

from polygons are rendered. Furthermore, there is an additional temporal locality of texel

reference since 54 incrementally varying frames are generated in the test. It is shown

that the hit rates are quite high for all tested cases, implying that the actual amount of

texture cells actively in use at a particular time, is relatively small compared with the total

compressed texture cells. We observe that the hit rates are particularly high across all

the tested cache sizes when objects have a modest number of polygons like Teapot and

Dragon (See Table 2 again.) In such a case, the effect of caching is prominent since

texels are simply fetched from the cache most of the time rather than decompressed from



TABLE 6

The Effects of Cache Size: Average Hit Rates & Rendering Times (in Seconds)

Target Cache Size

Object & Texture Ratio No Cache 12KB 24KB 48KB 96KB 192KB

Teapot Hit Rate (%) – 98.93 99.03 99.10 99.11 99.13

with Bmarble 3% 1.29 0.48 0.48 0.48 0.49 0.49

5% 1.62 0.49 0.49 0.49 0.50 0.50

10% 2.23 0.51 0.51 0.51 0.51 0.51

Dragon Hit Rate (%) – 98.33 98.45 98.59 98.67 98.73

with Wood 3% 2.35 1.07 1.07 1.06 1.06 1.05

5% 2.97 1.10 1.10 1.09 1.08 1.08

10% 4.09 1.15 1.15 1.13 1.13 1.12

Bunny Hit Rate (%) – 92.35 93.12 94.54 95.65 96.72

with Eroded 3% 2.98 2.17 2.16 2.12 2.06 2.03

5% 3.41 2.30 2.24 2.18 2.11 2.07

10% 4.28 2.46 2.41 2.32 2.21 2.15

Buddha Hit Rate (%) – 92.19 93.57 96.76 98.47 98.71

with Gmarbpol 3% 6.31 5.57 5.61 5.57 5.48 5.40

5% 6.63 5.65 5.67 5.59 5.49 5.41

10% 7.18 5.75 5.77 5.64 5.52 5.44

zerobit-encoded textures. As the number of polygons increases as in Bunny and Buddha,

the hit rates decrease in which case a larger cache size usually results in faster rendering.

From the test result, we conclude that relatively small texture caches, say, 12 KB to 48 KB,

are effective enough in our 3D texture mapping scheme.

4. CONCLUDING REMARKS

In this paper,we have presented a very effective method for 3D texturemapping,designed

for real-time rendering of polygonal models. Our scheme attempts to resolve the potential

texture memory problem arising from the very large sizes of 3D images by compressing

them using the zerobit encoding scheme. This compression scheme not only provides

fairly high compression rates but also offers very fast random access to individual texels.

The experimental results on various non-trivial 3D textures and polygonal objects show

that high compression rates are achieved with a small impact on rendering time and few

visual artifacts in the rendered images. The simplicity of our compression-based3D texture

mapping scheme will make it easy to implement in software/hardware rendering systems.

Currently, we are coding the auxiliary routines that are necessary for easy pre-processing.

Once this is done, 3D real-time graphics APIs like OpenGL and Direct3D will be extended

with little effort to include 3D texture mapping without heavy demand for texture memory.



ACKNOWLEDGEMENTS

We would like to thank Kiju Park and Joongyeon Lee for their help with experiments.

The MESA 3D Graphics Library is an OpenGL implementation written by Brian Paul. We

wish to thank the Stanford Graphics Lab., the UNC Graphics Lab., Viewpoint, and Larry

Gritz for their data and codes.

REFERENCES

1. 3dfx Interactive. FXT1�� texture compression technology. White Paper, 1999.

2. C. Bajaj, I. Ihm, and S. Park. 3D RGB image compression for interactive applications. Technical Report

99-41, TICAM, The Univ. of Texas at Austin, October 1999.

3. A. Beers, M. Agrawala, and N. Chaddha. Rendering from compressed texture. Computer Graphics (Proc.

SIGGRAPH ’96), pages 373–378, 1996.

4. M. Cox, N. Bhandari, and M. Shantz. Multi-level texture caching for 3D graphics hardware. In Proceedings

of the 25th Annual International Symposium on Computer Architecure, pages 86–97, June 1998.

5. D.S. Ebert, F.K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and Modeling: A Procedural

Approach. AP Professional, second edition, 1998.

6. A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1992.

7. R. Gonzalez and R. Woods. Digital Image Processing. Addison-Wesley, 1993.

8. Z. Hakura and A. Gupta. The design and analysis of a cache architecture for texture mapping. In Proceedings

of the 24th Annual International Symposium on Computer Architecure, pages 108–120, June 1997.

9. P.S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications, 6(11):56–67, 1986.

10. I. Ihm and S. Park. Wavelet-based 3D compression scheme for interactive visualization of very large volume

data. Computer Graphics Forum, 18(1):3–15, 1999.

11. M. Levoy and P. Hanrahan. Light field rendering. Computer Graphics (Proc. SIGGRAPH ’96), pages 31–42,

1996.

12. P. Ning and L. Hesselink. Fast volume rendering of compressed data. In Proceedings of Visualization ’93,

pages 11–18, San Jose, October 1993.

13. B. Paul. The Mesa 3D Graphics Library. ���� 	 ������	
��

����, 1999.

14. D.R. Peachey. Solid texturing of complex surfaces. Computer Graphics (Proc. SIGGRAPH ’85), 19(3):279–

286, 1985.

15. K. Perlin. An image synthesizer. Computer Graphics (Proc. SIGGRAPH ’85), 19(3):287–296, 1985.

16. Pixar. The RenderMan Interface (Version 3.1), September 1989.

17. S3 Savage3D. S3TC�� DirectX 6.0 standard texture compression. White Paper, 1999.

18. K. Sayood. Introduction to Data Compression. Morgan Kaufmann Publishers, Inc., 1996.

19. M. Segal and K. Akeley. The OpenGL Graphcis System: A Specification (Version 1.2). Silicon Graphics,

Inc., March 1998.

20. S. Upstill. The RenderMan�� Companion. Addison-Wesley, 1990.

21. VideoLogic/NEC. PVRSG: PowerVR Second Generation. http://www.pvr-net.com, 1998.

22. L. Williams. Pyramidal parametrics. Computer Graphics (Proc. SIGGRAPH ’83), 17(3):1–11, 1983.


