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Abstract

Because of recent advances in wireless communication technologies, the world of mobile
computing is flourishing with a variety of applications. In this study, we present an integrated
architecture for a personal digital assistant (PDA)-based mobile medical display system that
supports collaborative work between remote users. We aim to develop a system that enables
users in different regions to share a working environment for collaborative visualization with
the potential for exploring huge medical datasets. Our system consists of three major com-
ponents: mobile client, gateway, and parallel rendering server. The mobile client serves as a
front end and enables users to choose the visualization and control parameters interactively
and cooperatively. The gateway handles requests and responses between mobile clients and
the rendering server for efficient communication. Through the gateway, it is possible to share
working environments between users, allowing them to work together in computer supported
cooperative work (CSCW) mode. Finally, the parallel rendering server is responsible for
performing heavy visualization tasks. Our experience indicates that some features currently
available to our mobile clients for collaborative scientific visualization are limited due to the
poor performance of mobile devices and the low bandwidth of wireless connections. How-
ever, as mobile devices and wireless network systems are experiencing considerable elevation
in their capabilities, we believe that our methodology will be utilized effectively in building
quite responsive, useful mobile collaborative medical systems in the very near future.

1 Introduction

Since its foundation in the late 1980s, the field of scientific visualization has witnessed tremen-
dous technical achievements that enable scientists and engineers to effectively extract visual and
meaningful information from huge, complicated, and abstract datasets. The field has continued to
evolve rapidly in response to the arrival of new computing environments. One of the most attrac-
tive challenges in the visualization area nowadays is to exploit wireless computing technologies
that may help build a ubiquitous, mobile visualization system, thereby supporting collaborative
works.

So far, hand-held mobile devices such as the personal digital assistant (PDA) and cellular phone
have been regarded as inappropriate scientific tools for a number of reasons, including small screen
size, poor computational performance, limited wireless communication bandwidth, and reduced
interaction capability. However, these mobile devices have undergone considerable elevation in
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their capabilities. These days, it is not difficult to see a PDA that supports a video graphics ar-
ray (VGA) resolution of 640×480 pixels. The wireless connection bandwidth for mobile devices
continues to expand rapidly, which has facilitated the ubiquitous nature of wireless communi-
cation. For example, a commercial service for ubiquitous portable Internet access is planned in
Korea that provides mobile users with 1 to 3 Mbps of bandwidth. Such changes in the mobile
computing environment demand a new paradigm for building a mobile visualization system that
supports ubiquitous and collaborative work.

One of the many application fields that could benefit from these technological changes is the
telemedicine community. In particular, rapidly advancing mobile technology is expected to offer a
critical technological base in building a remote medical care and related information management
system that supports ananytime, anywhere, andanyoneaccess. In providing such a telemedicine
service, the computer supported cooperative work (CSCW) feature, which enables interactive co-
operation among remote users, may increase its usability drastically. For example, doctors may be
able to treat their remote patients interactively, sharing a tailor-made virtual working environment
through a home care telemedicine system.

In an effort to explore these new technologies for medical informatics, we have developed an
integrated architecture for a PDA-based mobile display system allowing ubiquitous computing.
Our emphasis is on the development of a medical system that enables users in different regions to
share a working environment for collaborative visualization with the potential for exploring a huge
volume of medical data, such as computed tomography (CT), magnetic resonance imaging (MRI),
or positron emission tomography (PET) data.

In this paper, we deal with technical aspects that must be considered in designing a mobile
collaborative medical display system. Our system consists of three major components: mobile
client, gateway, and parallel rendering server. The mobile client serves as a user interface and
enables the user to choose the display and control parameters interactively and collaboratively.
The gateway takes care of requests and responses between mobile clients and the rendering server
for efficient communication. Through the gateway, it is possible to share working environments
between users, allowing them to work together in CSCW mode. Finally, the parallel rendering
server is responsible for performing heavy visualization tasks that are beyond the capability of
current mobile devices. We explain our system architecture and discuss our experience obtained
from its implementation.

The paper is organized as follows. Section 2 reviews some related studies on PDA-based vi-
sualization. In Section 3, we explain in detail how our mobile medical system has been designed
and implemented on PDAs, and demonstrate that it can be used effectively for building a coop-
erative mobile visualization environment. In Section 4, we briefly discuss performance issues by
presenting some experimental results, and conclude the paper in Section 5.

2 Related Studies

To handle the computational limitation of mobile devices and the low bandwidth of data transmis-
sion networks, often experienced in the development of mobile visualization systems, several ap-
proaches have been proposed. In [8, 9], two solutions for remote visualization systems, involving
low-end computing devices, were studied, where centralized hardware resources of high perfor-
mance were exploited to allow users to visualize large scientific datasets. A general client-server
model was utilized to design a remote rendering system [2]. In that work, the techniques of adap-
tive rendering and data transmission were used to overcome the low performance of the computing
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hardware and the transmission network. An image-based rendering method was applied to the dis-
play of large polygonal models on mobile devices at interactive rates, 5 to 6 frames per second [1].
Various design principles and methodologies were also studied in several works [3, 4, 5, 6], en-
deavoring to develop effective mobile visualization systems. An interesting approach was recently
presented in [7], where high frame rates are achieved through the help of high-performance par-
allel rendering based on PC clusters and progressive data transmission based on MPEG stream.
While all these mentioned systems were designed to optimize the visualization and remote display
computation in the respective computing environment, the concept of collaborative work between
remote users was not fully applied to building their remote visualization systems.

OpenGL Vizserver from Silicon Graphics, Inc. (SGI) is a commercial, client-server solution [10].
It is a technical and creative computing system designed to deliver visualization and collabora-
tion functionality to clients, whether on a desktop workstation or a wireless handheld computer.
OpenGL Vizserver allows users to remotely view and interact with large datasets from any other
system at any location in an organization and to collaborate with multiple colleagues using the
same application data. The rendered scenes are transported as streams of compressed pictures
from the server to the different client. Because of its design, OpenGL Vizserver works only with
the SGI Onyx family, limiting its applicability in the general computing environment.

Another approach for an integrated remote visualization and collaborative system was attempted
in [11]. For the visualization task, it harnesses remote servers to produce the computation results
as video streams, separately for each participating partner. Thus, the mobile devices can only play
MPEG-4-compliant video streams, commonly provided to off-the-shelf PDAs and laptops. For
collaborative support, they use a full-featured CSCW system. This approach differs from ours
in that they focus on integrating facilities for exploring complex datasets by using professional
visualization tools in their knowledge space.

As mentioned before, telemedicine is a promising field to which mobile technology can be
applied effectively. Telemedicine scenarios include in-hospital care management, remote telecon-
sulting, collaborative diagnosis, and emergency situation handling. Personal mobile telemedicine
systems using wireless communication links have been studied extensively [12, 13, 14, 15, 16, 17].

Other types of mobile-based visualization systems have also been introduced, including a context-
adaptive scalable information visualization and management system, which enables mobile com-
puting [18]. The system intends to support the operation and the workflow of wastewater systems.
The IMoVis project demonstrated how mobile devices may be applied in security systems [19],
where PDAs are used to visualize intrusion detection data. The mobile augmented reality sys-
tem was also designed to provide users with geo-referenced information required to accomplish
their environmental management tasks via PDAs [20]. An approach for presenting information
on handheld devices that uses information visualization techniques for displaying and navigating
structures of complex information spaces has been introduced [21]. A framework for mobile 3D
visualization and interaction in an industrial environment was presented in [22]. This project deals
with the seamless navigation and provision of multimodal, context-sensitive, speech-enabled, aug-
mented reality interfaces for mobile maintenance.

Although many similar approaches have been presented in the literature, our system is unique
in that it supports collaboration (the ability to communicate and work with remotely located users)
as well as a level of detailed features for high-resolution volume data.
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3 The Proposed System

3.1 Design Overview

As described in the previous section, several mobile visualization systems have been proposed
and implemented successively. Some systems have shown an almost real-time performance in
remotely visualizing large volume data, for example, refer to systems developed independently
from ours [7]. Essentially our system pursues similar goals to the previous systems, but focuses
more on the following characteristics:

• A simple token protocol is designed for session-based CSCW. Through this protocol, it
is possible to open multiple independent sessions at a gateway. Users that participate in
a common session can share the visualization tasks. The system architecture is designed
so that the gateway component that works as a broker between the mobile client and the
rendering server is utilized in a way that optimizes the communication performance in a
given environment.

• The level-of-detail concept is implemented in the mobile system so that a user can effec-
tively select and explore subvolumes of interest through arbitrarily oriented cutting planes.
A local cache structure is designed to minimize the volume extraction and transmission costs
so that the display operation can be performed efficiently using the not-so-fast OpenGL ES
API on a PDA.

• During data communication through a gateway, we do not consider a lossy compression
scheme because the fidelity of medical imaging data is often critical. It is assumed that
image quality is a design factor that is more important than the processing time. Hence,
such techniques as JPEG and MPEG are not considered in our system.

• Basically, the system is designed to be independent, as much as possible, of high-level
toolkits, libraries, or protocols, thus offering a high level of portability and extensibility.
The current implementation uses such low-level libraries as OpenGL ES and socket-based
TCP/IP. While the parallel rendering server module uses the MPI library to implement a
traditional CPU-based ray-casting algorithm, any other parallel rendering methods including
GPU-based ray-casting or Chromium-based parallel rendering can be adopted.

The current system does not provide a real-time rendering performance as it is based on CPU-
based ray-casting. However, when the parallel rendering module is replaced by a fast parallel
render as in [7], our system will also offer high rendering performance.

Figure 1 illustrates an overview of our mobile medical display system that consists of three
main components: mobile client, gateway, and parallel rendering server. The system, based on
a client-server architecture, aims to offer efficient and collaborative access to a large set of raw
medical volume data, such as found in CT, MRI, and PET, that is stored in remote archives. One
of the most important design factors is to provide users with both interactivity and mobility in
visualization. To achieve this goal, a parallel rendering server, abstract to users, is harnessed to
perform the heavy 3D visualization tasks, allowing a fast response to the user’s request. Thus, the
mobile client is free from CPU-intensive computation, focusing the user on user interfacing and
collaboration with other clients.

For smooth communication between a client and the parallel rendering server or other clients,
we introduce a gateway component that works as a broker. The gateway is primarily responsible
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Figure 1: The system architecture: it consists of mobile client, gateway, and parallel rendering
server.

for delivering requests collected from clients to the rendering server and multicasting the returned
visualization results back to the clients. Furthermore, it controls the collaboration by maintaining
contexts shared by clients. The communication between the components is performed using the
socket-based TCP/IP protocol, which allows heterogeneous client devices to connect to the system
stably and efficiently.

3.1.1 Mobile Client

The mobile client serves as an interface to the entire system that abstracts users from the im-
plementation details. Mainly, it handles efficient interaction with users and displays images and
movies sent from the rendering cluster. The client component, executed on a PDA, consists of
the four submodules as illustrated in Figure 2: interface module, control module, network mod-
ule, and rendering module. When a mobile client connects to the system for the first time, the
control module collects relevant information through the network module, including the details
of available volume datasets. Once the user selects a medical dataset to be processed, it prepares
to start a visualization session. The interface module takes care of the user’s actions by detect-
ing input events and calling necessary callback functions. Through this interface, it is possible
to perform many functions including: choosing a proper volume dataset, manipulating the se-
lected data interactively, choosing the camera and light parameters, sending the rendering context,
issuing a rendering request, and displaying rendered images. On the other hand, the rendering
module interactively (at least 10 to 15 frames per second) displays subvolumes of interest using
2D texture-based rendering methods.

Once transmitted into the mobile client from the volume data repository as requested by the user,
the raw CT or MRI data are stored in the form of 3D arrays for effective display that allows the user
to scrutinize them with user-controllable cutting planes with arbitrary orientations. To obtain 3D-
rendered images corresponding to a specific volume region, the user requests the parallel rendering
server responsible for heavy rendering computations, for the visualization task. In return, the PDA
receives the final rendering images or MPEG-encoded movies, and displays them on its screen.

In spite of the recent performance enhancement of mobile devices, it is still critical to make
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Figure 2: Mobile client modules

(a) (b)

Figure 3: Snapshot of mobile client’s graphical user interface. Picture (a) shows an example where
a nonuniform rational B-spline (NURBS) curve is being designed to set up a camera path that will
be applied to the production of an animation movie. In picture (b), a 3D-rendered CT image is
being displayed as received by the parallel rendering server. In case the resolution of the created
image is higher than that of the PDA’s screen, the user can pan or zoom with a pointing stick.

every effort to optimize the amount of computation carried out on the client side. In displaying a
possibly large volume dataset on a screen of limited resolution, it is not wise to use the volume
dataset of full resolution. In our framework, a multiresolution representation of each volume
dataset is stored in the volume data repositories, managed by the parallel rendering server, and
a set of subblocks with the proper level of detail, selected according to the viewing parameters
and available client’s memory, is transferred to the client. The data are reloaded into the client
once every time the required level changes through a zooming operation. In this way, the usage of
limited memory and wireless network bandwidth is optimized. See Figure 3 for examples of user
interface where a filtered volume dataset is manipulated and a rendered image is displayed.
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3.1.2 Gateway

The gateway is the central processing component that controls the entire system. The major role
of this component is to drive the rendering cluster to perform parallel volume ray-casting with the
rendering parameters received from mobile clients, and multicast the computed images or MPEG
movies back to the clients. It also serves as a buffer that holds a set of raw subvolumes of se-
lected level-of-detail values and delivers them to the clients as necessary. When a mobile client
defines a camera path for the production of an animation movie (refer to Figure 3(a)), the gateway
issues the corresponding rendering request at each camera point whose interval is controlled by
the client. Then it receives multiple rendered images from the parallel rendering server, encodes
them in an MPEG movie, and delivers it to the clients. The final task of the gateway is to coor-
dinate the collaborative work between mobile clients, which will be explained in more detail in
subsection 3.2.

As illustrated in Figure 4, the gateway is made up of the control module, network module,
client management module, session management module, and data management module. The
client management module handles each individual client, while the session management module
manages active sessions to support the CSCW feature. The data management module plays a key
role in retrieving volume data from the rendering server and filtering it so as to fit the volume
size into the mobile client memory. When a client selects a region of interest, if the volume size
is larger than the PDA’s available memory, then the gateway determines the appropriate level of
detail dynamically and reduces the volume data size accordingly.

Gateway

Network Module

Control Module
Client 

Management 
Module

Data Management 
Module

Session
Management

Module

Volume Data DB

Data

Rendering context

Rendered images

Signals

Figure 4: Gateway modules

Importantly, when several mobile clients or sessions attempt to access a gateway at the same
time, the communication needs may cause a severe bottleneck (see Figure 5(a)). To cope with
this problem, we designed our system to allow multiple gateways to manage a group of sessions
separately, as depicted in Figure 5(b).

3.1.3 Parallel Rendering Server

The parallel rendering server serves as computational clusters that handle the rendering requests
delivered through the gateway as illustrated in Figure 6. As it is invisible to the clients, it may
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Figure 5: Single gateway versus multiple gateways. When the number of participating clients
increases, the chances are that the gateway becomes a bottleneck in the system. By employing
multiple gateways, as in (b), instead of using a single gateway, as in (a), it is possible to make the
load of the gateway component well balanced.

run on a supercomputer or fast PC clusters, interacting with the gateway. The server manages
the volume data repositories that store the original volume datasets with their multiresolutional
representations. For 3D volume rendering, our system harnesses a PC cluster that runs a parallel
volume ray-casting algorithm designed for distributed memory architectures [23], while any other
efficient parallel rendering technique may be used.
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Figure 6: Parallel rendering server modules

3.2 CSCW

To support a complete cooperative environment, sometimes visualization systems have to ex-
change various imaging datasets and need efficient hardware accelerated volume rendering tech-
niques for displaying the three-dimensional representation in real-time. However, it is difficult to
implement such full-featured cooperative visualization techniques for huge and complex medical
datasets on mobile devices because of their limited resources.

In our approach, the synchronization problem is solved through the gateway that always man-
ages any updates for rendering contexts as well as volume data in a session. To describe the usage
of the presented system, the following scenario summarizes the cooperation process: all cooper-
ation partners who have access to a specific visualization can join a session through the gateway.
When users contact the gateway, they can either select a session to join or create a new session.
Depending on the working mode, the collaborators are able to see the same view as each other or
an individual view of the visualization. Stored views, in which interesting regions are displayed,
can be restored and broadcast immediately. Each collaborator who receives the broadcasting mes-
sage can either update their own current view or maintain multiple views independently. This
method allows users in the same session to share medical data, rendering contexts, and rendered
images during the visualization task.

In introducing this ability for users to collaborate, it is important to avoid any disorder induced
by random, simultaneous issues of the broadcasting messages by multiple users. Therefore, we
have designed the session management module in such a way that only one user is given a token
per session that authorizes its holder to issue a broadcasting message. The authority as a host may
be turned over to other users in the same session by passing the token.

3.3 Scenarios of Use

To describe the mechanisms of a progressive display of remotely located large sets of medical data,
we now introduce a possible interaction example between a client and a gateway, as illustrated in
Figure 7. After the mobile client process is launched, a user connects to the gateway and sends the
hardware configuration of the mobile device. In each request the mobile client sends a message or
signal to the gateway. When the client requests an identifier, a unique identifier is returned, stored
in the client device, and sent to the gateway in all subsequent requests. This operation enables the
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gateway to keep track of all sessions. When the user requests a new part of the volume of raw
data of interest using the bounding box of the graphical user interface, the mobile client computes
the bounding box in volume coordinates. The client sends this information to the gateway, which
can retrieve an appropriate subblock from the database. Next, the gateway determines a level-of-
detail value, possibly based on the memory size of the mobile client device as well as the volume
resolution. As the gateway keeps track of which subblocks have already been sent to the client, it
can deduce the range of volume needed to update the display and send them to the client.

Figure 8 illustrates an example interaction sequence that may be observed when a user wants
to render volume data of interest. The snapshots in Figure 9 show the volume rendering process
step-by-step where 2D texture mapping and volume ray-casting methods are used in the mobile
client and the parallel rendering server, respectively. Once a client connects to a gateway using
their IP address, they select a dataset from the available raw data list (the pictures (a), (b), and (c)).
Then the client determines a set of various rendering parameters through an interactive navigation
of the chosen medical data (the pictures (d), (e) and (f)). After the setup of a transfer function for
the appropriate classification of materials to be visualized, the client requests a parallel rendering
server to perform the heavy visualization work. Finally, the rendered image is displayed on the
screen (the pictures (g), (h) and (i)).

USER Gateway

Start system

View detailed subvolume

Select a region of interest

System configuration

Session id

Volume name

Filtered volume

Bounding box 
geometry

Filtered volume

Continued

Select a region of interest

Start volume data

Assign unique session id

Load the volume

Filter the volume

Extract subvolume inside 
bounding box

Compare with subvolume and 
level already sent to the client

Filter the volume

Mobile Client

Start a new session

Save session id

Request volume

Display the filtered volume 
using texture mapping

Compute bounding box 

Update display

Compute level of detail

Compute level of detail

View decimated volume

Figure 7: Example interaction diagram for client-gateway communication

Finally, Figure 10 illustrates an example sequence where two participating clients interact with
each other for a CSCW purpose. In (a), the client on the left receives a signal from the current host
client on the right, and is asked if the client will accept the new context, broadcast by the host.
The client on the left may either ignore the message or choose to overwrite his context with the
new one with or without saving the current context for the later restoration. On the other hand, (b)
shows a situation where the host client is asked by the client on the left to turn over the host token.
In (c), after the acquisition of the authorization, the client on the left, a new host, selects a menu
item to broadcast his own 3D-rendered image. After the client on the right decides to accept the
message, the received image is displayed on the screen as shown in (d).
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Figure 8: Example interaction diagram for client-gateway-server communication

4 Implementations and Optimization Efforts

To demonstrate the effectiveness of the presented prototype, we have implemented the mobile col-
laborative medical display system as described in the paper. For the mobile client, we used an HP
iPaq hx4700 PDA equipped with 624 Mhz Intel PXA270 CPU, and 6.5k-color thin film transis-
tor liquid crystal (TFT LCD) display supporting 480×640. The device, running Microsoft (MS)
Windows Mobile 2003 for the Pocket PC operating system, was connected to the gateway via a
wireless LAN or USB desktop synchronization cable. In developing the mobile user interface, we
used MS Embedded Visual C++ 4.0 compiler, Vincent OpenGL ES [24], and MS Winsock.

The parallel rendering server was implemented and tested on an IBM PC cluster consisting
of 15 nodes of 3.0 Ghz Intel Pentium4 processors and 2 Gb main memory. For communication
between the nodes, MPICH2 message-passing interface was employed [25]. The mobile clients
and the parallel rendering server were connected through a gateway for which an ordinary desktop
PC was exploited. For the test volume data, the Visible Human male CT with 512×512×1440
resolution and uptake capacity of 720 Mb was used. Figure 11 shows some examples of remotely
visualized images that were created by the parallel rendering server and then displayed on the
mobile client. See supplementary animation Movie 1(a) and (b)1 for a demonstration of where a
parallel rendering server with eight nodes was exploited.

When developing a software system on hardware with limited capacity, it is critical to make
every effort for code optimization. In coding our system, we tried several optimization techniques
for Intel XScale processor-based PDAs, and observed significant performance gains for some. As
many mobile systems, based on the XScale processor, still are not accelerated by a floating-point
unit, floating-point operations must be avoided as much as possible. An alternative is to employ
a fixed-point number that approximates the floating-point number. Despite the limited range, the
fixed-point data are often effective enough to code graphic applications on a PDA if the range is
selected appropriately.

To enhance the processing speed on the mobile client side, we employed a 32-bit, fixed-point
number where 16 bits are allocated to the fraction part. For multiplication and division operations,
temporal 64-bit integer variables were used to maintain maximum precision. In displaying the raw
volume data interactively, the frequently called trigonometric functions took a substantial portion
of the floating-point operations. To handle this, we used a lookup table whose elements were gen-
erated for 0 to 90 degrees at one-degree intervals. We also applied several assembler-level code
optimization techniques manually for compiler-optimized assembler codes, especially for repeat-

1The animation movies are also available at ftp://grmanet.sogang.ac.kr/pub/ihm/out/{mov1a.avi, mov1b.avi}
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edly executed parts. Figure 12(a) indicates that these optimization efforts were rewarding. As
implied in the diagrams, the application of both fixed-point numbers and optimization techniques
remarkably improved the frame rate, while the code optimization techniques for floating-point
numbers produced only a slight performance improvement.

The performance on the mobile client side is quite sensitive to the demands of various compu-
tational resources, and hence the code must be tuned with great care. In an attempt to reveal the
dependency, we collected some performance data for several resources. As Figure 12(b) shows,
the size of volume data loaded into the PDA’s memory affects the speed of the interactive dis-
play of raw volume data. It is obvious that the smaller volume size results in a higher frame
rate, whereas the performance does not vary much so long as the demanded memory stays in the
2–16 Mb range (note that the tested PDA holds 64 Mb of memory).

Currently, the performance is also dependent on the number of pixels that must be projected to
compute an image because the PDA is not accelerated by a graphics unit. In the mobile client, the
raw volume data are displayed using an interactively controlled cutting plane where the 2D texture-
mapping feature is exploited for computing the resulting image. We have varied the distance of
the cutting plane from the camera to vary the magnitude of pixels that need to be mapped onto
the screen. As expected and demonstrated in Figure 12(c), the frame rate increases as the cutting
plane goes farther, that is, the number of pixels to be colored decreases. However, this performance
variation is expected to be avoided as a 3D graphics accelerator chip will be used in the near future.

Figure 12 (d) reports how performance is affected by the screen’s resolution. To evaluate this
performance, we used another PDA with a smaller resolution of 240×320pixels, and measured
the frame rate under the same rendering context.

Finally, Figure 13 shows some statistics that reveal how different block subvolume sizes affect
the overall performance. First, the detailed analysis on the computational costs, needed to display
level-of-detail images on the PDA screen, is given in (a) in the figure. In our system, when a mo-
bile client selects a region of interest, the gateway module extracts the necessary subvolumes from
disks, performs the resampling process so that the resulting image fits into the PDA’s memory (32
Mb in this experiment), and sends the (processed) image to the client through the network. When
the selected screen space corresponded to a subvolume of 512×512×512 voxels, a resampling
process was needed to reduce its size to less than 32 Mb. In the other three cases, no resampling
was necessary. As seen in the graph, the disk access time was a minor factor in the overall perfor-
mance. On the other hand, as expected, the sizes of subvolume to be transferred from the gateway
to the mobile client greatly affected the processing time. While the bandwidth of the tested wire-
less communication network was low, the data transfer problem is expected to be resolved, as a
much faster network will be available in the very near future.

The figure in (b), on the other hand, shows how the data size affects the parallel volume ren-
dering in our current system. Again, four cases of volume size from 64× 64× 64 voxels to
512×512×512 voxels were tested against two screen image resolutions of 240×320 pixels and
480×640 pixels, respectively. In this experiment, a rendering server made of nine PCs was uti-
lized to run our parallel volume ray caster. Except for the case of 512×512×512 volume data,
the entire response times were 2.0 to 3.3 seconds for the smaller screen resolution, and 4.7 to 8.8
seconds for the larger screen resolution. The parallel rendering time is dependent on the overall
power of the participating PCs. Furthermore, while our current renderer is CPU-based, the recent
GPU-based volume renderer provides an almost real-time frame rate for the moderate sizes of
volume data. Hence, the rendering time will be expected to be a minor factor. On the other hand,
as the test result indicates, the data transfer times for sending rendered images to the mobile server
take a substantial portion of the entire processing time.
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Despite the relatively poorer system specification of the tested PDA model (HP iPaq h5550
with 400 Mhz Intel PXA255 CPU, and 6.5k-color TFT LCD display), the performance metric was
improved. In conclusion, the features currently available to mobile clients for scientific visual-
ization are limited due to the poor performance of mobile devices. In particular, the bandwidth
of wireless networks remains a major bottleneck in building an effective mobile display system,
although it is expected to increase significantly in the very near future. For environments where
wireless communication is still slow, it will be important to minimize the delay caused by the tardy
communication.

Note that one of the many reasons (except the controller task as a broker in the CSCW process)
why we considered employing the gateway scheme in our architecture was to tune the communi-
cation task so that the performance is maximized in a given environment. For example, it might
have been possible to encapsulate the work done by the gateway in the rendering server. In that
case, however, the remote server must take up all the responsibility for maintaining the system.
In particular, all communication messages need to be delivered to the possibly very remote server
system, which entails a severe inefficiency.

On the other hand, the use of a gateway may improve the system performance dramatically.
For example, a clinic may install a local gateway that supports a relatively high speed of wireless
communication to and from the mobile clients, i.e., patients in the local area. In this environment,
the collaboration work between doctors and patients can be performed efficiently through local
communication without having to send the message to the rendering server, which is geographi-
cally far away. Only the necessary messages, for instance, for sending the rendering requests or
receiving rendering results are sent through a communication line between the local gateway and
the possibly very distant rendering server.

5 Concluding Remarks

In this paper, we proposed a client-server-based integrated architecture for mobile collaborative
medical data visualization in which PDAs are used as the front end. The system, composed of
mobile client, gateway, and parallel rendering server, aims to offer interactivity and mobility in vi-
sualizing large medical datasets where remote users are allowed to collaborate in shared contexts.
One of the main emphases of this work was to add the feature of collaboration and coordination to
the mobile distributed medical system, allowing cooperative work among remote users. Through
the implementation of the presented system architecture and the application of various optimiza-
tion and tuning techniques, we have shown that low-end PDAs can be exploited effectively for
such a mobile CSCW system.

As analyzed in the paper, the system performance relies on several design factors. Above all,
the features currently available to the mobile client for scientific visualization are limited because
of the poor performance of mobile devices. In particular, the low bandwidth of wireless commu-
nication networks is a heavy bottleneck in building a real-time or interactive mobile collaborative
visualization system. As explained in the previous section, it is critical to design architecture that
fully exploits the advantage of the gateway component to overcome the wireless communication
problem. In our implementation, the gateway could handle no more than four or five mobile
clients because of the poor performance of the tested wireless network. However, the capacity
may vary as the system performance increases. Hence, it will be quite important to carry out the
preperformance analysis when the system configuration is determined in the design step.

While the low wireless communication bandwidth is a current bottleneck, it is getting wider;
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hence, quite responsive mobile collaborative medical systems will be able to appear in the very
near future. We hope that the proposed mobile cooperative scheme will be applied in a wide range
of applications. In telemedicine, for example, the expanded system may enable doctors to access
2D images of patients’ raw data remotely, to visualize 3D images interactively, and collaborate
with others in making a diagnosis, even when they are thousands of miles away from the patient.
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(d) (e) (f)

(g) (h) (i)

Figure 9: Example sequence of volume rendering. The detailed explanation is described in the
text.
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(a) (b)

(c) (d)

Figure 10: Example sequence of CSCW to share rendering contexts and images. See the text for
a detailed explanation.
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Figure 11: Rendering images of Visible Human male CT data on a mobile client. With the as-
sistance of the presented medical display system, it is possible for a mobile user to interactively
examine large medical datasets, possibly working with remote collaborators. The CPU-intensive
processing, such as 3D visualization of large sets of raw data, is hidden from clients as such heavy
computation is carried out by parallel rendering servers. This transparency makes the clients feel
as though they are using a high-end computing system. Note that the time required to display
a 3D-visualized image after a rendering request depends on a variety of factors including raw
data sizes, classifications, rendering parameters, network traffic, and the computation power of
rendering servers.
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Figure 12: Performance comparisons for a variety of optimization efforts on Intel PXA CPUs.
(a) The frame rate per second (FPS) is compared for the three combinations of applying floating-
point/fixed-point numbers and general assembler-level code optimization techniques. (b) As the
magnitude of volume data loaded into a PDA with 64 Mb of memory increases, the frame rate
deteriorates. However, the difference is not substantial so long as the demanded memory size
stays in the 2–16 Mb range. (c) As the cutting plane goes farther, indicated by the distances in the
horizontal axis, the screen area to be colored gets smaller, enhancing performance. (d) Together
with the result in (c), this graph indicates that the pixel fill rate of the current PDAs is still a
problem, although the fill process is expected to be assisted by an acceleration chip in the near
future.
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Figure 13: Another performance analysis showing the effect of volume and screen sizes
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