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Abstract

When interactive real-time applications are developed
with very large volume data, the use of lossy compression is
often inevitable. Lossy compression schemes generally en-
code data without consideration of the purpose of visualiza-
tion that is actually performed, which often results in ineffi-
cient compression. In this paper, we present a new method
for classifying voxels according to their importance in visu-
alization, and assigning appropriate weights to them. The
associated weight information can be combined with lossy
compression schemes to reduce the visual degradation of re-
constructed images, resulting in higher compression rates
and visual fidelity. Test results demonstrate that the pro-
posed technique improves both the amount of compression
and the quality of visualization significantly.

1. Introduction

Volume visualization is a research area that deals with
various techniques for extracting meaningful and visual in-
formation from abstract and complex volume data sets. Ef-
fective representation, whether it is exact or approximate,
of various volume data sets has been one of the most criti-
cal research problems in volume visualization, and a wide
variety of approaches have been developed.

When volume data are very large, as in many recent ap-
plications, the use of compression techniques is often in-
evitable. Many conventional two-dimensional image com-
pression schemes can be effectively extended to three- or
higher-dimensional volume data sets. When interactive
real-time applications are developed, however, the compres-
sion scheme should be chosen carefully. For instance, the
methods based on such filters as discrete cosine transform
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or Daubechies wavelets show excellent performance in both
compression rates and image fidelity. On the other hand,
they are often inappropriate for real-time applications that
require fast decompression for random data access.

In this paper, we focus on compression schemes suit-
able for real-time applications, although the ideas presented
here can be extended naturally to other compression meth-
ods. Vector quantization has been very popular in designing
real-time applications, as it provides probably the fastest de-
coding speed. Some recent applications of vector quantiza-
tion in the computer graphics field include compression of
CT/MRI datasets [14], light fields [8], and 2D textures [2].

The idea of using wavelets, initiated by Muraki [12],
has been applied to efficient representation and approx-
imation of volume data by many researchers, including
[18, 13, 3, 16, 20]. Recently, a new wavelet-based com-
pression scheme for 3D RGB and gray-scale images, called
zerobit encoding, was developed for applications wherein
data items are accessed in an unpredictable manner, and
real-time performance of decoding is required [1]. The en-
coding scheme, based on 3D Haar wavelets, naturally of-
fers a multi-resolution representation for 3D images, and
experimental results on medical images, light- field images,
and 3D textures show that it provides fast random access to
compressed data, in addition to achieving fairly high com-
pression rates. In spite of the fast random access ability
of these vector quantization and wavelet-based compression
schemes, they have the disadvantage that their filtering ca-
pability is not as good as other frequently used compression
techniques, which may cause error-prone visual informa-
tion.

In many visualization applications, one often wishes to
visualize some fixed set of coherent features that are con-
centrated in a few regions. For instance, isosurfaces with
a few isovalues are built during isosurface extraction. In
direct volume rendering, regions of voxels with density val-
ues in a range of interest are usually rendered. If the fea-
tures to be examined are known beforehand, it is possible to
utilize the relevant information during compression to pre-
serve them as precisely as possible. Lossy compression can



be viewed as allocating a limited amount of resources to
voxels, and it is the main goal of this work to distribute
those resources wisely, according to the specific types of
visualization tasks to be performed.

In this paper, we present a technique that classifies vox-
els in accordance with the purpose of visualization, and
that assigns appropriate weights to voxels. The associated
weights are then combined with compression algorithms so
that important features remain as correct as possible after
reconstruction. Contrary to the standard lossy compres-
sion schemes, in which information on features is uniformly
lost regardless of the visualization to be performed, the new
scheme enables one to focus more on important features that
are more frequently used during the visualization. This ap-
proach is different from other enhancement techniques such
as the classified vector quantization [15], the classification
algorithm [6], or the multi-level techniques [4, 19, 10, 17]
that attempt to improve the approximation or classification
quality based on spatial properties of images themselves.

This paper is organized as follows: In Section 2, two
popular visualization methods that are considered in this pa-
per are summarized. In Section 3, we explain how voxels
are classified and weighted according to their importance
in interesting visualization. The compression scheme [1]
based on the 3D Haar wavelet transform is then taken as an
example to explain how the simple Haar filters are enhanced
without any tradeoff in Section 4. Experimental results are
shown in Section 5, and the paper is concluded in Section 6.

2. Isosurface extraction and direct volume ren-
dering

In this paper, two fundamental types of visualization al-
gorithms are considered. First, we deal with isosurface ex-
traction based on the marching-cube algorithm [9]. Dur-
ing construction of isosurfaces, vertices of generated trian-
gles are computed by determining all edges of cells in vol-
ume data which intersect the isosurfaces. The edge inter-
sections are usually interpolated linearly from the densities
of two incident voxels of the edges. Furthermore, normal
vectors are also linearly interpolated from the voxels inci-
dent to the edges. While there are other better approxima-
tion methods [11], we assume that gradients at voxels are
approximated using computationally simple central differ-
ences. Thus the correctness of isosurfaces with normals are
dependent on the densities of incident voxels of all inter-
secting edges, and their 6-neighbors.

In addition to the indirect volume rendering, we take into
account a direct volume rendering. In particular, we fo-
cus on the ray-casting algorithm [7]. While our method
is designed for ray-casting, it is easily modified for other
popular direct volume rendering methods such as splatting.
When a ray is cast, the shaded color-opacity pairs are com-
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Figure 1. Transfer functions

puted at resampling points on the ray, and are accumulated
in front-to-back order. In classifying materials, we use a
model similar to one employed in [5]. The opacity transfer
function for a material � is defined by its opacity �� and
a quadruple [��, ��, ��, ��]. A voxel � has positive opac-
ity value ��������, determined by a ridge-shaped function,
only when its density is between �� and �� (Figure 1(a)).
Gradient at � is also an important factor in classification,
and its magnitude indicates how close the voxel is to bound-
aries. In order to emphasize boundaries of materials in ren-
dering, we use ���� � �������� � �������� as its com-
puted opacity at �, where �������� is a normalized mag-
nitude of gradient. The gradient transfer function is defined
on rescaled gradient magnitude of voxels, and its function
value is determined by a pair of numbers [��, ��] as in the
figure (b). When a point in a cell is resampled, its color and
opacity affect accumulation only when the computed opac-
ity of at least one voxel is greater than zero. In this case,
the densities of its eight voxels and all their 6-neighbors are
used in ray-casting, hence they need to be preserved well
when a lossy compression is applied to volume data.

3. Voxel classification and weights

3.1. Core voxels and gradient voxels

Consider a 3D volume data set, defined on a rectilinear
Cartesian grid. Let � be the set of all voxels � in the data
on which a real-valued scalar density field ���� � � � � is
defined. The rectilinear grid can be regarded as a 3D graph
where voxels form a vertex set � , in which each voxel is
connected to its 6-neighboring voxels. All the unordered
pairs �	
 �� of adjacent voxels are edges whose set is de-
noted by �. A cell � is a cube of 8 adjacent voxels, and the
cell set is represented by 
.

Let �	
 � ��		
 � � � �
 �
 � � � 
 ���� be a set of � density
values. Also, define ��� � ���	���
 �	���� � � � �
 �
 � � � 
 ����
to be a set of � intervals of density values. �	
 contains � in-
teresting isovalues whose corresponding isosurfaces may be
examined during visualization. On the other hand, � �� in-
cludes density ranges of � interesting materials that may be
rendered in ray-casting. A set of � opacity functions � 	���,
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� � �
 �
 � � � 
 � � � are defined for the � materials, respec-
tively, as explained in Section 2.

For isosurface extraction, define a voxel set
� �
	
��	
� � �� � � � �		
 � ����
 �� for some �		
 �

�	
 and � � ������, where ����
 �� �
���������
 �����
 ��������
 ������, and ����� con-
sists of all 6-neighbors of �. A voxel is contained in this
set only if at least one interesting isosurface intersects
any of its 6 incident edges. Similarly, we define the
corresponding voxel set for ray-casting as � �

������� �

�� � � �
����

	�� �	��� 	 �� for some �� � ��, where ��

is a small positive threshold such as, for instance, 0.05. A
voxel is included in this set only if at least one interesting
material passes through any of its incident cells, and its
computed opacity, added for all specified materials is large
enough to impact on color accumulation in ray-casting.
The two sets � �

	
��	
� and � �
������� contain all the voxels

that directly affect isosurface extraction and/or ray-casting,
represented by �	
 and ���. That is, the densities of
voxels in their union � ���	

 ���� � � �

	
��	
�
� �
�������

greatly influence the fidelity of isosurface extraction and/or
ray-casting, hence must be given highest priority in any

lossy compression. We call these core voxels.
In addition to core voxels, we consider gradient voxels.

Figure 2 depicts how the two visualization schemes han-
dle gradient voxels separately. First, when an isosurface
crosses an edge e as in (a), gradients at its two incident
core voxels must be computed to approximate the gradi-
ent at the intersection point. Since the central difference
formula are used in gradient approximation, the densities
of all 6-neighbors of the two voxels need special treatment
during lossy compression. Let � �

	
��	
� � �� � � �� �
� �
	
��	
� for some ��
 �� � ��. This is the set of all voxels

that are adjacent to some core voxels, and are used in ap-
proximating gradients at core voxels during isosurface ex-
traction.

For ray-casting, more voxels are usually put into its gra-
dient set. Consider a cell � contains at least one core
voxel as in (b), which means that an interesting material
having nontrivial computed opacity, penetrates �. In this
case, gradients at arbitrary points inside � are necessary
for resampling shaded colors and opacities. They are gen-
erally approximated by tri-linearly interpolating the gradi-
ents at �’s eight voxels, which are, in turn, approximated
using the central differences. That is, densities of all 6-
neighbors of the eight voxels are used in computing gradi-
ents inside �. The set of all such gradient voxels can be ex-
pressed as � �

������� � �� � � � � � ����� for some � �
� ��� such that 	 � � �

������� for some 	 � � ����, where
� ��� is a set of eight voxels of cell �. Since the direction and
magnitude of approximated gradients play important roles
in shading and classification, the density values of voxels in
the gradient set � ���	

 ���� � � �

	
��	
�
� �
������� must

also be handled carefully.
Lastly, the voxels that are neither core nor gradient,

are classified as unimportant. This term is conveniently
used to indicate that these voxels are simply not used in
visualization, expressed by �	
 and ���. For comple-
tion of definitions, we define the unimportant voxel set as
� 
��	

 ���� � � � �� ���	

 ���� 
 � ���	

 �����.
When the context is clear, we drop the arguments �� 	
�,
�����, and ��	

 ���� in denoting the various sets defined
in this subsection.

3.2. Definition of weight function ����� for voxels

When �	
 and ��� are given, voxels in the volume data
belong to one or more of � � (core), � � (gradient), and
� 
 (unimportant). Notice that � � and � � are not mutu-
ally exclusive, and a voxel can be in more than one core
or gradient voxel sets. The classified voxels are weighted
according to their possible usage, or importance in visual-
ization. The idea is to regard voxels in either � � or � � as
important, and to keep the fidelity of their densities as much
as possible during any lossy compression.



First, let’s consider the voxels in � �
	
. As mentioned be-

fore, they are incident to at least one edge that is intersected
by any isosurfaces being considered. Our main concern is to
be able to compute intersection points along crossing edges
as correctly as possible from reconstructed volume data. At
first, it might seem to be a good idea to assign a larger
weight to a voxel closer to intersection point. In extract-
ing isosurfaces, however, the intersection along an edge is
usually approximated using linear interpolation. This im-
plies that both densities of incident voxels are equally im-
portant. Instead of assigning a uniform weight to core vox-
els, we give larger weights to voxels whose incident edges
are cut through by more isosurfaces. Notice that densities
of such voxels are used more frequently in computing in-
tersection points, and contribute to building isosurfaces to
a larger extent. Since the correctness of isosurface models
mainly depends on the position of vertices, it is reasonable
to emphasize them to build isosurfaces with higher fidelity
from compressed volume data.

Let �� �
	
�

	, � � �
 �
 � � � 
 � � �, be the subsets of � �
	
,

made of core voxels relative to the �th material only. For a
voxel � � �� �

	
�
	, the number of its incident edges crossed

by isosurface of the �th isovalue is expressed by the follow-
ing function:

Æ		
��� �

�
� �� �� � ����� � �� �

	
�
	� �
 if � � �� �

	
�
	


�
 ��������� 

Then the weight function ��
	
��� for � � � �

	
 is defined as

��	
��� � 	
�
��	����

Æ		
��� 

We take a conservative approach in defining the weight
functions by selecting the maximum of weights rather than
adding them. That is, if a voxel is important to at least one
isosurface or material, it is considered to be a significant
voxel. The weight indicates how much a voxel can affect
the correctness of an isosurface of �	
 across its vicinity,
and its maximum possible value is �.

Next, consider how the core voxels in � �
�� are weighted

for ray-casting. Their densities are used in direct volume
rendering, and we intend to preserve well the voxels’ den-
sities that actually contribute to color-opacity accumula-
tion during rendering. Since the function � 	��� shows how
greatly �’s density may impact on image composition rela-
tive to the �th material, the weight function ��

����� is natu-
rally defined as follows:

������� � 	
�
��	����

�	��� 

Notice that it has values at most 	
���	���� ��	, where
��	 is the maximum opacity of the �th material.

The gradient voxels are also weighted by their usage.
Consider a voxel � � � �

	
. Its density is used when the gradi-
ents at �’s 6-neighbors need to be approximated. Since any

reconstruction error, associated with �, could be propagated
in computing normal vectors near �, the density becomes
more significant as more isosurfaces pass through the edges
incident to the neighbors. Note that the usage of � for the
�th isosurface is expressed by

�
�������

Æ		
���. Hence,
we define the weight function ��

	
��� for gradients voxels of
isosurface extraction by taking the maximum usage for all
isosurfaces:

��	
��� � 	
�
��	����

�
�������

Æ		
��� 

Lastly, the weight function ��
����� for ray-casting is sim-

ilarly defined. Recall the definition of gradient voxels (Fig-
ure 2(b)). A voxel � � � �

�� is possibly used in the gradient
computation for all cells incident to the 6-neighbors of �. Its
density value is used only in the cells that have at least one
voxel with nontrivial computed opacity. If 
��� is all eight
cells incident to �, the number of cells that need the den-
sity of � during gradient approximation for the �th material
can expressed by another function Æ 	�����, where Æ	����� �
� �� � 
 � � � 
��� for some � � ����� such that 	 �
� �
�� for some 	 � � ���� �. Then the importance of a gradi-

ent voxel � is defined as follows:

������� � 	
�
��	����

Æ	����� 

It is not hard to see that ��
	
��� and ��

����� have values at
most 
� and 
�, respectively.

Now the weight function ����� for all � � � is a
function !���

	
���
 �������
 ��	
���
 �������� of the above four
functional values. Notice that the functions ��

	
���, ��
�����,

��	
���, and ��
����� are defined in the domains that are dif-

ferent to each other. So, they must be normalized prop-
erly when combined into one function. One problem to be
solved here is how to choose a proper set of the four con-
stant values. Since they are dependent on volume data, and
a variety of visualization parameters such as �	
 and ���,
the data must be analyzed to determine them empirically.

3.3. A sample example of weight functions

We tested with the UNC Bighead data (��� 
 ��� 

���) in order to illustrate how voxels are weighed in our
scheme (Figure 8(a)). In this example, we are interested in
visualizing both bone and skin, where � 	
 � ���
 ���� and
��� � ����
 ���
 ���
 ����� include one element per mate-
rial, respectively. For ray-casting, we used opacity trans-
fer functions ���
 ��
 ��
 ��� and ���
 �
�
 ��

 ���� for the
two materials, respectively, and a gradient transfer function
��
 ��� for rescaled gradients (Refer to Section 2.). Fig-
ure 8(b) to (e) show weighted images for the 114th slice that
are colored using a color map where the maximum weights
in the slice are normalized to 1.0.
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Figure 3. Distribution of weights for Bighead and Visible Man data

An analysis of the weight distribution reveals some typi-
cal patterns of the four weight functions as shown in Fig-
ure 3(solid lines), where the percentages in the captions
are the ratios of voxels having nonzero weights for the
corresponding functions. In combining weights, we first
rescale them, according to their distributions, using a func-
tion ����
 ��
 !�
 !����� defined as follows:

����
 ��
 !�
 !����� �

��
�

� �
 if � " ��

!�
 if � 	 ��


!� �
��������������

�����

 otherwise 

In combining the rescaled weights, we use a heuris-
tic method where the core and gradient weights are
added for the two visualization techniques, respectively,
and then their maximum is taken as the computed
weight of a voxel. The exact equation we used in
this example is as follows: ����� � ����#	
 �
����
 �
 � �
 � �����	
���� � ���
 ��
 � �
 � �����	
�����
 #�� �
���� ��
 � �
 � �
 � ���������������
 
�
 � �
 � �������������.
Here, #	
 and #�� control the relative strength of isosur-
face extraction and ray-casing, respectively. Notice that
� �
	
 � � �

	
 and � �
�� � � �

��. The idea we rely on is to
emphasize core voxel regions more over gradient voxel re-
gions. Another natural way of combining them is to add
them rather than taking their maximum. For the Bighead
data, the maximum weight performs slightly better. Fig-
ure 8(f) and (g) show the sample slices for both cases with
#	
 � #�� � � �.

4. Application to compression scheme

In the previous section, we discussed the function �����
that weighs voxels according to their importance. The
weight information can be utilized by lossy compression
schemes so that the loss of information is minimized with
respect to a specified visualization task. As an application,
we combine the weighting mechanism with a compression
scheme that are based on the simple 3D Haar wavelets [1].

The Haar filters are attractive in developing real-time appli-
cations since they are computationally very cheap. How-
ever, it suffers from their poor filtering capability. In this
section, we explain how the weights of voxels can enhance
the 3D Haar wavelets without any tradeoff in the process of
visualization.

4.1. Definition of weight function ����� for wavelet
coefficients

For the sake of simplicity of explanation, consider the
2D Haar transform as given in Figure 4(a). When densities
of voxels in a � 
 � area are decomposed into the wavelet
space by the Haar filters, the same number of wavelet co-
efficients are generated. We adopt the convention that the
produced wavelet coefficients are stored in the same region
in the image (Figure 4(b)). In this figure, ��� is the average
of voxels, and ���, ���, and ��� are the detail coefficients.
To reconstruct the original voxels, the inverse Haar trans-
form is applied to these coefficients.

For a �
 � square, the Haar transform is first applied to
its four � 
 � subsquares, resulting in four sets of wavelet
coefficients. Then the same transform is repeatedly ap-
plied to the four averages where the transformed coeffi-
cients are stored as depicted in Figure 4(c). The 16 co-
efficients in the region after two consecutive applications
of the forward transform can be organized in a hierarchy,
called a decomposition tree, depicted in Figure 4(d), which
consists of an average ���, one set of detail coefficients
���� � $ � �
 �
 
� on level 0, and four additional detail sets
��	� � $ � �
 �
 
�, � � �
 �
 

 � on level 1 that correspond
to the four �
 � subsquares.

Next consider how weights assigned to voxels are asso-
ciated with wavelet coefficients. The function ����� indi-
cates the importance of a voxel in the data space and its
meaning must be translated into the wavelet space properly.
When four voxel densities are decomposed, the wavelet co-
efficients, stored in the same area, contain the necessary in-
formation for reconstructing the original voxels. The trans-
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Figure 4. 2D Haar decomposition

formed coefficients are important if the original densities in
the region are important. One possible way to connect the
importance measures of voxels and wavelets is that the four
wavelet coefficients have the same weight which is the av-
erage of the four voxels’ weights. This seems natural, how-
ever, notice that all the four wavelet coefficients are used
simultaneously when any voxel in the area is reconstructed.
That is, the accuracy of reconstructed voxels is determined
by the accuracy of all the four wavelet coefficients. In order
to guarantee the accuracy of voxel with maximum weight,
it is more reasonable to conservatively assign the largest
weights of the four voxels to the four wavelet coefficients.

When the Haar transform is applied twice as in Fig-
ure 4(d), the weights of 16 coefficients are determined by
traversing the tree in bottom-up fashion. First, the largest
of the four voxels in a � 
 � area becomes the weights of
wavelets in the corresponding level-1 detail node. Then,
their maximum value which indicates the importance of the
entire � 
 � region is assigned to the average and detail
wavelets on level 0.

The basic idea is naturally extended into 3D space. Con-
sider a � 
 � 
 � region, called a cell. Voxel densities
in a cell are decomposed by the 3D Haar transform. The
transformed cell is represented similarly in a decomposi-
tion tree that are made of one average node ���, one detail
node ���� � $ � �
 �
 � � � 
 �� on level 0, and 8 detail nodes
��	� � $ � �
 �
 � � � 
 ��, � � �
 �
 � � � 
 �. Note that the aver-
ages of the 8 �
�
� subregions are implicitly represented
in the decomposition tree, and they can be reconstructed
using the average node and the detail node on level 0. The
entire voxel densities are then reconstructed using the eight
averages and eight level-1 detail nodes.

Now we are ready to define the weight function �����
for a transformed coefficient � in the wavelet space. Let
�	�, & � �
 �
 � � ��, be the 8 voxels in the �th � 
 � 
 �
region (� � �
 �
 � � � 
 �). The same weight is assigned to all
wavelets in the corresponding �th detail node as follows:

����	�� � 	
�
��������� �	

����	�� for $ � �
 �
 � � � 
 �.

Then, they are propagated upwards to the detail coefficients
on level 0 in the following way:

������� � 	
�
��������� �	

������� for $ � �
 �
 � � � 
 �.

Finally, this weight is assigned to the average node ���, that
is, ������� � �������.

4.2. Truncation of wavelet coefficients

The theory behind wavelet compression tells that the best
way to pick a fixed number of wavelet coefficients when an
orthogonal basis is used, making the resulting error in the



'� norm as small as possible, is simply to select coeffi-
cients with the largest norms, and replace the rest by null
values. The original information is thus approximated by a
smaller number of nonzero wavelet coefficients. In the com-
pression scheme [1], the 3D Haar transform is applied twice
only since a smaller number of applications of inverse trans-
form results in a faster reconstruction, and most of the data
��
�
 �� � � ��%���� is already decomposed into wavelets.
In the process of truncation, we modulate the magnitude of
wavelets using their weights so that the important regions
can be reconstructed faithfully. For a wavelet � 	�� , we use
� (�����	������	�� � instead of ��	�� � as its modified norm.
Here the function (��� rescales the wavelet’s weight based
on the distribution of wavelet coefficients. In our work, we
use a function in the form of (������� � )� � )� � �����,
where )� and )� are determined experimentally.

5. Results

5.1. Test with the Bighead data set

We continue to illustrate the effectiveness of the pro-
posed method on the UNC Bighead data. We produced two
sets of reconstructed volumes using 2%, 3%, 5%, and 7%
of wavelet coefficients, respectively. In generating the first
set, the magnitude of the wavelets was used without alter-
ation in the truncation step. The second set was generated
by applying weights, as explained in the previous section,
with rescaling factors )� � � � and )� � �� � that are
chosen empirically through the analysis of distribution of
wavelets coefficients. Statistics on our objective fidelity cri-
teria are summarized in Table 1(a) for the two cases. The
root mean squared error (RMSE) is the square root of the
average of the squared error measure, and it is one of the
most often used average measure. As another indicator of
image quality, we also present the peak-signal-to-noise ratio
PSNR (dB) that measures the size of the error relative to the
peak value of the signal. In calculating them, we consid-
ered only the important voxels that have positive weights,
in other words, that are possibly used in the visualization
specified by �	
 and ���. The rate of important voxels
is 19.89% for the Bighead data. It is clearly seen that the
quality of the weighted Haar is significantly better than the
quality of the unweighed Haar.

In Figure 5, we enlarged a portion of the 114th slice
images reconstructed with two wavelet ratios. The quality
turns out to be always superior when wavelets are weighted.
When the ratio is less than 5%, blocky artifacts are clearly
visible in both methods. When more than 5% of wavelets
are used, reconstructed images using weights are almost
free of aliasing artifacts in the important regions. We ob-
serve that the weighting method is very effective in improv-
ing the poor filtering quality of the simple 3D Haar trans-
form.

Ratio of the used wavelets
2% 3% 5% 7%

Unweighed RMSE� 10.78 8.76 6.38 4.91
Haar PSNR 27.48 29.28 32.04 34.31

Weighted RMSE� 6.78 4.86 2.82 1.79
Haar PSNR 31.50 34.40 39.12 43.06

(a) Bighead (*: density range �� ���)

Ratio of the used wavelets
2% 3% 5% 7%

Unweighed RMSE�� 66.61 51.55 36.02 27.10
Haar PSNR 35.77 38.00 41.11 43.58

Weighted RMSE�� 46.92 34.21 20.88 13.92
Haar PSNR 38.82 41.56 45.85 49.37

(b) Visible Man (**: density range �� ���� )

Table 1. Quantitative analysis of reconstruc-
tion errors

During visualization, small changes of voxel densities in
the critical regions can result in serious artifacts. For in-
stance, trivial compression errors in the density of voxels
that are very close to an isosurface may change severely its
local topology as well as geometry. Furthermore, the gradi-
ent approximation methods such as central differences are
numerically ill-conditioned. That is, the accuracy of ap-
proximated gradients can be easily deteriorated by tiny er-
rors. Inadequate shading caused by distortion of the direc-
tion of normal vectors produces very unpleasant artifacts
in ray-cast images. We observe this in Figure 6 where en-
larged portions of images, generated by the two visualiza-
tion methods, are shown. The figures (a) to (h) compare
polygon-rendered images generated from extracted isosur-
faces of isovalue 66. The effect of weighing the Haar fil-
ters are prominent as shown in the images. When weighted
with only 7% of wavelets, the rendered isosurface is vi-
sually almost identical to the isosurface from the uncom-
pressed data. The figures (i) to (p) show the difference in
the quality of ray-cast images rendered with semitranspar-
ent skin and opaque bone. When voxels are not weighted,
the blocky artifacts are annoyingly visible for all the four
tested ratios. On the other hand, such artifacts are signif-
icantly reduced when our method is applied. When more
than 5% of wavelets are used, the ray-cast images are al-
most free of aliasing artifacts.

5.2. Test with the Visible Man data set

We have also experimented with a larger volume data set
of resolution ��� 
 ��� 
 ��� by taking 512 slices from



(a) Unweighed: 3% (b) Weighted: 3% (c) Unweighed: 5% (d) Weighted: 5%

Figure 5. Comparison of quality of reconstructed images

the preprocessed fresh CT data of the Visible Man (Fig-
ure 8(h)). Two bytes are allocated per voxel, hence the
data set takes up 256 MBytes. In visualizing this data, we
are again interested in both bone and skin, where �

�

	
 �

����
 ����� and �
�

�� � ��
��
 ����
 �����
 ������. The
opacity transfer functions, defined by �
��
 ���
 ���
 ����
and �����
 �
��
 �
��
 ����� for the two materials, and
the gradient transfer function, determined by ��
 ����� for
rescaled gradients were used in the test. It is very interest-
ing to see that the weight distribution of the Visible Man
data (dotted lines in Figure 3) is very similar to the distri-
bution of the Bighead data. The only major difference in
���� ((b)) is due to the use of the different �� and transfer
functions. Figure 8(i) shows the 270th coronal slice colored
according to the maximally combined weights. 23% of vox-
els have positive weights, and the reconstruction errors over
these voxels are compared in Table 1(b).

From the through examination of visualized images, we
find that the patterns of performance in visualization for
both the Visible Man data and the Bighead data are very
similar to each other. For ray-casting, the visual quality of
images rendered with 4% of weighted voxels compares fa-
vorably with the quality of images visualized with 7% of
unweighed voxels (Figure 7(a) and (b)). This is true in most
cases of tested visualization, and indicates that about half
the wavelets are necessary when weighed to achieve the
same degree of visual quality. According to the analysis
of compression rates in Table 2, this implies that the same
quality of visualization is achieved using almost half of vol-
ume data.

We also tested with another case where �
��

	
 � � ��� �

and �
��

�� � �. We find that only 5.27% of voxels are
important. When 3% of weighted wavelets are used,
the compressed volume takes only 5,948 KBytes (com-
pression rate = 44.07), and the rendered isosurface with
isovalue 600 is visually identical to the isosurface from
the uncompressed data of size 256 MBytes (Figure 7(c)).

Ratio of the used wavelets
2% 3% 5% 7%

Unweighed Size (KB) 6744 8780 12592 16340
Haar Rate 38.87 29.86 20.82 16.04

Weighted Size (KB) 6860 8256 10680 12872
Haar Rate 38.21 31.75 24.55 20.37

Table 2. Compression rates for Visible Man

When we use only 2% of weighted wavelets in com-
pression, the resulting size of compressed data is 5,552
KBytes (compression rate = 47.22). Aliasing artifacts
start to appear in this case, but they are still trivial (Fig-
ure 7(d)). This is an extreme case where only one isosur-
face is considered. When a goal of visualization is to ex-
amine isosurfaces of, say, both bone and skin, a set like
�	
 � ����
 ���
 � � � 
 ���
 ����
 ����
 � � � 
 ����� will of-
fer enough flexibility in visualization. With such a set, we
expect that the size of large volumes such as the Visible
Human data sets still can be reduced significantly without
harming the visual quality.

6. Concluding remarks

In this paper, we have presented a new method for classi-
fying voxels according to their importance in visualization.
To illustrate the effectiveness of our technique, we have also
applied weight information to a lossy compression scheme.
The new approach is different from the previous enhance-
ment techniques in the sense that it judges the importance
of voxels based upon their usage in actual visualizations to
be performed as well as the spatial properties of data sets.
Application of the weighting mechanism to a compression
method was shown to be successful in overcoming the vi-
sual degradation of reconstructed images, which, as a con-
sequence, leads to higher compression rates and visual fi-
delity.



(a) Unweighed: 2% (b) Unweighed: 3% (c) Unweighed: 5% (d) Unweighed: 7%

(e) Weighted: 2% (f) Weighted: 3% (g) Weighted: 5% (h) Weighted: 7%

(i) Unweighed: 2% (j) Unweighed: 3% (k) Unweighed: 5% (l) Unweighed: 7%

(m) Weighted: 2% (n) Weighted: 3% (o) Weighted: 5% (p) Weighted: 7%

Figure 6. Comparison of visualized images ((a)-(h): isosurface rendering, (i)-(p): ray-casting)



(a) Unweighed: 7% (b) Weighted: 4% (c) Weighted: 3% (d) Weighted: 2%

Figure 7. Comparison of visualized images ((a),(b): ray-casting with �
�

	
 and �
�

��, (c), (d)): isosurface
rendering with �

��

	
)

As another application, we are currently implementing
a new vector quantization algorithm where the weight in-
formation is utilized in designing enhanced codebooks. In
conclusion, we expect that the new technique will allow
larger volumes to be used in more compact form in inter-
active real-time volume visualization, and it will be very
effective in achieving the dual purposes of combined iso-
surface extraction and ray-casting.
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(a) Rendering from uncompressed data (b) �������: slice max = 6 (c) �������: slice max = 0.642

(d) ��
��
���: slice max = 23 (e) �������: slice max = 32 (f) �����: maximum weight

(g) �����: summed weight (h) Rendering from uncompressed data (i) �����: maximum weight

Figure 8. Ray-cast images and color-mapped weight images for sample slices ((a)-(g): Bighead, (h),(i):
Visible Man)


