
Rendering of Spherical Light Fields

Insung Ihm, Sanghoon Park, Rae Kyoung Lee
Department of Computer Science, Sogang University

1 Sinsu-dong Mapo-gu Seoul, 121-742, Korea
{ihm,hun,lrk}@graphlab.sogang.ac.kr

Abstract
A plenoptic function is a parameterized function describ-

ing the flow of light in space, and has served as a key idea
in building some of the recent image-based rendering sys-
tems. This paper presents a new representation scheme,
called a spherical light field, of the plenoptic function, that
is based on spheres. While methods using spherical coor-
dinates are thought to require substantially more compu-
tation than those using planar or cylindrical coordinates,
we show that spheres can also be used efficiently in repre-
senting and resampling the flow of light. Our image-based
rendering algorithm is different from the previous systems,
the light field and lumigraph, in that it is an “object-space”
algorithm that can be easily embedded into the traditional
polygonal rendering system. Our method is easily acceler-
ated by 3D graphics boards that support the primitive func-
tionality, such as viewing and smooth shading. In addition,
we introduce an encoding scheme based on wavelets for
compression of the huge data resulting from sampling of the
spherical light field. The proposed technique can be easily
adapted to compress the light field and lumigraph data, and
offers as high compression ratios as the previous methods.
Furthermore, it naturally creates a multi-resolutional rep-
resentation of the light flow that can be exploited effectively
in the future applications. We show how to access the com-
pressed data efficiently using a modified significance map
and an incremental decoding technique, and report experi-
mental results on several test data sets.

1. Introduction

One of the most important goals of computer graphics
is to generate realistic images from complex scenes. Sev-
eral approaches to image synthesis have been developed
including polygonal rendering, ray tracing, and radiosity.
Application of these traditional methods involves two com-
plicated tasks: geometric representation of three dimen-
sional (3D) scenes and the physical description of lighting
attributes of the scenes. Considerable work has been under-
taken to enhance the realism of generated pictures and to re-
duce the computational complexities of algorithms. Despite
rapid advances in modeling and rendering, creating realis-
tic pictures of virtual environments requires great compu-
tational expense and the results are still far from real-time
computation.

A different approach, called image-based rendering, has
been developed recently. Unlike traditional geometry-based
rendering, image-based rendering techniques generate real-
istic pictures from a set of pre-acquired images. Usually,
the source of the pre-computed images is built from digi-

tized photographs or from synthesized images. Using pho-
tographs from the real world makes it possible to skip most
of the traditionally laborious modeling and rendering pro-
cesses. The pre-processed imagery allows the implemen-
tation of rendering complex scenes with a constant amount
of computation per frame, most likely at real time or inter-
active rates. This is so even when the source images are
synthesized from the virtual world, in which case they may
still go through the modeling and rendering processes.

The idea of image-based rendering has long been applied
in texture mapping and environment mapping [5, 4, 13].
In Chen [6], multiple environment maps are created from
cylindrical panoramic images at discrete points, and they
are used to compose images seen from locations with con-
tinuously changing viewing directions. Image morphing
has also been a popular technique for image-based render-
ing [2, 20]. In Chen et al. [7], the authors made use of
the view interpolation approach to synthesize 3D scenes
where regularly spaced synthetic images with their com-
puted depth maps are smoothly interpolated as a camera
moves. In Debevec et al. [9], a hybrid approach combining
both geometry-based and image-based methods was pre-
sented for modeling and rendering architectural scenes from
a set of still photographs.

McMillan et al. [17] presented an image-based render-
ing system, based on sampling, reconstructing, and resam-
pling the flow of light. This, they called aplenoptic func-
tion, where a cylindrical projection was used as the plenop-
tic sample representation. The plenoptic function was de-
fined as the pencil of rays visible from any point in space,
at any time, over any range of wavelengths [1]. When time
is fixed, the relationship is a function of five variables that
describe the flow of light at a point(x, y, z) in a given di-
rection(θ, φ). The 5D plenoptic function can be simplified
to 4D when views of an object need to be generated from
outside its convex hull. This 4D space may be considered a
function of the space of oriented lines.

Two similar parameterizations of this 4D function have
been presented recently. Levoy and Hanrahan [15] param-
eterized rays by their intersection with two parallel planes.
Two pairs(s, t) and(u, v) of parameters on the planes de-
fined an oriented ray, and they restricted the ranges of the
parameters so that points on each plane lay within convex
quadrilaterals. This parallelepiped of the pencils of rays was
called alight slab. The 4D function, called alight field, was
created using an appropriate number of such light slabs. In
[12], Gortler et al. chose a cube to bound an object, and for
each face, parameterized the rays in a similar way to create
the 4D function,Lumigraph.

Our work extends previous research based on the con-
cept of the plenoptic function. We present a new parame-

terization and representation of light flow based on spheres,
calledspherical light field. While methods using spherical
coordinates are thought to require substantially more com-
putation than those using planar or cylindrical coordinates,
we show that spheres can also be used efficiently in rep-
resenting and resampling the flow of light. The rendering
algorithms used in previous studies [15, 12] are “image-
space” algorithms in that they have the same basic struc-
ture as ray casting. Our rendering algorithm is different in
that it is an “object-space” algorithm that can be embedded
easily into the traditional polygonal rendering system. It is
accelerated easily by 3D graphics boards that support the
primitive functionality such as viewing and smooth shad-
ing, and allows a simple-to-implement hybrid rendering in
which complex regions are rendered from sampled spher-
ical light fields, while less complex regions are rendered
from simple polygonal models.

Like the other approaches quoted, our image-based ren-
dering system must handle a huge amount of data. While
the successful encoding techniques of previous approaches
can be incorporated into our rendering system for com-
pression, we also introduce another possible compression
scheme based on wavelets. As well as the proposed tech-
nique, that can be easily adapted to compressed the light
field and lumigraph data, offers as high compression ra-
tios as the previous methods, it naturally creates a multi-
resolutional representation of the light flow, that can be ex-
ploited effectively in the future applications. We show how
to access the compressed data efficiently using a modified
significance map and an incremental decoding technique,
and report experimental results on several test data sets.

2. Spherical Light Field Rendering

2.1. Representation of Spherical Light
Fields

In this section, we propose a new parametrization of the
oriented rays in 3D space. Our approach differs from pre-
vious works in that a sphere is used as the convex hull of a
bounded object (See Figure 1.). Each point on the surface
of the sphere is parameterized by two variables(θp, φp).
Then, an oriented ray in the space is determined by asso-
ciating a direction(θd, φd) with each point on the sphere.
This results in a different 4D parametrization of the plenop-
tic functionC ≡ (R, G,B) = Ray(θp, φp, θd, φd), which
we call aspherical light field.

The parametrization can be viewed as a collection of
small directional spheres clinging to a largepositional
sphere (Figure 2). Consider the positional sphere that is
a unit sphere, centered at the origin, bounding objects in
the scene. Pointsp = (x, y, z) on the sphere can be pa-
rameterized by two variablesθp andφp (0 ≤ θ < 2π and
−π

2 ≤ φ ≤ π
2) that represent the longitude and latitude, re-

spectively. The direction atp is also parameterized by two
variables(θd, φd). A natural choice of the coordinate sys-
tem for directions(θd, φd) is the spherical frame field where
thez axis is normal to the surface atp, and thex andy axes
are in the directions to the parallel and meridian passing
throughp, respectively (Figure 2(a)) [18]. The coordinate
system is natural in the sense that it is appropriate for rep-
resenting the upper hemisphere that is usually enough to
describe the flow of light. In our framework, however, we
choose a different frame, whose origin is atp, and the three
axes are parallel to those for the positional sphere. This co-
ordinate system has the advantage that a given direction is

Z

Image Plane

Eye

Spherical Light Field

Y

X

Figure 1. The Representation of a 4D Spheri-
cal Light Field

X

Y

Z

x

yz

p

Positional Sphere

Directional
 Sphere

(a)

X

Y

Z

p

Positional Sphere

Directional
 Sphere

x

y

z

(b)

Figure 2. Two Coordinate Systems for 4D
Parametrization

described by the same parameter values for all the direc-
tional spheres. This coordinate system results in efficient
computation, especially when a parallel projection is used.

The use of spheres provides a symmetric representa-
tion of the complete flow of light, which makes it easy
to handle arbitrary viewpoints and directions without ex-
ceptions. While spheres are generally less efficient than
planes or boxes from a computational viewpoint, our ren-
dering method is designed to access information, stored in
a sphere, as efficiently as possible.

2.2. Discretization of Spherical Light Fields
The spherical light field has been defined as a func-

tion in a continuous, four dimensional space. In practice,
to be used in a computational framework, the functional
space must be discretized or be sampled. Mathematically
speaking, the functionRay can be expressed as a combi-
nation of two functionsfp andfd: Ray(θp, φp, θd, φd) =
fd(θd, φd) = (fp(θp, φp))(θd, φd), where fp : V −→
(V −→ C), fd : V −→ C, andV = {(θ, φ)|0 ≤ θ <
2π,−π

2 ≤ φ ≤ π
2 }. That is,fp is a function defined on

a sphere whose value is a functionfd, in turn defined on
another sphere. Hence, the task of sampling the 4D spher-
ical light fields may be reduced to the problem of the finite
approximations of two spheres.

In our framework, we start from the octahedron, where
each triangular face corresponds to the eight regular patches
on the sphere, each corresponding to the octants of thexyz-
axes. Figure 3 illustrates how each triangular face is subdi-
vided recursively into four finer triangles. Three new ver-
tices are selected in the centers of the circular arcs that con-
nect the vertices of the triangles. In contrast to geodesic
construction, in which the great circles of the sphere are
used, we use the circles that areorthogonalto the axes of
the coordinate system. With our tessellation scheme, it is
cheaper than the geodesic tessellation to locate a triangle
that contains a given direction because only simple compar-
isons withx, y, andz coordinates are necessary.

As mentioned previously, we need to tessellate two dif-
ferent spheres, the positional sphere and the directional
sphere. For the positional sphere, we assume that the func-
tion fp is discretized so that it is defined at the vertices of
the approximating polyhedron, and the polygonized sphere
is stored in a conventional triangular mesh form. The ap-
proximating polyhedron for the positional sphere can be any
polyhedron made of an arbitrary number of vertices. One
the other hand, the functionfd on the directional sphere is
assumed to have values at the barycentric centers of the tri-
angular faces, generated from recursive subdivision of the
base triangles of an octahedron. Since the value offd is an
RGB (or RGBA) color, we can imagine a flat-shaded poly-
hedron where the color of each triangle is the value assigned
to the center of the triangle. Figure 5(a) displays an example
of flat-shaded directional sphere with level-5 discretization.

X

Y

Z

Figure 3. Recursive Subdivision of Base Tri-
angles

The discretized spherical data for the directional spheres
are reordered into a two dimensional array for effective stor-
age and manipulation as illustrated in Figure 4. When a tri-
angular patch is subdivided into four sub-patches, they are
labeled, and are reordered into an array as in Figure 4(a).
This labeling continues as the triangular paths are recur-
sively subdivided, and each triangle of the final polyhedron
is named by concatenating the labels corresponding to the
region. Figure 4(b) shows an example of the level 2 subdi-
vision and its array representation. Notice that a quadtree is
implicitly constructed for each base triangle of the octahe-
dron corresponding to one-eighth of the directional sphere.
In this representation, we view the sphere as a tree that is
described as follows:

• The root has two children corresponding to the upper
and lower hemispheres.

1

0
2 3

1

2 3

0

11

10

00

01

13

0203

12

23

31

30
32 33

21

20
22

00 01 10 11

13120302

20 21

22 23

30 31

32 33

(b) Level two subdivision

(a) Labeling order

Figure 4. Reordering of Spherical Data

(a) A Flat-Shaded Direc-
tional Sphere

(b) Two Reordered
Spheres

Figure 5. The Directional Spheres and Their
Reordered Arrays

• The two children have four children corresponding to
the four base triangles.

• The children are the roots of the quadtrees that repre-
sent the base triangles.

When the base triangle is subdivided up to level 5,45 =
1024 triangles are generated, and the data associated with
the centers are stored in a25 × 25 array. Each hemisphere
is then put into a26 × 26 array, and a whole discretized
directional sphere is represented by a27 × 26 = 128 × 64
array. Figure 5(b) shows a128 × 128 image that has been
reordered from two spheres, where the left half is from the
sphere in Figure 5(a). When the base triangle is discretized
up to level 4, a directional sphere is represented by a64×32
array.

2.3. Polygonal Rendering of Spherical Light
Fields

So far, we have discussed the representation of dis-
cretized spherical light fields that are serialized into two
composite spheres. We now describe how an image is dis-
played from a given spherical light field. Levoy et al. [15]
and Gortler et al. [12] produced an image using algorithms

that have the same main for-loops as a ray tracer. For each
ray generated pixel-by-pixel, the corresponding(s, t, u, v)
coordinates are computed, then, a resampling process is car-
ried out to compute the color along the ray. These methods
may be classified as image-space algorithms. On the other
hand, our approach is an ”object-space” algorithm that is
easily embedded into a polygonal rendering system.

Our viewer generates an image by rendering the trian-
gles of the polyhedron that discretize the positional sphere.
The rendering process is a smooth-shading of a polyhedron.
Given a camera position and a projection type, the back-
faced triangles of the sphere are culled first. For every front-
faced triangle, a color is associated to each of its vertices.
To do this, the projection direction for the vertex, parameter-
ized by(θp, φp), is decided, and it becomes a point(θd, φd)
on the directional sphere corresponding to the vertex. The
color that is assigned to the vertex is the functional value
Ray(θp, φp, θd, φd) of the spherical light field. Then the
triangle is projected onto an image plane, and the colors at
the vertices are bilinearly interpolated at the pixels it covers.

Most of the simple rendering process can be imple-
mented easily in a conventional polygonal rendering system
such as OpenGL. The shading part is programmed in just a
few OpenGL commands. First, the smooth shading model
is selected by theglShadeModel () function with the mode
parameterGL SMOOTH. Then the triangles are drawn by
the glVertex() functions with the colors assigned to their
vertices by theglColor () functions. Back-face culling and
viewing are routine in polygon-based rendering. Graphics
boards that offers primitive functionality such as viewing,
culling, and smooth shading, are available today at mod-
erate prices. Hardware acceleration of spherical light field
rendering is hence quite affordable even on low-end work-
stations or PCs.

The only major part that must be computed in software
is that of extracting the color of a vertex(θp, φp) from the
directional spherefd = fp(θp, φp). When the projection di-
rection is(θd, φd), the color becomesfd(θd, φd). Since the
directional sphere is now defined on the discretized space,
accessing the function involves a resampling process. We
find a simple nearest-neighbor filtering technique adequate.
Filtering based on linear interpolation from the nearest sam-
ples on the directional sphere would result in few alias-
ing artifacts. However, interpolation-based filtering is ex-
pensive, especially when real-time rendering is desirable.
As stated above, the directional sphere is subdivided into
eight patches, each corresponding to an octant of thexyz-
axes. Then each patch is recursively refined into four sub-
patches. When recursion is repeated up to level 5, we ob-
tain8× 45 = 8192 directions on the discrete sphere which
are enough for nearest-neighbor resampling in most cases.
When the maximum level is 4, there are8 × 44 = 2048
directions. In the case of this fewer number of directions,
using nearest-neighbor filtering may cause some local dis-
tortion in a displayed image with perspective projections,
because each projector is modified to its nearest one among
the 2048 directions. Such a problem does not occur, how-
ever, in parallel projections because all the points on the
positional sphere take on the same (nearest) direction for
the directional sphere.

3. Wavelet-Based Compression

Like the light field and lumigraph, a huge amount of
storage is necessary to represent a nontrivial spherical light

field. For example, we used approximately 64K points for
the positional sphere when an octahedron is used as a base
polyhedron. When each of the eight quadtrees have level 5
for the directional sphere and 24 bits are used for a color,
64 × 210 × 8 × 45 × 3 = 1.5GB of storage is required. If
we use quadtrees with a maximum level of 4, the storage
required is 384MB.

To make implementation of spherical light fields prac-
tical, the data must be compressed. In [15], the authors
describe a compression system consisting of fixed-rate vec-
tor quantization followed by entropy coding. To quantize a
light field, they first partition the source data into a set of
sample vectors, and construct a codebook of reproduction
vectors called codewords that best approximate the sam-
ples. Then the sample vectors in the source are replaced
by indices of the closest approximating codewords from
the codebook. The codebook and indices are further com-
pressed by gzip which is an implementation of Lempel-Ziv
coding. They report an overall compression ratio of a factor
of more than100 : 1, while up to24 : 1 compression is
possible using the vector compression that decides the ac-
tual amount of run time memory. In [12], the authors guess
that a200 : 1 compression ratio could be achievable with
almost no degradation.

In this section, we propose another compression tech-
nique, designed for the spherical light field, which can be
easily adapted to the light field and lumigraph. Notice
that these data contain substantial coherence, hence a good
compression technique must remove redundancy well. Fur-
thermore, the compression technique must provide a low-
cost random access to compressed data. Recall how the
rendering process tries to access the pixels of directional
spheres. For each directional sphere image, only one (or
a few when interpolation is done) sample is extracted, and
the access pattern is somewhat arbitrary. Most compres-
sion techniques, which place some constraints on random
access, are not appropriate for displaying the spherical light
field because they often fail to decode an individual sample
quickly.

Our compression method, based upon wavelets, pro-
duces as high compression ratios as the previous one used
for the light field [15]. Our method is designed to be able
to extract colors of individual samples, accessed in an ar-
bitrary order, from the compressed data efficiently, using
a modified significance map and an incremental decoding
technique. It also provides a multi-resolution representation
of the spherical light field that can be utilized in the future
applications.

Wavelets are a mathematical tool for representing func-
tions hierarchically, and they have had a great impact in sev-
eral areas of computer graphics [8, 22]. They also provide
powerful tools for multi-resolution representation of data
and can be used for data reduction. Wavelets have been ap-
plied successfully to image compression, say [10, 21, 23]
An image is compressed by applying a two dimensional
wavelet transform to compute coefficients representing the
image, and then disregarding the coefficients smaller in
magnitude than a specified criterion.

Schr̈oder et al. [19] discussed how to construct wavelets
for functions defined on the sphere. Since the colors on
the directional spheres are functions defined on the sphere
too, their work is highly appropriate in this case. However,
we choose to work on the reordered (i.e.,linearized) image
of the directional spheres. We aim at building a wavelet-
based compression scheme which is appropriate not only
for the spherical light field but also for the light field and

c1 c2

c3 c4

cLL cLH

cHL cHH

LL3 LH3

HL2

HL3

HL1

HH3

HH2

HH1

LH2

LH1

(a) (b)

Figure 6. Wavelet Decomposition

lumigraph, based on the cubical representation. Further-
more, notice that each directional sphere is rather coarsely
sampled, for example,32 × 64 and64 × 128 points when
the discretization levels are 4 and 5, respectively. It would
not be a good idea to compress data on each sphere han-
dling them separately. Since the directional spheres corre-
sponding to the neighboring points on the positional sphere
contain much coherence, it would produce a better result
to put several spherical data in one unit, and process them
together, in which case, reordering into a 2D array gives a
simple computational scheme.

In our implementation, we use the nonstandard Haar
wavelet decomposition as in [3]. The Haar wavelet trans-
formation is not one of the best wavelet filters, but it is
computationally efficient, which is one of the most impor-
tant factors in this application. Our experience tells that the
Haar wavelets are good enough for compressing the spher-
ical light field. Suppose an image is represented concep-
tually by a quadtree whose root corresponds to the whole
image and whose descendants represent recursively subdi-
vided regions. Decomposition is carried out by applying
the Haar transform from the leaves all the way up to the
root. The color values of the leaves can be thought to be the
average colors of the corresponding regions represented by
pixels. Then four average colorsc1, c2, c3, andc4 in four
children are recursively decomposed as one average color
cLL and three detailscHL, cLH , andcHH using the wavelet
transform:

cLL = c1+c2+c3+c4
4 , cHL = c1−c2+c3−c4

4 ,
cLH = c1+c2−c3−c4

4 , andcHH = c1−c2−c3+c4
4 .

The four values arise from separable application of ver-
tical and horizontal filters, wherecLL represents the aver-
age of pixel colors in the subregions, andcHL, cLH , and
cHH contain detail information on how the color varies in
the four subregions. During decomposition, the four col-
ors are replaced by the average color and three details (See
Figure 6(a).), and then the average colors are repeatedly de-
composed. The decomposition process converts the image
into a wavelet image that can be stored in an array of the
same size using a proper ordering of the coefficients.

As noted above, level 4 and level 5 discretization of di-
rectional spheres generates64 × 32 and128 × 64 images,
respectively. In our compression scheme, we use as a unit
image the image of size27 × 27 = 128× 128 that amounts
to 8 or 2 linearized directional spheres, discretized up to
level 4 or 5, respectively. While the decomposition process
produces a new wavelet image that has a reduced number of
non-zero coefficients, it does not necessarily imply that the

128X128 RGB image

1 2 3 0 0 4

7 0 8 9

0

0

offoffoff

16

16

1-bit flags and offsets

Three-byte stream

Figure 7. Wavelets Encoding Scheme

new image takes up less storage space. Consider an RGB
image whose pixels are represented in three bytes. Each
channel in the unsigned character type has a value ranging
from 0 to 255. Since the repeated divisions during decom-
position generate fractional numbers in each channel, the
average colors and details cannot usually be stored in three
bytes. Using floats (4 bytes), however, requires 12 bytes for
color that may lead to an inefficient compression scheme.
In fact, it is possible to exactly encode an image in integer
arithmetic using slightly more bits per channel. For exam-
ple, it is not hard to see that only 10 bits for each channel is
sufficient when the so-called reversible S-transformation is
employed to a 2D image [16].

In our method, we start from a128×128 RGB image, in
which three bytes are used for each pixel, and apply the
wavelet transform three times to the image. Figure 6(b)
shows a diagram of the resulting wavelet decomposed im-
age in which the subscripts represent the levels of decom-
position. The details in the blocksLH1, HL1, andHH1
represent the finest scale wavelet coefficients and the first-
level averages inLL1 are again decomposed, and so on.
Notice that the16×16 blockLL3 contains the average col-
ors, each corresponding to an8× 8 subregion of an image.
During decomposition, we use enough precision, say four
bytes per channel, to calculate the average and detail coef-
ficients without round-off errors. Once the decomposition
process is done, the coefficients are stored using one byte
per channel, that is, three bytes per pixel. Particularly, the
16 × 16 averages are stored as unsigned integer, and the
remaining details are stored in signed integer. Although the
minimum precision required is 10 bits per channel when the
S-transformation is employed, in which the floor operations
must be carried out repeatedly, we choose the simpler Haar
transformation for its computational simplicity. The infor-
mation loss occurs when the coefficients are rounded off
into three bytes. However, we find that the round-off errors
in this stage do not cause much trouble in compressing the
spherical light field. Now we have a128 × 128 (partially)
wavelet decomposed image whose coefficients are repre-
sented in three bytes. In the next stage, we delete (replace
by zero) the vector-valued coefficients whose magnitude,
measured in theL2 norm, is smaller than a given threshold

(a)α = 10% (b) α = 7% (c) α = 5%

α β compr. ratioρ
0.10 100

256
3010
49152 (6.1%)

0.07 100
256

2532
49152 (5.1%)

0.05 86
256

2068
49152 (4.2%)

Figure 8. Examples of Wavelet Compression

τ . Then only the non-zero coefficients are enumerated in a
three-byte stream in the order described below.

As emphasized before, it is critical to be able to quickly
reconstruct a color of an arbitrary pixel from a compressed
image. Hence, there must be some mechanism that supports
a quick random access. In our compression technique, the
128×128 image is partitioned into16×16 subblocks, where
each subblock represents8 × 8 subimages (Figure 7). We
first scan the subblocks in the left-to-right, up-to-down fash-
ion, tagging with zero the subblocks whose coefficients are
all zero, and with positive integers in the increasing order
the subblocks that contains at least one non-zero coefficient.
Since each tag can be represented using one byte, 256 bytes
of storage is enough (Note that even when all the subblocks
contains non-zero coefficients, 256 bytes are sufficient us-
ing some trick.). Each subblock with a non-zero tag is then
scanned in the left-to-right, up-to-down fashion again, enu-
merating the non-zero coefficients in the three-byte stream.
In addition, an auxiliary chunk of memory is allocated for
this subblock that contains an8×8 1-bit flag block and off-
set information. The one-bit flag block, requiring 8 bytes,
contain thesignificance map, or the binary information as to
whether the coefficients in the subblock are zero or not. The
offset informationoff, represented in two bytes, contains the
positions, in the three-byte stream, of the first non-zero co-
efficients in the ordering. A problem here is how to retrieve,
efficiently, the value of a coefficient with index(i, j) in a
decomposed128 × 128 image whose non-zero coefficients
are listed in the three-byte stream. To do this, we first check
the tag of the subblock that contains the(i, j) element. If
it is zero the coefficient is simply null. Otherwise we look
at the auxiliary memory corresponding to the subblock that
contains the 1-bit flags of the coefficients. Let(i′, j′) be the
index of the coefficient(i, j) in the subblock. If the flag for

the index(i′, j′) is 0, then the coefficient is zero. If not, we
must carry out some computation to get the correct position
or address of the(i, j) coefficient in the three-byte stream.

The position of the coefficient having the index(i′, j′) in
the proper stream can be computed by adding its displace-
ment value tooff. When the flag is 1, the displacement is
the number of coefficients that precede it in the enumera-
tion whose flags are 1. To count the number efficiently, we
use a precomputed indexing tableT(∗) with 216 = 65536
entries. Given a word made of two bytes, the table returns
the number of bit 1 in the word. Hence, the correct num-
ber can be counted by accessing the table only a few times
(Note that a proper number of zeros must be padded, in the
word, from the position(i′, j′) position in the last access.).

We shall now analyze briefly, the costs that must be paid
to access a coefficient in the compressed image. When the
tag for the subblock that contains the coefficient is zero or
its 1-bit flag is 0, that is, when the coefficient is zero, the
cost is trivial. When its flag is 1, that is, when the coeffi-
cient is non-zero, a few table accesses, 2.5 on the average,
and a few additions are necessary. The typical ratio of non-
zero coefficients after wavelet compression we use in our
implementation is less than 10 percent. This implies that
accessing a coefficient in the compressed image involves
little cost.

Once the non-zero coefficients have been enumerated in
the three-byte stream, the coefficients are quantized. We
view the data in the stream as a 24-bit true color image,
and simply apply the vector quantizer that converts a 24-bit
image into a 8-bit indices and a color table whose entries are
three bytes long. In order to minimize the overheads caused
by the color table, we build a color table for several, say four
or eight,128×128 images. Since the images corresponding
to the neighboring vertices on the positional sphere are very

similar to each other, sharing one table does not harm the
quality of vector quantization.

Extracting a color for a projection direction from the di-
rectional sphere is equivalent to reconstructing a color from
a wavelet-encoded compressed image. The reconstruction
process is the reverse of decomposition in which four aver-
age colorsc1, c2, c3, andc4 are computed from one average
color cLL and three detailscHL, cLH , andcHH using the
formulae :

c1 = cLL + cHL + cLH + cHH ,
c2 = cLL − cHL + cLH − cHH ,

c3 = cLL + cHL − cLH − cHH , and
c4 = cLL − cHL − cLH + cHH .

To extract the color of a specific pixel, that is, a specific
direction, from the wavelet-encoded image, it is necessary
to traverse the (conceptual) quadtree from the root down to
the corresponding leaf, applying the above formula repeat-
edly. Since we have applied the wavelet transform three
times, the reconstruction formulae are applied three times.
To make the reconstruction computation as efficient as pos-
sible, it is carried outincrementally. Notice that as a mouse
is moved to rotate objects in a scene, the projection direc-
tions of a point in the positional sphere change gradually.
Hence, when we access a pixel in the image for the direc-
tional sphere, the chances are that it is near the pixel that
has just been accessed. This implies that two adjacent re-
construction processes usually share a large portion of the
paths from the root to the leaves in the quadtree. This obser-
vation suggests that the previous computation results may
be reused and so, rather than discard the sets of four aver-
age colors for nodes in the previous path, we store them in a
stack. (Note that only one copy of the previously accessed
path is stored for each directional sphere.) When the next
pixel is reconstructed, we compare the previous with the
current paths to find the common path. Then the average
colors of the common ancestors are reused without comput-
ing them again. This incremental computation enhances the
performance of the reconstruction process.

Before turning to the next section, we report a quanti-
tative analysis on the compression ratios. Firstly, a given
128×128 image takes up27·27·3 bytes. To store the tags for
a compressed image, 256 bytes of memory is necessary (See
Figure 7 again.). For a subblock that contains at least
one non-zero coefficient, an auxiliary memory is allocated
where 8 bytes (8 × 8 bits) are used for the 1-bit flags, and
2 bytes are used for the offset information. Letα be the ra-
tio of the non-zero coefficients used after wavelet compres-
sion, that is,# of coefficients in the three-byte stream

of the whole coefficients used , andβ be the
the rate of the subblocks with non-zero tags that contain at
least one non-zero coefficient, that is,# of non-null subblocks

of the whole subblocks.

Then, the compressed image consumes27 ·27 ·α+10 ·256 ·
β + 256, bytes and dividing it by27 · 27 · 3 bytes gives the
compression rateρ = α

3 + 5
96β + 1

192 . This figure does not
include the overheads for the color table: When the color
table is shared by four and eight images, the additional cost
are 256·3

27·27·3 = 1
64 , and 1

128 , respectively.
Notice that the second and the third terms inρ are the

costs that must be paid to store the necessary significance
maps of wavelet coefficients. In our scheme, this informa-
tion allows a low-cost random access. It could be further
compressed using the Zerotree or Horizon embedded cod-
ing techniques, but that only places constraints on random

Figure 9. Ray Casting of the Human Head
with Skin

access to the compressed data. Figure 8 illustrates three ex-
amples of compression from the directional sphere image
shown in Figure 5.

The compression ratios we usually achieve with this en-
coding scheme for the directional sphere data range from
10:1 to 30:1, depending on the coherence in data. To design
a compression technique using wavelets, we have compro-
mised between a good compression ratio and fast random
access ability. Our compression technique could be use-
ful for other applications that can benefit from the multi-
resolution representations.

4. Experimental Results

The complete image-based rendering system has been
implemented on an SGI Indigo 2 workstation with a
200MHz R4400 CPU, 256 Mbytes of main memory and
a High IMPACT graphics board. The performance results
for three spherical light fields with the different parameters
are summarized in Table 1. The test spherical light fields
were created using our volume ray casting software from
the “UNC head” data set which is a256 × 256 × 225 CT
scan of a human head. We created four spherical light fields
for two classifications and two discretization levels of the
directional spheres. The raw spherical light fields we have
generated take about 384 Mbytes to 1.5 Gbytes of storage.
The data size is proportional to the number of vertices in
the positional sphere, and to the number of triangles in the
directional spheres.

Figure 9 shows a256×256 image generated with a paral-
lel projection of the CT data classified with an opaque skull
and semitransparent skin. It was rendered directly from the
CT data by our volume rendering software for comparison
purposes. We used a ray casting algorithm which is opti-
mized using octrees and early ray termination [14]. In the
implementation, four bytes (one for density, two for normal
directions, and one for normal’s magnitude) were allocated
per voxel for fast classification and lighting computation,
hence it takes about 57 Mbytes of memory for the resolu-
tion 256 × 256 × 225. Each rendering usually took longer
than a minute.

The four images in the following two figures were ex-
tracted from two spherical light fields with the level 4 reso-
lution for the directional sphere. Two spherical light fields
of level 4 discretization were constructed. For the first one,
the positional sphere was created by recursively subdividing

Positional Sphere Dis. level for Size of Ratio of Size of Compression
base # of # of dir. Sphere raw data Non-zero wavelet compressed data Ratio

vertices triangles (MBytes) coefficients used (MBytes)
8 65,538 131,072 4 384.0 15 % 35.2 10.9 : 1

10 % 28.6 13.5 : 1
20 40,962 81,920 4 233.5 15 % 22.0 10.6 : 1

10 % 17.8 13.1 : 1
16 32,770 65,536 5 768.1 10 % 49.9 15.4 : 1

5 % 34.3 22.4 : 1

Table 1. Result of Data Compression

(a) 15%, 35Mbytes (b) 10%, 29Mbytes

Figure 10. Level 4 Renderings (an Octahedral Base)

(a) 15%, 22Mbytes (b) 10%, 18Mbytes

Figure 11. Level 4 Renderings (an Icosahedral Base)

an octahedral base up to level 7 where the total size of the
data amounts to 384.0 Mbytes. For Figure 10(a) and (b),
the spherical light fields were compressed by deleting 85
and 90 percents of wavelet-encoded coefficients in the de-
composed wavelet images, where the resulting compressed
data take 35 and 29 Mbytes of storage, respectively. These
data could be further compressed using the entropy coder
such as gzip, in which case the data sizes become 27 and
21 Mbytes. (These figures are not important when we are
interested in the run-time memory requirement.) The po-
sitional sphere of the second level 4 data was generated
by level 6 subdivision of an icosahedral base, where the
total size amounts to 233.5 Mbytes. The images in Fig-
ure 11(a) and (b) were generated from the spherical light
fields that were compressed by deleting 85 and 90 percents
of wavelet-encoded coefficients in the decomposed wavelet
images, where the resulting compressed data take 22 and 18
Mbytes of storage, respectively.

When 15 % of coefficients are used, the rendering pro-
duced images whose quality is competitive with that of ray
casting. We observe that the rendered images still maintain
a good quality when 10 % of the coefficients are used.

To measure the running time for the level 4 spherical
light fields, the head was rotated 360 times at one degree
angle increments. For the first data, it took about 0.44 sec-
ond per frame on the average. To render the second data
which has fewer vertices on the positional sphere, it took
about 0.29 second per frame on the average. Notice that
the rendering time is proportional to the number of ver-
tices on the positional spheres. The image-based render-
ing task is broken down into two major computations: 0.07
to 0.11 second is consumed per frame for polygonal ren-
dering (viewing and shading) of the tessellated positional
sphere. This part is accelerated by the graphics hardware,
and the running time is almost independent of output im-
age size. The remaining portion of rendering time is spent
mostly in accessing 65538 and 40962 (for each data, re-
spectively) compressed directional spheres to associate col-
ors with the vertices of the positional sphere. It is run in
software, and hence relies on the speed of CPU. Our pre-
liminary implementation on a PC with a 200MHz Pentium
Pro CPU, 128 Mbytes of main memory and an Intergraph
Intense 3D graphics board (without texture memory), pro-
duces a little faster timing performance.

The timings per frame are found somewhat irregular,
which is due to the way the wavelet-compressed directional
spheres are accessed. To get a color from a directional
sphere, its conceptual quadtree is traversed downward cor-
responding to a given projection direction, applying the re-
construction formulae to each node on the path. The ef-
fect of the incremental computation stands out when a large
portion of the paths are shared by two adjacent accesses.
When the object is rotated gradually, the pixels correspond-
ing to two adjacent accesses are very close to each other
in the images. In probability, two close pixels have most
ancestors in common, but that is rather irregular depend-
ing on their locations. (Two adjacent pixels can share only
the root in quadtrees.) Notice that the first rendering takes
more computations because the whole stacks of the direc-
tional spheres must be constructed. Then, the decreased
timings for the following renderings show how the incre-
mental traversal technique works.

In Figure 12, three images from the spherical light field
with the level 5 discretization for the directional sphere, are
shown. Two data sets for (a) and (b) were compressed so
that 10 and 5 percent, respectively, of coefficients in the

wavelet encodings were used. The resulting compressed
spherical light fields took 50 Mbytes and 34 Mbytes, re-
spectively. The image in (c) was produced with a perspec-
tive projection. For the level 5 data, the object was also
rotated 360 times by one degree, and it took about 0.26 sec-
ond per frame on the average. It took roughly twice as long
for perspective because the projection directions had to be
computed for each vertex. As mentioned earlier, when a
parallel projection is used, the level 5 does not necessarily
produce output images of higher quality. The image qual-
ity is more affected by how many coefficients are deleted
in compression. The higher compression ratios are required
for the level 5 data due to their huge size, and they degrade
image quality more as a result. The projection directions on
the directional spheres are more densely sampled when the
level is 5. This results in a smoother transition in an ani-
mation movie, however, we observe that the level 4 is good
enough in most cases.

The last figure (Figure 13) shows how naturally our
object-space image-based rendering algorithm intermingles
with traditional polygonal rendering. (The jagged stuff be-
hind the head is a material in the CT data, classified with
bone and skin.) The head was rendered from a spheri-
cal light field, and the rest was rendered from polygonal
models. In the context of polygonal rendering, the tessel-
lated positional sphere can be regarded as a special graphics
primitive that is made up of triangles and color information
at the vertices. Adding this new graphics primitive will ex-
tend the conventional polygonal rendering into a simple-to-
implement hybrid rendering in which complex regions are
rendered from spherical light fields, while less complex re-
gions are rendered from simple polygonal models.

5. Conclusions
In this paper, we have described an image-based render-

ing framework, based on a new parameterization of the flow
of light in space. We showed that the spherical light field
is an effective representation that allows efficient computa-
tions, and is easily added in the graphics pipeline based on
polygonal rendering. In addition, we introduced an encod-
ing scheme based on wavelets for compression of the huge
data resulting from sampling of the spherical light field.

We are currently investigating the relationships between
the number of triangles and vertices in the tessellated po-
sitional spheres, and the image quality. The data size is
proportional to the number of vertices, hence reducing the
number without degrading image quality will enhance the
timing and space performances. Since, in our implementa-
tion of wavelet-compression, one unit contains two or eight
directional spheres with the same(θp, φp) coordinates, we
could say our encoding is(2+α)-dimensional. We are now
compressing the 4D spherical light fields using 3D and 4D
wavelets hoping to get higher compression ratios without
harming decoding speeds.

Acknowledgments
We would like to thank an anonymous reviewer for the

useful comments. This work was supported in part by the
Ministry of Science and Technology of Korea through the
STEP2000 project.

References
[1] E. H. Adelson and J. R. Bergen. The plenoptic function

and the elements of early vision. In M. Landy and J. A.

(a) 10% of Coefficients (b) 5% of Coefficients (c) Perspective Projection

Figure 12. Level 5 Renderings - a Base that has 16 polygons

Movshon, editors,Computational Models of Visual Process-
ing, chapter 1. The MIT Press, Cambridge, Mass., 1991.

[2] T. Beier and S. Neely. Feature-based image metamorpho-
sis. InComputer Graphics (SIGGRAPH ’92 Proceedings),
pages 35–42, 1992.

[3] D. Berman, J. Bartell, and D. Salesin. Multiresolution paint-
ing and compositing. InComputer Graphics (SIGGRAPH
’94 Proceedings), pages 85–90, 1994.

[4] J. F. Blinn and M. E. Newell. Texture and reflection in com-
puter generated images.CACM, 19(10):542–547, October
1976.

[5] E. E. Catmull.A Subdivision Algorithm for Computer Dis-
play of Curved Surfaces. PhD thesis, University of Utah,
Salt Lake City, Utah, December 1974.

[6] S. E. Chen. Quicktime VR - an image-based approach to vir-
tual environment navigation. InComputer Graphics (SIG-
GRAPH ’95 Proceedings), pages 29–38, 1995.

[7] S. E. Chen and L. Williams. View interpolation for image
synthesis. InComputer Graphics (SIGGRAPH ’93 Proceed-
ings), pages 279–288, 1993.

[8] C. K. Chui. An Introduction to Wavelets. Academic Press
Inc., 1992.

[9] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach. InComputer Graphics (SIG-
GRAPH ’96 Proceedings), pages 11–20, 1996.

[10] R. DeVore, B. Jawerth, and B. Lucier. Image compression
through wavelet transform coding.IEEE Transactions on
Information Theory, 38(2):719–746, March 1992.

[11] G. Fekete. Rendering and managing spherical data with
sphere quadtrees. InProceedings of Visualization ’90, pages
176–186, San Francisco, 1990.

[12] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The
Lumigraph. InComputer Graphics (SIGGRAPH ’96 Pro-
ceedings), pages 43–54, 1996.

[13] N. Greene. Environment mapping and other applications of
world projections.IEEE CG & A, 6(11):21–29, November
1986.

[14] M. Levoy. Efficient ray tracing of volume data.ACM Trans-
actions on Graphics, 9(3):245–261, July 1990.

[15] M. Levoy and P. Hanrahan. Light field rendering. InCom-
puter Graphics (SIGGRAPH ’96 Proceedings), pages 31–
42, 1996.

[16] P. Lux. A novel set of closed orthogonal functions picture
coding.Arch. Elek.Übertragung, 31:267–274, 1977.

[17] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system. InComputer Graphics (SIG-
GRAPH ’95 Proceedings), pages 39–46, 1995.

[18] B. O’Neill. Elementary Differential Geometry. Academic
Press, 1966.

Figure 13. Image-Based Rendering Intermin-
gled with Polygonal Rendering

[19] P. Schr̈oder and W. Sweldens. Spherical wavelets: Effi-
ciently representing functions on the sphere. InComputer
Graphics (SIGGRAPH ’95 Proceedings), pages 161–172,
1995.

[20] S. M. Seitz and C. R. Dyer. View morphing. InCom-
puter Graphics (SIGGRAPH ’96 Proceedings), pages 21–
30, 1996.

[21] J. M. Shapiro. Embedded image coding using zerotrees of
wavelet coefficients.IEEE Transactions on Signal Process-
ing, 41(12):3445–3462, December 1993.

[22] E. Stollnitz, T. DeRose, and D. Salesin.Wavelets for Com-
puter Graphics: Theory and Applications. Morgan Kauf-
mann Publishers, Inc., 1996.

[23] A. Zandi, J. D. Allen, E. L. Schwartz, and M. Boliek.
CREW: Compression with reversible embedded wavelets.
In Proc. of Data Compression Conference, pages 212–221,
Snowbird, Utah, March 1995. IEEE.

