
Making 3D Textures Practical

Chandrajit Bajaj
Department of Computer Sciences
The University of Texas at Austin

U.S.A.
bajaj@cs.utexas.edu

Insung Ihm Sanghun Park
Department of Computer Science

Sogang University
Korea

fihm,hung@graphlab.sogang.ac.kr

Abstract

While 2D texture mapping is one of the most powerful
rendering techniques that make 3D objects appear visually
interesting, it suffers from visual artifacts produced when
2D image patterns are wrapped onto the surface of objects
with arbitrary shapes. On the other hand, 3D texture map-
ping generates highly natural visual effects in which objects
appear carved from lumps of materials rather than lami-
nated with thin sheets as in 2D texture mapping. Storing
3D texture images in a table for fast mapping computa-
tions, instead of evaluating procedures on the fly, however,
has been considered impractical due to the extremely high
memory requirements. In this paper, we present a new effec-
tive method for 3D texture mapping designed for real-time
rendering of polygonal models. Our scheme attempts to re-
solve the potential texture memory problem arising from the
very large size of 3D images by compressing them using a
wavelet-based encoding method. The experimental results
on various non-trivial 3D textures and polygonal models
show that high compression rates are achieved with few vi-
sual artifacts in the rendered image and a small impact on
rendering time. The simplicity of our compression-based
scheme will make it possible to implement practical 3D tex-
ture mapping in software/hardware rendering systems in-
cluding the real-time 3D graphics APIs like OpenGL and
Direct3D.

Keywords: Texture mapping, Solid texture, 3D compres-
sion, Wavelet, Real-time rendering, OpenGL

1. Introduction

Texture mapping is one of the most powerful rendering
techniques that make three-dimensional objects appear vi-
sually more complex and realistic [6]. Two-dimensional
texture mapping has been popular in creating many interest-
ing visual effects by projecting or wrapping 2D image pat-
terns onto the surface of solid objects. While it has proved

very useful in adding realism in rendering, 2D texture map-
ping suffers from the limitation that it is often difficult to
wrap 2D patterns, without visual artifacts, onto the surface
of objects having complicated shapes. As an attempt to
alleviate the computational complications of wrapping as
well as to resolve the visual artifacts, Peachey [12] and Per-
lin [13] presented the use of space filling 3D texture im-
ages, called solid textures. Many of the textures found in
nature such as wood, marble, and gases, are easily simu-
lated with solid textures that map three-dimensional object
space to color space [3]. Unlike 2D textures, they exist not
only on the surface of objects but also inside the objects.
Texture colors are assigned to any point of the entire solid
object simply by evaluating the specified functions or codes
according to their positions in 3D space. The 3D solid tex-
ture mapping can be viewed as immersing geometric objects
in virtual volumes associated with 3D textures, and getting
necessary texture colors from the solid textures. This 3D
texture mapping produces highly natural visual effects in
which objects appear carved from lumps of materials rather
than laminated on the surfaces as in 2D texture mapping.
The difference between 2D and 3D mapping is prominent
particularly when objects have complicated geometry and
topology since 3D textures are not visually affected by the
distortions that exist in object parameter space.

Many useful 3D textures are generally synthesized pro-
cedurally instead of painting or digitizing them (Refer to
[3] for several interesting examples.). They are based on
mathematical functions or programs that take 3D coordi-
nates of points as input, and compute their corresponding
texture values. The evaluation is usually carried out on the
fly during the rendering computation. While procedural tex-
ture models provide a very compact representation, evalu-
ating procedural textures as necessary during texture map-
ping leads to slower rendering than accessing pre-sampled
textures stored in simple arrays.

While using sampled 3D texture maps in 3D volumet-
ric form is faster, they tend to take up a large amount of
texture memory. For example, when a 3D RGB texture



with resolution ���� ���� ��� is represented in one byte
per color channel, it requires 48 Mbytes of texture mem-
ory. Although some recent graphics systems allow the use
of main memory for textures, such texture memory costs
are an impossible burden on most current graphics systems.
Storing several elaborate textures with high resolution, say,
���� ���� ��� would be prohibitive even to the most ad-
vanced rendering systems. Obviously, there is a tradeoff be-
tween the size of texture memory and the computation time.
Explicitly storing sampled textures in dedicated memory,
and fetching texture colors as necessary, as in the current
graphics accelerator supporting real-time texture mapping,
can generate images faster than evaluating them on the fly.
To make this feasible for 3D texture mapping, however, ef-
ficient solutions for manipulating potentially huge textures
effectively need to be devised.

This paper presents a new and practical scheme for real-
time 3D texture mapping which is easily implemented. Our
technique relies on 3D volume compression and efficient
processing of compressed solid textures. The idea of ren-
dering directly from compressed textures has been pre-
sented in the past in [2], where they used vector quantiza-
tion to compress 2D textures in simple or mip-map form. To
compress 3D textures, we use a wavelet-based compression
method that provides fast decoding to random data access,
as well as fairly high compression rates [1]. This compres-
sion technique exploits the power of wavelet theory and nat-
urally provides multi-resolution representations of 3D RGB
volumes. With this compression method, we can store mip-
maps for 3D textures of non-trivial resolutions very com-
pactly in texture memory. Its fast random access decod-
ing ability also results in only a small impact on rendering
time. The simplicity of our new 3D texture mapping scheme
makes it easy to implement in software/hardware render-
ing systems. Furthermore, 3D real-time graphics APIs like
OpenGL and Direct3D can be extended with little effort to
include 3D texture mapping without heavy demand for very
large texture memories.

The rest of this paper is organized as follows: In
Section 2, we provide a detailed description of the new
compression-based 3D texture mapping technique. Experi-
mental results on various 3D textures and polygonal objects
are reported in Section 3. Finally, we present conclusions
and directions for further research in Section 4.

2. A New 3D Texture Mapping Scheme

In this section, we describe our new 3D texture map-
ping method suitable for real-time rendering of polygonal
models. The idea presented here can also be used effec-
tively in other rendering systems such as RenderMan [14]
to enhance the texture mapping speed. The key point in
our texture mapping scheme is to extract only the neces-
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Figure 1. 3D Texture Mapping Pipeline

sary portion from the full 3D texture map, then compress it
in compact form where fast run-time decoding for random
access to texel values is possible. In particular, the compres-
sion method we apply is based on wavelet theory, and nat-
urally supports multi-resolution representations of 3D tex-
tures. This capability of the compression method makes
it easy to construct a 3D texture mip-map using a small
amount of texture memory. Figure 1 illustrates the 3D tex-
ture mapping pipeline in which the first three steps, 3D Tex-
ture Modeling, 3D Texture Cell Selection, and 3D Texture
Compression comprise the necessary pre-processing stages.
In the following subsections, we provide detailed explana-
tions of the various stages in the pipeline.

2.1. 3D Texture Modeling

Our scheme assumes, as input texture, a sampled 3D
RGB texture stored in a 3D array. It is generated by sam-
pling texel values from a three-dimensional texture field
that is usually described procedurally. The storage require-
ments are very high for uncompressed 3D texture maps at
reasonable resolution: ���� and ���� RGB textures need



48 Mbytes and 384 Mbytes, respectively. This is one of the
reasons which make fast 3D texture mapping with stored
textures appear impractical.

In the texture modeling stage, a polygonal object in its
object space Ros � f�x� y� z� j x� y� and z are realg is
textured by putting it in a 3D texture defined in the tex-
ture space Rts � f�s� t� r� j � � s� t� r � �g, and finding
the intersection of the object’s surface and the solid texture.
Texturing an object can be viewed as determining a function
f 	 Ros �� Rts. This function f can be chosen arbitrarily.

2.2. 3D Texture Cell Selection

Once a mapping between a polygonal object and a 3D
texture map is fixed, the unnecessary texture data is elimi-
nated to reduce storage space. Consider an ns � nt � nr

texture. In our scheme, the texture data is subdivided into
small subblocks of size nc�nc�nc, called texture cells (In
our current implementation, the resolution of texture cell is

 � 
 � 
.). The texture cell is a basic unit for selecting
texture data that is actually needed for rendering.

In this 3D texture cell selection stage, each polygon on
the boundary of an object is 3D-scan-converted to find all
the texture cells that intersect with the surface of the solid
object. Notice that texels in the selected texture cells con-
tain all the texture information necessary for rendering. The
cells that are not chosen are replaced by null cells, that is,
cells with black color. By keeping nearby texels surround-
ing the surface of an object in this intermediate stage, a large
portion of texture data is removed to alleviate the potential
prohibitive storage requirement. The selected texture cells
take only a small percentage of the original texture data.
The null cells still exist in the texture map in this stage,
and the texture size remains the same. However, the spatial
coherence created by null cells makes an encoding scheme
efficiently compress the 3D texture in compact form in the
next stage.

2.3. 3D Texture Compression

2.3.1. Choosing an Appropriate Compression Technique

There exist many data compression methods for efficient
storage and transmission. It is very important to choose a
compression technique which is most appropriate for this
specific 3D texture mapping application. We have several
issues to consider as similarly discussed in [2, 9]:

1. High compression rate and visual fidelity. Non-
trivial 3D textures are often very large in size, rang-
ing from a few dozen megabytes to several hundred
megabytes. When a mip-map is used for a pre-
filtered multi-resolution representation, the size gets
even larger. Developing real-time applications with

such data assumes, implicitly or explicitly, that the
entire data is loaded into main memory for efficient
run-time processing. This places an enormous burden
on storage space as well as transmission bandwidth.
While lossless compression techniques preserve data
without introducing reconstruction errors, they of-
ten fail to achieve compression rates high enough for
practical implementation of 3D texture mapping. The
loss of information associated with lossy compres-
sion methods, however, needs to be controlled prop-
erly as it is important to minimize the distortion in the
reconstructed textures.

2. Fast decoding for random access. The general con-
cern of most lossy compression schemes is achieving
the best compression rate with minimal distortion in
the reconstructed images [5, 15]. Such compression
methods, however, often impose constraints on the
random access decoding ability, which makes them
inappropriate for interactive texture mapping appli-
cations especially where it is difficult to predict data
access patterns in advance. For instance, variable-
bitrate or differential encoding schemes such as Huff-
man or arithmetic coders coupled to block JPEG or
MPEG schemes, do not lend themselves to efficiently
decode individual texels that are accessed in a random
pattern during run-time.

3. Multi-resolution representation. Mip-mapping is
the most commonly used anti-aliasing technique for
2D texture mapping [18]. A mip-map of a 2D texture
is a pyramid of pre-filtered images obtained by aver-
aging down the original image to successively lower
resolutions. Mip-mapping with this level-of-detail
representations of textures offers fast and constant fil-
tering of texels, and its simplicity lends itself to an ef-
ficient hardware implementation. The idea naturally
extends to 3D textures although they have regarded it
as impractical due to the memory requirements. It is
highly recommended to choose a compression tech-
nique that provides a multi-resolution representation
in its compression scheme.

4. Exploitation of 3D data redundancy. 3D textures
are three-dimensional data that exhibit redundancy in
all three dimensions. A compression scheme devised
for 2D images could be applied to compress each
slice in 3D textures, however, a good compression
technique must be able to fully exploit data coherence
in all three dimensions to maximize the compression
performance.

5. Selective block-wise compression. In some appli-
cations like ours, it is more efficient to selectively



compress a certain portion of data rather than the en-
tire dataset. It is very desirable that a compression
scheme includes this selective compression capability
in its encoding algorithm for effective compression.

2.3.2. The Zerobit Encoding Scheme

The above five desirable characteristics are common to
most real-time applications that must handle discrete sam-
pled data of very large sizes. Vector quantization has been
popular in developing such applications mainly because it
supports fast random decoding through table lookups [4].
Some recent applications of vector quantization in the
computer graphics field, include compression of CT/MRI
datasets [10], light fields [9], and 2D textures [2].

Recently, a new compression scheme for 3D RGB im-
age has been developed as an alternative to vector quanti-
zation [1]. This technique, called zerobit encoding, is suit-
able for applications wherein data are accessed in an un-
predictable manner, and real-time performance of decoding
is required. It extends the compression scheme [7, 8] for
3D gray-scale volume data to compression of 3D RGB im-
ages, and its new encoding structure significantly improves
decompression speeds. Unlike vector quantization, the ze-
robit encoding scheme, based on the wavelet theory, natu-
rally offers a multi-resolution representation for 3D images.
Experimental results on test data sets show that this com-
pression scheme provides fast random access to compressed
data in addition to achieving fairly high compression rates.
The basic compression unit for the technique is a 
� 
� 

subimage, called cell, to which the 3D Haar transform is
applied twice to exploit data coherence in all of the three di-
mensions. Once compressed, three levels of detail are rep-
resented in compressed form. Notice that the texture cell
in our 3D texture mapping scheme naturally corresponds to
the cell in this compression technique.

Figure 2 shows sample statistics on the performance of
the zerobit encoding and vector quantization used in [9] for
two representative light field datasets buddha and dragon
with resolution �� � �� � ��� � ��� (192MBytes) [1].
To apply the zerobit encoding technique, 4D sampled light
field datasets were reformulated into 3D images, then com-
pressed. While the vector quantization yielded compression
rates 21.79 and 20.18 for buddha and dragon, the zerobit
encoding method produced higher rates of 44.51 to 91.11
and 38.21 to 83.03 at the selected four target ratios, re-
spectively (Figure 2(a)) �. The PSNR results show that the
qualities of reconstructed images are about the same when
about 2% and 5% of coefficients are used in zerobit encod-
ing for the buddha and dragon datasets, respectively (See
Figure 2(c) and (d) for the portion of two sample buddha

�These rates exclude the gzip compression, that could follow both com-
pression methods for efficient storage as in [9].

Vector Zerobit Encoding
Quantization 2.0% 3.0% 4.0% 5.0%

buddha Size (MB) 8.81 2.11 2.90 3.63 4.31
Comp. Rate 21.79 91.11 66.26 52.89 44.51
PSNR (dB) 38.00 39.26 41.70 43.63 45.18

dragon Size (MB) 9.52 2.31 3.15 4.09 5.02
Comp. Rate 20.18 83.03 60.87 46.99 38.21
PSNR (dB) 35.58 31.00 32.17 33.37 34.40

(a) Compression Rate and Quality

Vector Zerobit Encoding
Quantization 2.0% 3.0% 4.0% 5.0%

buddha st-lerp 9.46 13.60 13.60 13.60 13.60
uvst-lerp 2.68 2.99 2.98 2.98 2.98

dragon st-lerp 17.55 24.60 24.44 24.20 23.97
uvst-lerp 5.66 5.74 5.71 5.66 5.62

(b) Rendering Time (Frames Per Second)

(c) Vector Quantization (d) Zerobit Encoding: 3% of
Wavelet Coefficients Used

Figure 2. Comparisons with Vector Quantiza-
tion on Light Field Datasets [1]

images.).

The image-based rendering time, spent on displaying 76
frames of ��� � ��� pixels with gradually varying view-
ing parameters, was measured on an SGI workstation with
a 195 MHz MIPS R10000 CPU. Two cases of bilinear inter-
polation on the st-plane (st-lerp) and quadralinear interpola-
tion on both uv- and st-planes (uvst-lerp) were tested (Fig-
ure 2(b)). The timing results show the zerobit encoding
scheme is faster for both datasets in most cases. Note
that the reconstruction cost per data item for vector quan-
tization is very cheap since decompression is performed
through a simple codebook lookup, and is cheaper than ze-
robit encoding on the average. However, zerobit encoding
decompresses several data items, 
 planes in this case, at
the same time, and is very quick particularly when data in
empty background regions are reconstructed, which results
in overall faster rendering. When nearest samples without
interpolation are taken during image-based rendering, the
zerobit encoding method yielded frame rates 39 and 52 for



the two datasets, respectively.
While the empirical comparisons for a few applications

cannot prove that the zerobit encoding is always superior
to vector quantization, we find the former compares very
favorably to the latter. In our 3D texture mapping tech-
nique, we use the zerobit encoding scheme to compress the
selected texture cells. As will be explained in the next sec-
tion, it also turns out to be very effective in compressing 3D
textures.

2.4. Polygonal Rendering with Compressed Tex-
tures

2.4.1. A New Capability for OpenGL 1.2

When applying textures to geometric objects, the necessary
texel values are repeatedly fetched from zerobit-encoded3D
textures using their texture coordinates. This compression-
based 3D texture mapping can enhance the rendering speed
in any rendering method including time-consuming photo-
realistic rendering. In our implementation, we applied our
scheme to real-time rendering and extended the OpenGL
library to include the feature of 3D texture mapping with
zerobit-encoded textures. Note that 3D texture mapping has
been implemented as a feature of the OpenGL 1.1 exten-
sions, and is now one of the core capabilities that must be
supported by all OpenGL 1.2 implementations [16]. The
glTexImage1D() and glTexImage2D() functions are ex-
tended for 3D texture mapping where the command for
specifying a three-dimensional texture image is defined as

void glTexImage3D (GLenum target, GLint
level, GLint internalformat, GLsizei width,
GLsizei height, GLsizei depth, GLint
border, GLenum format, GLenum type, void
*data);

With target GL TEXTURE 3D, this command reads a
texture of size width � height � depth, that is
stored in memory, pointed by data, in internalfor-
mat. For a compressed texture, our extension uses
GL UNSIGNED BYTE COMPRESSED for type to read a
compressed texture, whose texels are stored in unsigned
character, on levels level, level+1, and level+2.

When 3D texture mapping is enabled by calling glEn-
able(GL TEXTURE 3D), and a compressed 3D texture is
specified, the texture is assumed to be in compressed form,
and texels are fetched from the zerobit-encoded structure
rather than a simple array. The extension is easy to im-
plement since the new capability can be included simply by
adding proper state variables and decoding functions. Other
utility functions, such as creating encoded 3D textures with
user-specified compression rates, could also be included in
the OpenGL Utility Library (GLU).

2.4.2. Compact Representations of 3D Mip-Maps

A 3D mip-map is an ordered set of 3D arrays representing
the same texture where each successive array has a reso-
lution lower than its previous one. Currently, we are im-
plementing the 3D mip-map capability so that mip-maps as
well as single 3D textures are represented very compactly.
Given a base 3D texture, the zerobit-encoded structure rep-
resents three levels of detail with level number 0, 1, and 2.
The reduced images on the next three levels can be stored
in another zerobit-encoded structure. An alternative is to
store the texture images with lower resolutions except on
level 0, 1, and 2, in simple 3D arrays. The images on the
higher levels take up only a small amount of storage. For
example, when a ��� � ��� � ��� RGB texture image in
unsigned character is loaded, the entire reduced images on
levels �� 
� � � � � � require only about 110 Kbytes in total.

2.5. Sharing of a 3D Texture between Multiple Ob-
jects

In our current implementation, only the 3D texture
cells surrounding the surface of a polygonal object are se-
lected and compressed. When a texture is compressed ob-
ject by object, it could lead to a waste of texture mem-
ory. That is, if a 3D image is shared by multiple polyg-
onal objects, the same 3D texture cells can be repli-
cated for several objects. We are extending out method
to support three types of compression modes: The first
mode, called zerobit encoding single object is one we
have described in this article. The second mode zero-
bit encoding multiple objects is for the case in which
several polygonal objects share a common 3D texture im-
age. In this mode, all the 3D texture cells that are used by at
least one object are selected before encoding. The last mode
zerobit encoding entire texture handles the dynamic sit-
uation in which it is difficult or impossible to predict which
texture cells shall be used for rendering. For instance, an
interesting animation can be generated by making an object
float in a texture field, dynamically binding texture coor-
dinates. In this case, the first two compression modes are
not appropriate. The third mode compresses the entire 3D
texture and loads it for rendering. While it is the most ex-
pensive one, this mode provides a flexibility in texture map-
ping.

3. Experimental Results

We have implemented our new 3D texture mapping
scheme by extending the MESA 3D Graphics Library
which is a publicly available OpenGL implementation [11].
The current version 3.0 supports the 3D texture mapping
feature where the entire texture image is stored in a sim-
ple array without any compression. We added the necessary



Object # of Faces # of Selected Cells Ratio (%)

Teapot 1,152 6,761 2.6
Dragon 12,078 7,083 2.7
Bunny 69,451 14,551 5.6
Head 203,544 31,122 11.9

Table 1. Ratios of Selected Texture Cells

state variables and functions to handle zerobit-encoded 3D
texture maps.

We have generated four different 3D texture images
of size ��� � ��� � ��� (Figure 3). The texture im-
ages have three channel RGB colors, and their sizes
amount to 48 Mbytes, respectively. The three textures
Bmarble, Wood, and Eroded were created using the
RenderMan surface shaders blue marble(), wood(),
and eroded(), respectively [17]. The surface shader
gmarbtile polish() for the texture Gmarbpol were
written by Larry Gritz, and is available as a part of the
Blue Moon Rendering Tools (BMRT). Our 3D texture map-
ping technique has been applied to several polygonal mod-
els with various shapes and sizes, including those listed
in Table 1. The teapot model Teapot was polygonized
from a parametric equation. The next two models Dragon
and Bunny were obtained from Viewpoint and the Stan-
ford 3D Scanning Repository, respectively. The last model
Head was created by generating an iso-surface from the
UNC CT scan of a human head. The table shows how
many 
 � 
 � 
 texture cells are selected from the entire
262,144 (� �
 � �
 � �
) cells in ��� � ��� � ��� tex-
tures through the 3D texture cell selection stage after tex-
ture modeling. We observe that the ratios of selected cells
are quite small.

To find out how compactly these 3D textures can be asso-
ciated with the polygonal objects, we compressed selected
texture cells for the entire 16 combinations as shown in Ta-
ble 2. In the zerobit encoding scheme, a user specifies a
ratio of wavelet coefficients to be used after truncation to
control the degree of compression [1]. The number, shown
in the “Target Ratio” field of Table 2, represents an approx-
imate ratio of wavelet coefficients that are actually used in
encoding. We compressed 3D textures at three target ra-
tios 3%, 5%, and 10%, and rendered the polygonal objects
from the compressed textures. In this table, we compare
sizes and compression rates for various cases. Observe that
it took less than 1 Mbytes of memory for all combinations,
ranging from 172 Kbytes to 804 Kbytes. Considering that
the size of the original textures is 48 Mbytes, we see that
very high compression rates are indeed achieved through
zerobit encoding.

Figure 4 shows sample images rendered with the linear
filter GL LINEAR from the compressed textures having a
desired ratio of 10%. When the 3D textures are compressed
with a desired ratio higher than 10%, the texture-mapped

(a) Bmarble (b) Gmarbpol

(c) Wood (d) Eroded

Figure 3. Sample Slices from the Four Exam-
ple 3D Textures

images, produced with the linear filter, are almost free of
aliasing artifacts which are often caused by the loss of infor-
mation during lossy compression. In Figure 5, we enlarged
a portion of the Bunny images to make the compression
artifacts more visible. When the ratio is 3%, the blocky
artifacts are clearly visible, but most features are still pre-
served well enough for many real-time applications such as
3D games and animation.

In order to check the timing performance, we mea-
sured the running time, spent on rendering 54 frames of
��� � ��� pixels with incrementally varying viewing pa-
rameters. They include all computations for rendering in-
cluding 3D texture mapping, view parameter setting, and
displaying the final images. The timings were measured on
an SGI Octane workstation with a 195 MHz R10000 CPU
and 256 Mbytes of memory without hardware graphics ac-
celeration. Table 3 reports the average time per frame in
seconds for three difference rendering modes. The “GSO”
field in this table is the time taken for rendering the objects
using Gouraud shading only, and indicates how complicated
is the involved rendering. Then, our new compression-
based texturing scheme was compared with texture map-



(a) Teapot with Bmarble (b) Dragon with Wood

(c) Bunny with Eroded (d) Head with Gmarbpol

Figure 4. Images Rendered with GL LINEAR
from Compressed Textures (10%)

ping without compression to evaluate overheads for fetch-
ing texels from compressed textures. Two filtering methods
GL NEAREST and GL LINEAR were tested whose perfor-
mances are shown in the “3DTMN” and “3DTML” fields,
respectively. The running time is proportional to the num-
ber of pixels that objects are projected into. As indicated by
the test results, the zerobit encoding method provides very
fast decoding speeds. We observe only a 14 percent and a
15 percent impact on rendering time on average for the near-
est and the linear filter, respectively. Notice that the linear
filtering method takes, for instance, 0.37 second to render
Teapot from its uncompressed texture of size 48 Mbytes.
On the other hand, the same filtering takes 0.44 second to
produce a Teapot image with few visual artifacts from its
compressed texture of size 268 KBytes (target ratio = 10%).
The benefit from our compression-based 3D texture map-
ping is evident, and is critical in particular when texture
memory resource is rather limited.

We have also generated two more elaborate textures of
�����������whose sizes are 384 Mbytes, and tested our
texture mapping scheme with these huge textures (Table 4).
The experiments indicate that 500 Kbytes to 1.61 Mbytes

Texture Object Target Ratio Size (KB) Comp. Rate
3% 188 261.5 : 1

Teapot 5% 224 219.4 : 1
10% 268 183.4 : 1
3% 188 261.5 : 1

Dragon 5% 216 227.6 : 1
Bmarble 10% 272 180.7 : 1
���

� 3% 272 180.7 : 1
Bunny 5% 340 144.6 : 1

10% 468 105.0 : 1
3% 380 129.4 : 1

Head 5% 488 100.7 : 1
10% 712 69.0 : 1
3% 188 261.4 : 1

Teapot 5% 204 240.9 : 1
10% 232 211.9 : 1
3% 172 285.8 : 1

Dragon 5% 192 256.0 : 1
Gmarbpol 10% 228 215.6 : 1

���
� 3% 244 201.4 : 1

Bunny 5% 284 173.1 : 1
10% 336 146.3 : 1
3% 332 148.1 : 1

Head 5% 420 117.0 : 1
10% 540 91.0 : 1
3% 192 256.0 : 1

Teapot 5% 224 219.4 : 1
10% 304 161.7 : 1
3% 192 256.0 : 1

Dragon 5% 232 211.9 : 1
Wood 10% 308 159.6 : 1
���

� 3% 288 170.7 : 1
Bunny 5% 372 132.1 : 1

10% 524 93.8 : 1
3% 388 126.7 : 1

Head 5% 524 93.8 : 1
10% 804 61.1 : 1
3% 188 261.5 : 1

Teapot 5% 224 219.4 : 1
10% 288 170.7 : 1
3% 192 256.0 : 1

Dragon 5% 232 211.9 : 1
Eroded 10% 288 170.7 : 1
���

� 3% 280 175.5 : 1
Bunny 5% 356 138.1 : 1

10% 492 99.9 : 1
3% 384 128.0 : 1

Head 5% 516 95.3 : 1
10% 768 64.0 : 1

Table 2. Sizes of Compressed Textures

of memory are required to store the textures compressed
at the target ratios 3%, 5%, and 10%, achieving compres-
sion rates of 238.0 : 1 to 786.4 : 1. Compared to the ��� �

textures, compression-based renderings take 1.26 (Teapot
with Bmarble) and 1.09 (Head with Gmarbpol) times as
long on the average for the ���� textures. We were not able
to load the entire uncompressed textures for rendering onto
our workstation with 256 Mbytes of main memory, but ex-
pect that the rendering times will also get slower at the same
rate.

Figure 6 makes a comparison between renderings with
four different texture mapping parameters. When Teapot is
rendered from the ���� texture with a target ratio of 10%
and the linear filter ((b)), the texture pattern on the sur-



Object & Texture Target GSO 3DTMN 3DTML
Ratio

uncomp. 0.05 0.13 0.37
Teapot 3% – 0.14 0.42

with Bmarble 5% – 0.15 0.43
10% – 0.16 0.44

uncomp. 0.26 0.45 0.89
Dragon 3% – 0.50 0.98

with Wood 5% – 0.52 1.00
10% – 0.55 1.04

uncomp. 1.03 1.39 1.77
Bunny 3% – 1.56 2.04

with Eroded 5% – 1.60 2.13
10% – 1.66 2.21

uncomp. 2.87 3.68 4.51
Head 3% – 3.89 4.85

with Gmarbpol 5% – 3.94 4.90
10% – 4.00 5.03

Table 3. Rendering Time Per Frame (Sec-
onds): GSO - Gouraud Shading Only, 3DTMN
- 3D Texture Mapping (Nearest), 3DTML - 3D
Texture Mapping (Linear)

face appears much clearer than in the image, produced from
the uncompressed ���� texture with the same filter ((a)).
When the faster but worse nearest filter is applied to the
���� texture with a target ratio 5% or 10% ((d)), consum-
ing 0.20 second and 588 Kbytes (5%), and 0.23 second and
752 Kbytes (10%), the qualities are superior to the case in
which the slower but better linear filter is applied to the ����

texture with a target ratio 10%, requiring 0.44 second and
268 Kbytes. Obviously, there is a tradeoff between ren-
dering time, image quality, and memory requirement, and
a choice of various texture mapping parameters should be
made to optimize the application’s needs.

4. Concluding Remarks

In this paper, we have presented a very effective method
for 3D texture mapping, designed for real-time rendering of
polygonal models. Our scheme attempts to resolve the po-
tential texture memory problem arising from the very large
sizes of 3D images by compressing them using the zero-
bit encoding scheme. This compression scheme not only
provides fairly high compression rates but also offers very
fast random access to individual texels. The experimental
results on various non-trivial 3D textures and polygonal ob-
jects show that high compression rates are achieved with a
small impact on rendering time and few visual artifacts in
the rendered images. The simplicity of our compression-
based 3D texture mapping scheme will make it easy to
implement in software/hardware rendering systems. Cur-

Object & Texture
Target Size Comp.

Ratio (KB) Rate

3% 500 786.4 : 1
Teapot with Bmarble 5% 588 668.7 : 1

10% 752 522.9 : 1
3% 1092 360.1 : 1

Head with Gmarbpol 5% 1316 298.8 : 1
10% 1652 238.0 : 1

(a) Size of Compressed Texture

Object & Texture Target GSO 3DTMN 3DTML
Ratio

uncomp. 0.05 – –
Teapot 3% – 0.18 0.48

with Bluemarble 5% – 0.20 0.50
10% – 0.23 0.54

uncomp. 2.87 – –
Head 3% – 4.13 5.26

with Gmarbpol 5% – 4.23 5.30
10% – 4.37 5.62

(b) Rendering Time Per Frame (Seconds): GSO - Gouraud Shad-
ing Only, 3DTMN - 3D Texture Mapping (Nearest), 3DTML - 3D
Texture Mapping (Linear)

Table 4. Experimental Results on ���� ����
��� Textures

rently, we are implementing a three-dimensional version of
mip-mapping for anti-aliasing of solid textures. Once an
effective 3D mip-mapping technique is developed, 3D real-
time graphics APIs like OpenGL and Direct3D will be ex-
tended with little effort to include 3D texture mapping with-
out heavy demand for texture memories.
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