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Abstract

A k-disjoint path cover (k-DPC for short) of a graph is a set of k internally vertex-disjoint paths from given sources to
sinks that collectively cover every vertex in the graph. In this paper, we establish a necessary and sufficient condition
for the cube of a connected graph to have a 3-DPC joining a single source to three sinks. We also show that the cube
of a connected graph always has a 3-DPC joining arbitrary two vertices.
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1. Introduction

Given an undirected graph G, a path cover of G is a set of paths that collectively cover all vertices of G. It is
called a disjoint path cover (DPC for short) if every vertex of G, possibly except terminal vertices, belongs to exactly
one path. Given two disjoint terminal vertex sets S = {s} and T = {t1, t2, . . . , tk}, a one-to-many k-disjoint path cover
is a disjoint path cover made of k paths, each joining a pair of source s and sink ti, i = 1, . . . , k. A graph G is called
one-to-many k-coverable if |V(G)| ≥ k + 1 and there exists a one-to-many k-DPC for any S and T . When S = {s}
and T = {t}, a disjoint path cover made of k paths, each joining s and t is named a one-to-one k-disjoint path cover.
A graph G is said to be one-to-one k-coverable if |V(G)| ≥ 2 and there exists a one-to-one k-DPC for any s and t.
The other possible type of the disjoint path cover is a many-to-many k-disjoint path cover, whose k disjoint paths
collectively join two disjoint terminal vertex sets of cardinality k. Since this article deals only with the first two kinds
of k-DPCs, refer to, for example, [22, 23] for details of the many-to-many k-DPC.

The disjoint path cover naturally arises in various applications such as software testing, database design, and code
optimization [2, 19]. It is also deeply related to the full utilization of nodes in interconnection networks [22]. Several
special classes of graphs have been studied in terms of the existence of desired disjoint path covers: hypercubes [6,
8, 13], recursive circulants [16, 22, 23], and hypercube-like graphs [22, 23]. The many-to-many 2-disjoint path cover
problem with respect to the cubes of connected graphs was also studied recently [21].

Notice that the existence of a disjoint path cover for a given graph is greatly affected by its vertex connectivity. For
instance, a graph is k-connected if and only if it has k disjoint paths of many-to-many type, respectively connecting
arbitrary k distinct sources and arbitrary k distinct sinks, where, if a source coincides with a sink, then such source
itself is regarded as a path. Furthermore, Menger’s theorem and the Fan Lemma indicate such strong relationship [3].
When the vertex connectivity is not high enough, one way of enhancing the probability of the existence of a disjoint
path cover of a graph is to increase the connectivity by adding more edges: given a graph G and a positive integer d,
the dth power Gd of G is the graph made of the vertex set V(G) and the edge set E(Gd), augmented in such a way that
(u, v) ∈ E(Gd) if and only if there is a path of length at most d in G joining u and v. Particularly, G2 are G3 are called
the square and the cube of G, respectively.
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Figure 1: In this connected graph, the seven nontrivial bridges are represented by dotted lines. Also, there are three pure bridge vertices v7, v8, and
v15, and one pure bridge triangle {v9, v10, v14}.

This paper aims to investigate the structure of the cubes of connected graphs with respect to one-to-many and
one-to-one 3-disjoint path covers which we will collectively call as single-source 3-disjoint path covers. In particular,
we establish a necessary and sufficient condition for the cube of a connected graph to have a 3-DPC joining a single
source to three sinks. Based on this result, we also show that the cube of every connected graph of order at least four
is one-to-one 3-coverable.

2. Preliminaries

In addition to the vertex connectivity, the disjoint path cover is easily associated with the concept of hamiltonicity.
A hamiltonian path between two vertices in a graph is actually a 1-DPC regardless of its type. By definition, a graph
of order at least three is one-to-many 2-coverable if and only if it is hamiltonian-connected, where a graph is said to be
hamiltonian-connected if every pair of vertices are joined by a hamiltonian path. Furthermore, a graph is one-to-one
2-coverable if and only if it is hamiltonian. A hamiltonian path/cycle passing through prescribed edges may also be
constructed by finding a disjoint path cover as suggested in [21, 22, 23].

There have been extensive works on the hamiltonicity of graphs. Here, we briefly review those that are concerned
with the squares and the cubes of graphs. It was shown that the square of every 2-connected graph is hamiltonian [10,
12]. In fact, it is hamiltonian-connected and is 1-hamiltonian provided its order is at least four [4]. Several aspects
of the hamiltonicity of the square of a connected graph were discussed in [1, 7, 9]. Also, some interesting properties
on the pancyclicity and panconnectedness of the square of a connected graph were studied in [11]. Given a tree,
its square was shown to be hamiltonian if and only if the tree is a caterpillar [14]. The square of a tree also has a
hamiltonian path if and only if the tree is a horsetail as revealed in [24]. The fact that the cube of every connected
graph is hamiltonian-connected was proved independently in [26, 15]. It was also shown that the cube of a connected
graph having order at least four is 1-hamiltonian [5]. Trees and connected graphs whose cubes are 1-hamiltonian-
connected were characterized respectively in [18, 25], while connected graphs whose cubes are p-hamiltonian for
p ≤ 3 were classified in [17, 25]. In [20], strong hamiltonian properties of the cube of a 2-edge-connected graph were
also studied.

Before proceeding to our main results, we shall first introduce some basic terminologies and two fundamental
properties of the cube of a connected graph. An edge of a graph G is called a bridge if its removal increases the
number of connected components (refer to Figure 1 for a pictorial illustration). A bridge is said to be nontrivial if
neither of its two end vertices is of degree one. A vertex of G is called a pure bridge vertex if each of its incident edges
is a nontrivial bridge. Furthermore, a set of three mutually adjacent vertices, each having a degree of at least three,
is called a pure bridge triangle if every edge that is incident with exactly one of the triangular vertices is a nontrivial
bridge.

Among several hamiltonian properties of the cubes of connected graphs, the following two play key roles in
developing our results.

Lemma 1 (Sekanina [26] and Karaganis [15]). The cube of every connected graph is hamiltonian-connected.
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Lemma 2 (Schaar [25]). Given three vertices s, t, and v f of a connected graph G, there exists an s-t hamiltonian
path in G3 \ v f if and only if (a) {s, t, v f } * N[v] for any pure bridge vertex v of G and (b) {s, t, v f } does not form a
pure bridge triangle of G.

Here, NG(v), or N(v) if the graph G is clear in the context, denotes the open neighbor of vertex v ∈ V(G), i.e.
NG(v) = {u ∈ V(G) : (u, v) ∈ E(G)}, while NG[v], or N[v], represents the closed neighbor, i.e. NG[v] = NG(v) ∪ {v}.
Then, we naturally define NG(X) =

⋃
v∈X NG(v)\X and NG[X] = NG(X)∪X for a given vertex set X ⊆ V(G). Also, the

usual notations, δG(v) and dG(u, v), are used to denote the degree of vertex v in G and the distance between vertices u
and v in G, respectively. Finally, we will call a vertex a nonterminal vertex if it does not belong to any terminal vertex
set.

3. Single-Source Three-Disjoint Path Covers

From the fact that the cube of a connected graph is hamiltonian-connected, we easily see that it always has a
one-to-many 2-DPC for any selection of source and sinks, meaning that it is one-to-many 2-coverable, and thus is
one-to-one 2-coverable. Unlike the 2-DPC case, the cube of a connected graph contains a one-to-many 3-DPC only
when certain conditions are met between terminal vertices. In this section, we make efforts to find the exact conditions
that guarantee the existence of one-to-many 3-DPC in the cube of a connected graph.

Lemma 3 (Necessity for one-to-many 3-DPC). Given a connected graph G, consider arbitrary terminal sets S =

{s} and T = {t1, t2, t3}. If G3 has a one-to-many 3-DPC joining S and T , then C1: there exists no pure bridge vertex v
in G such that T ⊆ NG[v] and s < NG[v], and C2: T does not form a pure bridge triangle in G such that s < NG[T ].

Proof. Suppose that there exists a one-to-many 3-DPC in G3 even though T ⊆ NG[v] and s < NG[v] for some pure
bridge vertex v of G with d ≡ δG(v) ≥ 2. Since v is a pure bridge vertex, G \ v has d connected components, in which
s belongs to a component containing a neighbor of v, named v1 (see Figure 2(a)). Furthermore, for the other d − 1
connected components, there is at least one nonterminal vertex per component that is not in NG(v)\v1. Then, the three
paths in the one-to-many 3-DPC originating from s should collectively have at least d − 1 edges in G3, each ending
up in such a vertex because each of the d − 1 connected components must be visited. However, these edges can only
start from vertices in the nonterminal set NG[v] \ T and its cardinality is d − 2, we are led to a contradiction.

Suppose now that there exists a one-to-many 3-DPC in G3 even though T forms a pure bridge triangle in G such
that s < NG[T ]. Consider the graph G \ {(t1, t2), (t2, t3), (t3, t1)}, where we name the three connected components Gi so
as to ti ∈ V(Gi), i = 1, 2, 3, and assume w.l.o.g. that s belongs to G1 (see Figure 2(b)). We first claim that no single
path in the one-to-many 3-DPC passes through all the nonterminal vertices of G2 and G3. To prove it, assume, for
a contradiction, that a path in the 3-DPC does. Then, the path can be represented as (x1 = s, x2, · · · , xl = vi, xl+1 =

w, · · · , xn = t j) for some sink t j, where w is the first nonterminal vertex in the path that is in H, the subgraph of G
induced by V(G2) ∪ V(G3), thus implying vi ∈ NG1 (t1) and w ∈ NG2 (t2) ∪ NG3 (t3). Now, since each of t2 and t3 is a
pure bridge vertex in H, by Lemma 2, there is neither a w-t2 hamiltonian path in H3 \ t3 nor a w-t3 hamiltonian path in
H3 \ t2. Furthermore, for H′, the subgraph of G induced by V(H)∪ {t1}, there does not exist a w-t1 hamiltonian path in
H′3 \ {t2, t3} because, otherwise, both the two just mentioned hamiltonian paths would exist. This means that the tail of
the path from w, (w, xl+2, · · · , xn−1, t j), must contain at least one path segment, all of whose vertices are in V(G1) \ t1.
Since removing such a path segment from the tail still forms a legitimate path in G3, we can build an s-t j path, by
repeatedly deleting such a path segment, that, once arriving at w, traverses all and only the nonterminal vertices of H
before terminating at t j. However, the existence of such a w-t j tail leads to a contradiction to Lemma 2, proving our
claim.

Now, assume that G \ T has d connected components, where s belongs to a component containing a neighbor of
t1, named v1. Similarly as before, for the remaining d − 1 connected components, there exists at least one nonterminal
vertex per component that does not belong to NG(T ) \ v1. Then, the three paths in the one-to-many 3-DPC should
collectively have at least d − 1 edges in G3, each ending up in such a vertex because each of the d − 1 connected
components must be visited. Note that these edges can only start from vertices in the nonterminal set NG(T ) whose
cardinality is d. However, since at least two paths in the one-to-many 3-DPC must visit H, as implied by the claim
made in the proof, at least two of the d vertices must be consumed for connecting such paths, leaving at most d − 2
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Figure 2: Illustration of the proof of Lemma 3.

free vertices in NG(T ). Since we need at least d − 1 free vertices, we have a contradiction. This completes the entire
proof. �

It is interesting to discover the fact that the two conditions, C1 and C2, in the above lemma also form the sufficient
condition for the cube of a connected graph to have a one-to-many 3-DPC.

Theorem 1 (One-to-many 3-DPC). Given terminal sets S = {s} and T = {t1, t2, t3} of a connected graph G, G3 has
a one-to-many 3-DPC joining S and T if and only if both the two conditions, C1 and C2, of Lemma 3 are satisfied.

Proof. The necessity part is due to Lemma 3. The sufficiency part proceeds by induction on the number of vertices
of G, |V(G)|, assuming |V(G)| ≥ 5 as the base case of |V(G)| = 4 is trivial. The first step of the proof is to select
a sink ti from T such that all the other terminals in {s, t1, t2, t3} \ ti exist in a same connected component of G \ ti.
Consider a spanning tree of G. Then, its smallest subtree containing all the four terminals have at least two leaves that
are terminals. Since at least one of them should be a sink, we can always find a candidate for ti. In case that there are
more than one such sinks, ti is selected as follows: (i) choose the sink that has minimum number of incident edges that
are not nontrivial bridges, and (ii) if there is still a tie between sinks, choose any of them that has maximum number
of incident edges that are nontrivial bridges. Now, assume w.l.o.g. that t1 has been selected. Then, let us denote by
H the connected component of G \ t1 containing s, t2, and t3, and by H′ the subgraph of G induced by V(G) \ V(H),
where all the edges between the two disjoint subgraphs H and H′ are incident to t1. In addition, let us define a vertex
set W as follows:

W =

{
{w ∈ V(H) : dG(t1,w) ≤ 2} if |V(H′)| ≥ 2,
{w ∈ V(H) : dG(t1,w) ≤ 3} if |V(H′)| = 1, i.e. V(H′) = {t1}.

The second step of the proof is to make a claim that, once proven, will immediately lead to a proof of the sufficiency
part in a constructive way. The claim is that at least one of the following two statements is true: (i) s ∈ W, and (ii)
there exists a nonterminal vertex t′1 ∈ W such that S = {s} and the new sink set {t′1, t2, t3} satisfy both the two conditions
C1 and C2 with respect to H. Once this claim is proved, we can always construct a one-to-many 3-DPC of G3 joining
S and T as follows. First, consider a v-t1 hamiltonian path in H′3 for some neighbor v of t1 if |V(H′)| ≥ 2, which is
guaranteed to exist by Lemma 1, or a one-vertex path t1 if |V(H′)| = 1. If s ∈ W, by the definition of the set W, we can
build an s-t1 path by connecting s to the above path in H′3, forming a desired one-to-many 3-DPC of G3 together with
a one-to-many 2-DPC of H3 joining {s} and {t2, t3}, which exists due to the fact that H3 is hamiltonian-connected. If
there is a nonterminal vertex t′1 ∈ W described in the statement (ii), by the induction hypothesis, there is a one-to-many
3-DPC of H3, joining {s} and {t′1, t2, t3}. Then, by replacing the s-t′1 path with the s-t1 path, obtained by combining the
s-t′1 path with the path covering H′3, we get a desired result.

The final step of the proof is to prove the claim. Suppose, for a contradiction, that (a) s < W, and (b) for every
nonterminal vertex w ∈ W, if any, {s} and {w, t2, t3} break either of the two conditions with respect to H (note that the
two conditions cannot be violated simultaneously because no triple of vertices that form a pure bridge triangle can be
contained in the closed neighbor of a pure bridge vertex). Then, there are three cases:

4



. ..
H'

t2

t1

t3

v

H

N (v)H

s

(a) Z = {v}

H'

t2 t1
t3

H

N ({t ,t })H 2 3

s

(b) Z = {t2, t3}

Figure 3: Illustration of Case 1 in the proof of Theorem 1.

Case 1: For a nonterminal vertex w ∈ W, {s} and {w, t2, t3} violates C1 with respect to H. In this case, {w, t2, t3} ⊆
NH[v] and s < NH[v] for some pure bridge vertex v of H. Let Z be the set of all pure bridge vertices z such that
{t2, t3} ⊆ NH[z]. We can see that (i) if v < {t2, t3}, then Z = {v}, and (ii) if v ∈ {t2, t3}, either Z = {v} or Z = {t2, t3},
depending on whether both t2 and t3 are pure bridge vertices or not. First, consider the case of |Z| = 1, i.e. Z = {v}
whether v ∈ {t2, t3} or not (Figure 3a). Every edge of G from t1 to H may have the other end in either V(H) \ NH[v],
NH(v), or {v}. For an edge (t1, u) ∈ E(G) with u ∈ V(H) \ NH[v], which cannot be s due to the hypothesis (a), {s}
and {u, t2, t3} become to satisfy C1 and C2 for the nonterminal vertex u ∈ W, which contradicts the hypothesis (b).
For an edge (t1, u) ∈ E(G) with u ∈ NH(v), since v is a pure bridge vertex, there must be an edge (u, u′) such that
u′ ∈ V(H) \ NH[v] and thus u′ (, s) ∈ W, which also leads to a contradiction to (b) with the sink set {u′, t2, t3}. So, the
only possibility left is that (t1, v) ∈ E(G) is the unique edge from t1 to H, where |V(H′)| ≥ 2 because, otherwise, there
would exist a nonterminal vertex u′ ∈ V(H) \ NH[v] with u′ (, s) ∈ W, which would cause the same contradiction.
Hence, (v, t1) is a nontrivial bridge of G, implying that v is in fact a pure bridge vertex of G such that T ⊆ NG[v] and
s < NG[v]. This contradicts to the condition C1 of the theorem.

Second, consider the next case of |Z| = 2, i.e. Z = {t2, t3}, where both t2 and t3 are pure bridge vertices (Figure 3b).
Now, every edge of G from t1 to H may have the other end in either V(H) \ NH[{t2, t3}], NH({t2, t3}), or {t2, t3}. For
an edge (t1, u) ∈ E(G) for some u in the first two vertex sets, the same reasoning as above leads us to a contradiction.
So, the only possible edges from t1 to H are (t1, t2) and (t1, t3). Suppose that only one such edge (t1, t j) exists for
some j = 2, 3. Then, if |V(H′)| = 1, there always exists a vertex u′ ∈ V(H) \ NH[{t2, t3}] with dG(t1, u′) = 3 and thus
u′(, s) ∈ W, such that the sink set {u′, t2, t3} leads to a contradiction to (b) again. If |V(H′)| ≥ 2, t j is a pure bridge
vertex of G such that T ⊆ NG[t j] and s < NG[t j], contradicting the hypothesis of the theorem. Finally, suppose that
both (t1, t2) and (t1, t3) exist. In this case, since t1, t2, and t3 form a triangle in G, t2 or t3 also might have been chosen
instead of t1 in the first step of this proof. Since t1 was chosen, t1 should have exactly two incident edges that are not
nontrivial bridges of G and at least one incident edge that is a nontrivial bridge of G. This implies that T forms a pure
bridge triangle of G and s < NG[T ] due to (a), contradicting the condition C2 of the theorem.

Case 2: For a nonterminal vertex w ∈ W, {s} and {w, t2, t3} violates C2 with respect to H. In this case, {w, t2, t3}
forms a pure bridge triangle of H such that s < NH[{w, t2, t3}]. Clearly, it is impossible to have a pure bridge vertex z of
H such that {t2, t3} ⊆ NH[z]. Therefore, for any nonterminal vertex w′ ∈ V(H), {s} and {w′, t2, t3} satisfy the condition
C1. Furthermore, for a neighbor u ∈ V(H) of t1, define u′ to be a neighbor of u in V(H) \ {w, t2, t3} if u ∈ {w, t2, t3},
or u itself, otherwise. Then, since u′(, w) may not form a pure bridge triangle in H with t2 and t3, for the vertex
u′ (, s) ∈ W, {s} and {u′, t2, t3} satisfy the condition C2 as well as C1, which contradicts (b).

Case 3: There exists no nonterminal vertex in W. The definition of W entails that |W | ≥ 2 if |V(H′)| ≥ 2, or
|W | ≥ 3, otherwise. Since s < W due to (a), we have that |V(H′)| ≥ 2 and W = {t2, t3}. Furthermore, if (t1, t2) ∈ E(G),
then δG(t2) = 2 with (t2, t3) ∈ E(G), and (t1, t3) < E(G) because, otherwise, W must contain at least one extra vertex
with distance two from t1. Similarly, if (t1, t3) ∈ E(G), then δG(t3) = 2 with (t3, t2) ∈ E(G), and (t1, t2) < E(G). In
either case, there exists a pure bridge vertex v of G such that T ⊆ NG[v] and s < NG[v], which contradicts the condition
C1 of the theorem. This completes the entire proof. �
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Corollary 1. For a connected graph G with four or more vertices, G3 is one-to-many 3-coverable if and only if there
exists neither a pure bridge vertex nor a pure bridge triangle in G.

From Theorem 1, we can derive another interesting fact that the cube of a connected graph always has a one-to-one
3-DPC for any selection of source and sink.

Theorem 2 (One-to-one 3-DPC). For every connected graph G with four or more vertices, G3 is one-to-one 3-
coverable.

Proof. Given a pair of source s and sink t, define a vertex set W = {w ∈ V(G) : 1 ≤ dG(t,w) ≤ 3}, where it is obvious
that |W | ≥ 3. We claim that we can always find two nonterminal vertices t2 and t3 in W such that {s} and {t, t2, t3}
satisfy the two conditions in Theorem 1. If the claim is true, any one-to-many 3-DPC of G3 joining these terminal
sets may easily be transformed into a one-to-one 3-DPC of G3 by extending the s-t2 and s-t3 paths to t, proving the
theorem. For a proof of the claim, we consider three classes of cases that embrace all cases. Firstly, if no edge incident
to t is a nontrivial bridge, it suffices to choose any two vertices in W other than s because t must be incident to at least
one nontrivial bridge to break any of the conditions of Theorem 1. Secondly, if every edge incident to t is a nontrivial
bridge, t has two neighbors, u and v, which have respective neighbors u′ and v′ other than t. Then, by selecting u and
v′ if s < {u, v′}, or u′ and v otherwise, the two conditions in Theorem 1 can be satisfied. Finally, in the remaining class,
there always exist two neighbors of t, u and v, such that (t, u) is a nontrivial bridge whereas (t, v) is not a nontrivial
bridge. If s < {u, v}, it is enough to choose u and v. If s ∈ {u, v}, we consider a neighbor u′ (, t) of u. If u is not a
pure bridge vertex, we choose the two vertices in {u, v, u′} \ s. Otherwise, we select the two vertices in {u, v, u′′} \ s for
some neighbor u′′ (, u) of u′. In any case, it is clear that the two conditions in Theorem 1 are satisfied. �

4. Concluding Remarks

In this article, we have established a necessary and sufficient condition for the cube of a connected graph to have a
one-to-many 3-DPC joining given terminal sets. We have also shown that the cube of every connected graph of order
at least four is one-to-one 3-coverable. The proofs are constructive, and hence may be used effectively to design a
divide-and-conquer algorithm for finding a one-to-many 3-DPC, which can easily be modified to build a one-to-one
3-DPC through a simple reduction process. Another class of graphs that exposes an interesting connectivity structure
is the square of a 2-connected graph. We conjecture that every such graph is one-to-many 3-coverable, which remains
to be proved in future work.
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