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This paper presents an efficient algorithm, called Hermite interpolation, for constructing low-de-
gree algebraic surfaces, which contain, with C* or tangent plane continuity, any given collection
of points and algebraic’ space curves having derivative information. Positional as well as
derivative constraints on an implicitly defined algebraic surface are translated into a homoge-
neous linear system, where the unknowns are the coefficients of the polynomial defining the
algebraic surface. Computational details of the Hermite interpolation algorithm are presented
along with several illustrative applications of the interpolation technique to construction of
joining or blending surfaces for solid models as well as fleshing surfaces for curved wire frame
models. A heuristic approach to interactive shape control of implicit algebraic surfaces is also
given, and open problems in algebraic surface design are discussed.
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1. INTRODUCTION

The need for efficient construction and manipulation of geometric curves and
surfaces arise in several computer applications of which a few are computer-
aided design for manufacturing, computer graphics, medical image process-
ing, pattern recognition, robotics, and computer vision. In this paper, we
present solutions to the problem of C! data interpolation using the lowest
degree, implicitly represented algebraic surfaces in three-dimensional real
space R® and exhibit its use in solid model design. An algebraic surface S in
R? is implicitly defined by a single polynomial equation f(x, y, z) = 0, where
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62 C. L. Bagjaj and I. Ihm

coefficients of f are over R. The class of algebraic surfaces have the advan-
tage of closure under several geometric operations (intersections, union,
offset, etc.) often required in a solid modeling system. Furthermore, we
choose the implicit equation representation for interpolation design since it
captures all elements in the class of algebraic surfaces. This is in contrast to
the rational parametric equation representation wherein only a subset of
algebraic surfaces can be defined by the trio of x, y, and z given explicitly as
rational functions of two parameters. In essence, all rational parametric
surfaces can be represented in implicit form, although the reverse is not
true [22].

Past research in surface design has been largely dominated by the theory
of parametrically represented surfaces, such as parametric Bézier surfaces,
Coons patches, and B-spline surfaces [6, 7, 9, 11, 13]. While parametric
surfaces have been successfully used in modeling complex physical objects,
the flexibility has come at the cost of a very high algebraic degree of the
surfaces. The algebraic degree of a surface is the maximum number of
intersections between the surface and a line, counting both real and complex
intersections and at infinity. This degree is the same as the degree of the
defining polynomial in the implicit representation.! On the other hand, a
degree n parametric surface can be of algebraic degree n? while a bidegree n
parametric surface can be of algebraic degree up to 2n2. See Figure 1 for a
degree hierarchy of typically used surfaces in geometric design. Designing
with surfaces of low algebraic degree is important since the computational
efficiency of further surface operations is directly related to this degree. For
instance, the intersection computation of two surfaces of algebraic degree n
can yield an intersection curve of algebraic degree n? having as many as n*
point singularities. The algebraic degree of the offset of a surface of algebraic
degree n can be as high as n®. Bajaj and Kim’s paper has examples [5] where
many bounds on surface manipulations have been effectively computed.
Observing gaps in the degree hierarchy of algebraic surfaces typically used in
geometric design, we naturally ask whether algebraic surfaces of low degree
(up to degree 5) are sufficient for all design applications? Note, that the gaps
are even larger than first apparent in Figure 1, if we remember that the
rational parametric surfaces of a fixed algebraic degree n (with n greater
than two), are a strict subset of the class of all degree n algebraic surfaces.
Our research has originated from such questions, and in the hope of filling
the gaps in the hierarchy with flexible design surfaces possessing the lowest
possible algebraic degrees.

In recent years there have been several noteworthy results on generating
tangent plane continuous surface fits with low-degree algebraic surfaces.
Dahmen [8] presents an algorithm that constructs a mesh of smooth piece-
wise quadratic surface patches for a class of polyhedra that admit a certain
transversal system of planes. Sederberg [19, 20] discusses techniques for
free-form algebraic surface design, paying special attention to cubic surfaces.

! Hence the term, algebraic degree.
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Fig. 1. A degree hierarchy of algebraic surfaces.

Quartic surfaces are used by Middleditch et al. [16] and Hoffmann et al. [15]
to blend two primary quadric surfaces. In his Ph.D. thesis, Warren [24]
characterized the family of algebraic surfaces that meet a given surface with
a specified order of geometric continuity and applied the theory to surface
blending with low-degree algebraic surfaces [25]. A good exposition of exact
and least squares fitting of implicit algebraic surfaces through given data
points is given by Pratt [18]. Sederberg [21] discusses C° interpolation of data
points and curves using implicitly defined algebraic surfaces. In this paper,
we extend the results of Pratt [18] and Sederberg [21] by devising an efficient
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algorithm, called Hermite interpolation, which characterizes, in terms of the
nullspace of a matrix, the structure of a family of all algebraic surfaces that
contain, with C' or tangent plane continuity, a given collection of data points
and space curves (defined implicitly as the common intersection of algebraic
surfaces or in rational parametric form) possibly having associated normal
directions. The Hermite interpolation algorithm efficiently computes the
family of algebraic surfaces of the lowest degree, which C! interpolates a
specified collection of points, curves, and derivative information. We apply
this algorithm to several examples of joining and blending primary surfaces
of solid models and exhibit lower algebraic degree solutions than presented
for similar examples by Hoffmann and Hopcroft [15], Middleditch and Sears
[16], Owen and Rockwood [17], and Warren [25].

The rest of the paper is organized as follows: Section 2 introduces Hermite
interpolation and provides some fundamental definitions and a key theorem
used in the interpolation algorithm. Sections 3 and 4 present details of the
Hermite interpolation algorithm for algebraic surfaces. In Section 5, we
prove that the Hermite interpolation algorithm computes all the algebraic
surfaces that interpolate given geometric data with C! continuity. An alter-
nate formulation of tangent plane continuity, namely G* continuity, is also
shown to be equivalent. Section 6 considers computational details of the
algorithm, and in Section 7, several examples are presented to construct
low-degree Hermite interpolating surfaces for joining and blending primary
surfaces of solid models as well as for fleshing curved wire frame models
of physical objects. Section 8 presents a heuristic method to interactively
and intuitively select desirable instance surfaces from a family of alge-
braic surfaces computed by the Hermite interpolation algorithm. Finally,
conclusions and open problems in algebraic surface design are discussed in
Section 9.

2. HERMITE INTERPOLATION FOR ALGEBRAIC SURFACES

The primary objective of this work is to construct or approximate physical
objects using meshes of algebraic surface patches. For aesthetic or functional
reasons, it is usually required that the surface patches meet with geometric
continuity. In many applications, C* or tangent plane continuity is sufficient.
In his thesis, Warren [24] investigated algebraic structures of all surfaces
meeting a given algebraic surface smoothly at a point or along a curve on
that surface. He applied ideal theory to characterize the class of such surfaces
in terms of polynomial expressions.

In this section, we present an algorithm, called Hermite interpolation,
which algorithmically characterizes the class of all algebraic surfaces of a
fixed degree which satisfy given geometric specifications. Input to this algo-
rithm is a combination of points and algebraic space curves that are ex-
pressed either implicitly or parametrically. The points and space curves may
have associated first derivative information in the form of normal vectors
that define tangent planes at the points and space curves. Given an algebraic
surface S: f(x, y,2) = 0 of degree n, the Hermite interpolation algorithm
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constructs a homogeneous linear system M;x = 0, M; e R"*™, xeR™ of n;
equations and n, unknowns where the unknowns x are n | = " 12]) coeffi-

cients of S.2 Only when the rank r of M, is less than the number of the
coefficients n, does there exist a nontrivial solution to the system. All the
vectors except 0 in the nullspace of M; form a family of algebraic surfaces of
degree n, satisfying the given input specifications, whose coefficients are
expressed by homogeneous combinations of ¢(= n, — r)free parameters
where ¢ is the dimension of the nullspace.

As a result, the Hermite interpolation algorithm characterizes the family
of algebraic surfaces with specified geometric properties in terms of the
nullspace of a matrix. The algorithm is also useful in proving the existence or
nonexistence of algebraic surfaces of degree n satisfying the input specifica-
tions since, when the rank of M; is n,, there is only the trivial solution 0
that does not correspond to an algebraic surface.

2.1 Preliminaries

We give brief definitions of certain terms we need and also state a form of
Bezout theorem. For detailed and additional definitions, refer to Abhyankar
(1] and Walker [23]. For any multivariate polynomial f, partial derivatives
are written by subscripting, for example, f, = 4f/dx, f,, = 8% f/(0x dy), and
so on. An algebraic surface of degree n in R? is implicitly defined by a single
polynomial equation f(x,y,2) = S, ;4e<nCijsx'y/2" = 0 where the coeffi-
cients c;;, of f are real numbers. The normal or gradient of f(x,y,2) =0is
the vector function Vf = (f,, f,, f,). A point p = (x,, ¥, 2,) on a surface is a
regular point if the gradient at p is not null. Otherwise, the point is
singular. An algebraic surface f(x, y, z) = 0 is irreducible if f(x, y, z) does
not factor over the field of complex numbers. An algebraic space curve is
defined by the common intersection of two or more algebraic surfaces. It is
not known if a complete algebraic space curve can be always determined by
the intersection of only two surfaces. In geometric design, therefore, we often
restrict our consideration to a specific curve segment that is contained in the
intersection of two algebraic surfaces. A rational parametric space curve is
represented by the triple G(s) = (x = Gy(5), ¥ = G5(s), z = G4(s)), where
G,, G,, and G, are rational functions in s. The degree of an algebraic surface
is the number of intersections between the surface and a line, properly
counting complex, infinite, and multiple intersections. This degree is also the
same as the degree of the defining polynomial. The degree of an algebraic
space curve is the number of intersections between the curve and a plane,
properly counting complex, infinite, and multiple intersections. The degree of
an algebraic curve segment given as the intersection curve of two algebraic
surfaces is also no larger than the product of the degrees of the two surfaces.
Furthermore, the degree of a rational parametric curve is the same as the
maximum degree of the numerator and denominator polynomials in the
defining triple of rational functions.

2 An algebraic surface of degree n has (" ;’ 3) terms.
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The following definitions are pertinent to our Hermite interpolation
algorithm:

Definition 2.1. Let p = (p,, p,, p,) be a point with an associated normal
vector n = (n,, n{, n,) in R3. An algebraic surface S: f(x, y, 2) = 0 is said to
contain p with C* or tangent plane continuity if

1) 1) = f(p,, P, P,) = 0 (containment condition), and
(2) Vf(p) is not zero and Vf(p) = an for some nonzero « (tangency condition).

Definition 2.2. Let C be an algebraic space curve with an associated
varying normal vector n(x, y, 2) = (n,(x, y, 2), n.(%, ¥, 2), n(%, y, 2)), de-
fined for all points on C. An algebraic surface S: f(x, y, 2) = 0 is said to
contain C with C! or tangent plane continuity if

(1) f(p) = 0 for all points p of C (containment condition), and

(2) Vf(p) is not identically zero and Vf(p) = an(p) for some « and for all
points p of C (tangency condition).

Definition 2.3. An algebraic surface S: f(x, y, z) = 0 is said to Hermite
interpolate a given collection of points and space curves with assoc-
iated normal vectors if S contains all the points and space curves with C!
continuity.

The following is one form of Bezout theorem, the oldest theorem of alge-
braic geometry. As will be seen, this theorem plays an important role in
proving the correctness of the Hermite interpolation algorithm.

THEOREM 2.1. (Bezout) An algebraic curve C of degree d intersects an
algebraic surface S of degree n in exactly nd points, properly counting com-
plex, infinite, and multiple intersections, or C intersects S infinitely often, that
is, a component of C lies entirely on S.

3. INTERPOLATION OF POINTS WITH NORMALS

3.1 Containment

From the containment condition of Definition 2.1, it follows that any alge-
braic surface S: f(x, y, 2) = 0, whose coefficients satisfy the linear equation
f(p) = 0, will contain the point p. For a set of & data points, this yields &
homogeneous linear equations. Since division of f(x, y, 2) = 0 by a nonzero
number does not change the surface the polynomial f(x, y, z) represents, an
algebraic surface of degree n has, in fact, F = (" y 3) — 1 degrees of freedom.
Interpolation of all the points is achieved by selecting an algebraic surface of
degree n such that F=r, where r (< k) is the rank of a system of %
homogeneous linear equations. Similar approaches for constructing algebraic
surfaces that interpolate points are discussed by Pratt [18].

3.2 Containment with Tangency

A point p = (p,, p,, p,) with a normal vector n = (n,, n,, n,) determines a
unique plane P:n,x + n,y + n,z — (n,p, + n,p, + n.p,) = 0 at the point
p. An algebraic surface S: f(x, y, z) = 0 of degree n that Hermite interpo-
ACM Transactions on Graphics, Vol. 11, No. 1, January 1992.
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lates the point p can be constructed by setting up a linear system of
equations as follows:

For each point p with a normal vector n = (n_, n g 1)

(1) Containment condition. Use the linear equation f(p) = 0 in the unknown
coefficients of S.
(2) Tangency condition. Select one of the following:

(@ If n,+# 0, use the equations n, f,®) — n,f(P) =0 and n,f,(p) -

n.f.(p) = 0.

(®) If n, # 0, use the equations n,f.@)—n.f,P) =0 and n,f.(p) -
n.f,®) = 0.

(© If n,#0, use the equations n,f.(p) — n,f.(p) =0 and n,f.(p) -
n, fy(p) =0.

(3) Next, ensure that the coefficients of f(x, y, z) = 0, satisfying the above
three linear equations, additionally satisfy the constraints Vf(p) # 0,
since nontangency at p may occur if S turns out to be singular at p.

The proof of correctness of the above algorithm follows from the following
lemma.

LemMa 3.1. The equations of the above algorithm satisfy Definition 2.1 of
point containment and tangency.

Proor. The first linear equation f(p) = 0 satisfies containment by defini-
tion. We now show that the remaining equations satisfy Vf(p) = « - n for a
nonzero «. Since n is not a null vector, without loss of generality, we may
assume that n, # 0 in step 2 above. Other cases of n, # 0 or n, # 0 can be
handled analogously. Now let o = £, /n,, assuming n,# 0. Then f, = « - n,,
and substituting it in the selected linear equation n, fy— n,f, = 0 yields
fy = a- n,, and substituting it again in the other selected linear equation
n.f,—n,f,=0yields f,=a-n, Hence Vf(p) = « - n. Finally, note that
f. = 0 for n # 0, in the selected linear equations of step 2(a), would cause
Vf(p) = 0, which we ensured would not happen in step 3 of the algorithm.
Hence f, # 0 and so « # 0, and the lemma is proved. O -

4. INTERPOLATION OF CURVES WITH NORMALS

The varying normal vector associated with a space curve C can be defined
implicitly by the triple n(x, y, 2) = (n,(x, y, 2), n(x, y, 2), n(x, y, z)) where
n,, n, and n, are polynomials of maximum degree m and defined for all
points p = (x, y, z) along the curve C. For the special case of a rational
curve, which we shall treat separately in Subsections 4.1.2 and 4.2.2, the
varying normal vector can be also defined parametrically as n(s) = (x =
n,(s), ¥y = n,(s), z = n,s)), with n_, n,, and n, now rational functions in s.

4.1 Containment

4.1.1 Algebraic Curves: Implicit Definition. Let C:(f(x,y,2) =0,
f2(%, y, 2) = 0) implicitly define an algebraic space curve of degree d. The
irreducibility of the curve is not a restriction, since reducible curves can be
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handled by treating each irreducible curve component separately. For precise
definitions of irreducible components of an algebraic curve, see Walker [23].
The containment condition (as well as the tangency condition) requires the
interpolating surface to be zero at a finite number of points on the curve. To
ensure containment of a specific irreducible component requires choosing this
finite number of points on that component. The precise number, derived from
Bezout theorem, is a linear function of the degree of that curve component,

The situation is more complicated in the real setting, if we wish to achieve
separate containment of one of possibly several connected real ovals of a
single irreducible component of the space curve. There is a nontrivial prob-
lem of specifying a single isolated real oval of a curve. Arnon et al. [2] derive
a solution in terms of a decomposition of space into cylindrical cells that
separates out the various components of any real curve (or any real algebraic
or semialgebraic set).

An interpolating surface S: f(x, y, 2) = 0 of degree n for containment of
an irreducible curve component C, is computed as follows:

(1) Choose a set L, of nd +1 points on C, L, = {p, = (x5, ¥, 2) | i =
1,--+, nd + 1}. The set L, may be computed, for example, by tracing the
intersection of f; = f, = 0 [3]. Thus, alternatively, an algebraic curve
may be given as a list of points.

(2) Next, set up nd + 1 homogeneous linear equations fp,) =0, for all
P;€L;. Any nontrivial solution of this linear system will represent an
algebraic surface that interpolates the entire curve C.

The proof of correctness of the above algorithm is captured in the following
Lemma.

LEMMA 4.1. To satisfy the containment condition of an algebraic curve C of
degree d by an algebraic surface S of degree n, it suffices to satisfy the
containment condition of nd + 1 points of C by 8.

Proor. This is essentially a restatement of Bezout theorem in Section 2.1.
Making S contain nd + 1 points of C ensures that S must intersect C
infinitely often, and hence S must contain the entire curve. 0

Recall that S: f(x,,2) = 0 of degree n has F = (+2) - 1 degrees of
freedom. Let r be the rank of the system of nd + 1 linear equations. There
are nontrivial solutions to this homogeneous system if and only if F> r and
a unique nontrivial solution when F = r. Again, an interpolating surface can
be obtained by choosing a degree n such that F = r.

4.1.2 Rational Curves: Parametric Definition. When a curve is given in
rational parametric form, its equations can be used directly to produce a
linear system for interpolation, instead of first computing nd + 1 points on
the curve. Let C:(x = Gy(t),y = Gy(2), 2 = G4(t)) be a rational curve of
degree d. An interpolating surface S: f(x, y, z) = 0 of degree n that contains
C is computed as follows:

(1) Substitute (x = G,(t), y = G,4(t), z = G4(t)) into the equation f(x, y, z) =
0.
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(2) Simplify and rationalize the expression from step 1 to obtain the numera-
tor Q(¢) = 0, where @ is a polynomial in ¢ of degree at most nd with
coefficients that are homogeneous linear expressions in the coefficients of
f. For @ to be identically zero, each of its coefficients must be zero, and
hence we obtain a system of at most nd + 1 linear equations, where the
unknowns are the coefficients of f. Any nontrivial solution of this linear
system will represent a surface S that interpolates C.

LeMMA 4.2. The containment condition is satisfied by step 2 of the above
algorithm.

Proor. Obvious. [O.

4.2 Containment with Tangency

In order to Hermite interpolate an algebraic curve C with a normal vector n
by an algebraic surface S, we again need to solve a homogeneous linear
system, whose equations stem from both the containment condition and the
tangency conditions of Definition 2.2.

4.2.1 Algebraic Curves with Normals: Implicit Definition. As before, let
C:(fi(x,y,2) =0, fo(x, y, 2) = 0) implicitly define an irreducible algebraic
space curve of degree d, together with an associated normal vector defined
implicitly by the triple n(x, y, 2) = (n,(x, y, 2), n(x, y, 2), n(x, y, z)) where
n, n, and n, are polynomials of maximum degree m and defined for all
points p = (x, y, 2) along the curve C. A Hermite-interpolating surface
S: f(x, y, 2) = 0 of degree n, which contains C with C! continuity, is then
computed as follows:

(1) Choose a set L, of nd+ 1 points on C, L, = {p; = (x;,y;,2;)|i=
1,-++,nd + 1}. The set L, may be computed, as before, by tracing the
intersection of f, = f, = 0.

(2) Construct a list L, of (n — 1 + m)d + 1 point-normal pairs on C, L, =
{l(x;, ¥ 2)), (nyy, nyy, n i = 1,0+, (n — 1 + m)d + 1}, where
(nyi nyis ny) = n(xy, y;, 2;) for all i. Thus, alternatively, an algebraic
curve C and its associated normal vector n may (either or both) be given
as a list of points or point-normal pairs. (

(3) Containment condition. Next, set up nd + 1 homogeneous linear equa-
tions f(p;) =0, for p,;eL,, i=1,---,nd + 1.

(4) Tangency condition
(@) Compute t(x, y, 2) = Vfi(x, y, 2) X Vfy(x, 3, 2). Note t = (¢,, t,,t,)is

the tangent vector to C.

(b) Select one of the following:
(i) If ¢, # 0, use the equation fyrn,—n, f,=0.
(i) If ¢, # 0, use the equation f, - n,—n, -f,=0.
(iii) If ¢, # 0, use the equation f, - n,-n, f,=0.
Substitute each point-normal pair in L, into the above-selected equation

to yield (n — 1 + m)d + 1 additional homogeneous linear equations in
the coefficients of f(x, y, 2).
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(6) In total, we obtain a homogeneous system of (2n — 1 + m)d + 2 linear
equations. Any nontrivial solution of the homogeneous linear system, for
which, additionally, Vf is not identically zero for all points of C (that is,
the surface S is not singular at all points along the curve C), will
represent a surface that Hermite interpolates C.

The proof of correctness of the above algorithm follows from Lemma 4.1
and the following lemma, which shows why the selected equation of step 4(b),
evaluated at (n — 1 + m)d + 1 point-normal pairs, is sufficient.

LemMMmA 4.3. To satisfy the tangency condition of an algebraic curve C of
degree d with a normal vector n of degree m, by an algebraic surface S of
degree n, it suffices to satisfy the tangency condition at (n — 1 + m)d + 1
points of C by S as in step 4 of the above algorithm.

Proor. In step 4(b) above, assume without loss of generality that ¢, # 0.
Then the selected equation

f, n,—n,-f,=0. (1)

We first show that even if Eq. (1) is evaluated at only (n — 1 + m)d + 1
points of C in step 4(b) above, it holds for all points on C. Equation (1)
defines an algebraic surface H: h(x, y, 2) = 0 of degree (n — 1 + m), which
intersects C of degree d, at most, (n — 1 + m)d points. Invoking the Bezout
theorem, it follows that C must lie entirely on the surface H if Eq. (1) is
evaluated at (n — 1 + m)d + 1 points of C. Hence Eq. (1) is valid along the
entire curve C.

We now show that step 4 of the above algorithm satisfies the tangency
condition as specified in Definition 2.2. Since t of step 4(a) is a tangent vector
at all points of C, and the surface S: f = 0 contains C, the gradient vector Vf
is orthogonal to t, which yields the equation:

fe-te+f,-t,+f,t,=0 (2)

valid for all points of C. Next, from the definition of a normal vector of a
space curve,

nyte+n,t,+n,t,=0 (3)

valid for all points of C. Now it is impossible that both n,(x,y, 2) and
n(x, y, 2) are identically zero along C, since if they were, then Eq. (3) would
imply that n, - ¢, = 0, and as we assumed that ¢, # 0, would in turn imply
that also n, = 0 along C, which would contradict the earlier assumption that
n is not identically zero. Hence, at least, one of n, and n, must also be
nonzero. Without loss of generality, let n, # 0. Also, let a(x, y, 2) = fy/n,.
Then, we get

fy=oa-n,, (4)
and substituting it into Eq. (1) yields
fz = nZ (5)
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for all points on C. From Egs. (2), (4), and (5) we obtain
fortotan, -t +a-n,t,=0. (6)
By multiplying « to Eq. (3) and subtracting Eq. (6) from it, we obtain

"ty (7)

and since ¢, # 0, we finally obtain
fa=arn, (8)

valid at all points of C. Hence Egs. (4), (5), and (8) together imply that
Vf(x, y, z) = o * n for all points C and some nonzero «.® Hence, the tangency
condition of Definition 2.2 is met. O

4.2.2 Rational Curves with Normals: Parametric Definition. When both a
space curve and its associated normal vector are given in rational parametric
form, their equations can be used directly to produce a linear system for
interpolation, instead of first computing points and point-normal pairs of the
curve. Let C:(x = G(s), y = Gy(s), 2 = G4(s)) be a rational curve of degree
d with a normal vector n(s) = (n,(s), n,(s), n(s)) of degree m. A Hermite
interpolating surface S: f(x, y, 2) = 0 of degree n, which contains C with C!
continuity, is computed as follows:

(1) Containment condition. Substitute (x = G4(s), y = Gy(s), z = G4(s)) into
the equation f(x, y, z) = 0. This results in, at most, nd + 1 homogeneous
linear equations as in Subsection 4.1.2.

(2) Tangency condition
(@) Compute Vf(s) = Vf(G(s), Gy(s), G4(s)) and t(s) = (dx/ds, dy/ds,

dz/ds). Note that t = (t,, t,, t,) is the tangent vector to C.
(b) Select one of the following:
(i) If ¢, #+ 0, use the equation f(8) ns) —n,s):f(s)=0.
(ii) If ¢, # 0, use the equation f,(s) ‘- n,(s) — n (s) - f,(s) = 0.
(iii) If ¢, # O, use the equation f,(s) - n,(s) — ns) f,(s)=0.

In each case, the numerator of the simplified rational polynomial is set to
zero. This yields at most (n — 1)d + m + 1 additional homogeneous lin-
ear equations in the coefficients of the surface S: f(x, v, 2) = 0.

(3) In total, we obtain a homogeneous system of at most (2n — 1)d + m + 2
linear equations. Any nontrivial solution of the linear system, for which
additionally Vf is not identically zero for all points of C (that is, the
surface S is not singular along the curve C), will represent a surface that
Hermite interpolates C.

8 From Equation (6) we see that «(x, y, z) must not be identically zero along C, for otherwise,
Vf = (0,0, 0) for points along C, and would contradict the fact that we chose a nontrivial solution
for the surface S: f = 0 where V£ is not identically zero.
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The proof of correctness of the above algorithm follows from Lemma 4.2
and the following lemma.

LemMa 4.4. If we choose a nontrivial solution for which the resulting
Hermite interpolating surface S is not singular along the entire curve C, step 2
guarantees that the tangency condition of Definition 2.2 is met.

Proor. The proof is very similar to that of Lemma 4.3 with minor
modifications and is omitted. [

5. GEOMETRIC CONTINUITY

In the Hermite interpolation algorithm, tangent plane continuity between
two surfaces is achieved by making the tangent planes of the two surfaces
identical at a point or at all points along a common curve of intersection.
This definition of continuity agrees with several other definitions of G*
geometric continuity given for parametric and implicit algebraic surfaces. De
Rose [10] gave a definition of higher orders of geometric continuity between
parametric surfaces where two surfaces F, and F, meet with order k
geometric continuity or G* continuity along a curve C if and only if there
exist reparameterizations F| and F} of F; and F,, respectively, such that all
partial derivatives of F] and F} up to degree k agree along C.

Warren [24] formulated an intuitive definition of G* continuity between
implicit surfaces as following:

Definition 5.1. Two algebraic surfaces f(x,y,2) =0 and g(x,y,2) =0
meet with G* rescaling continuity at a point p or along an algebraic curve C
if and only if there exists two polynomials a(x, y, z) and b(x, y, z), not
identically zero at p or along C, such that all derivatives of af — bg up to
degree k vanish at p or along C.

This formulation is more general than just making all the partials of
f(x,y,2)=0 and g(x, y,z) =0 agree at a point or along a curve. For
example, [24], consider the intersection of the cone f(x, y,2) =xy — (x +y —
2)? = 0 and the plane g(x, y, 2) = x = 0 along the line defined by two planes
x =0 and y = z. It is-not hard to see that these two surfaces meet smoothly
along the line since the normals to f(x, y, 2) = 0 at each point on the line are
scalar multiples of those to g(x, ¥, z) = 0. But, this scale factor is a function
of z. Situations like this are thus corrected by allowing multiplication by
rescaling polynomials, not identically zero along an intersection curve. Note
that multiplication of a surface of polynomials nonzero along a curve does not
change the geometry of the surface in the neighborhood of the curve. Garrity
et al. [12] showed that both definitions of geometric continuity for a paramet-
ric and an implicit surface are equivalent by introducing the concept of a
manifold that describes an intrinsic and local property of a surface.

The definition for G° rescaling continuity corresponds to the containment
definition in Section 2.1. The following lemma shows that the C? continuity
definition in Section 2.1 agrees with the G! rescaling continuity definition.

LeEMMA 5.1. G! rescaling continuity between f(x, y, z) = 0 and g(x, v, 2)
= 0 at a common point p or along a common curve C corresponds to f(x, v, 2)
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=0 and g(x, y, 2) = 0 having common tangent planes at p or along every
point of C.

Proor. The requirement for G'-rescaling continuity is that there exist
a(x, y, z) and b(x, y, z), not identically zero at p or along C, such that

daf — b
(of ~B8) _ o f4 af, — bg - be,
dx
= 0 at p or along C,
3(af - bg)
3 =a,f+af,—b,g— bg,
y
= 0at poralong C,
dlaf—- b
(f‘az g) =a2f+af2_bzg_bgz

= 0 at p or along C.

Since p or C is contained in both f and g (that is, f=g = 0 at p or along
C), the requirement becomes

aof, = bg,
afy = bgy
a’fz = bgz’

which means (f,, f,, f,) = b/a(g,, &,, &,) at p or along C. Hence, f and g
are required to have common tangent planes at p or along C. O

The correctness proofs in Section 3 and Section 4 imply that Hermite
interpolation finds all the algebraic surfaces that have common tangent
planes at a point or a curve. It also yields the following theorem.

THEOREM 5.1. Hermite interpolation finds all the algebraic surfaces F that
meet a surface H at a point p or along a curve C on H with G' rescaling
continuity.

A family of algebraic surfaces F as in the above theorem can be con-
structed in the Hermite interpolation framework of Section 4 as follows.
Given a surface H and a point p or curve C on H, defined implicitly or
parametrically, the input to the Hermite interpolation algorithm is the point
p or the curve C and the normal vector to p or C obtained directly from the
VH, evaluated at p or along C. The algorithm then yields a solution for the
coefficients of the family of algebraic surfaces that meet H at p or along C
with C!, tangent plane, or G! rescaling continuity. Several examples of this
are provided in the next section.

6. COMPUTATIONAL ASPECTS OF HERMITE INTERPOLATION

The basic mechanics of Hermite interpolation for algebraic surfaces, as
presented in the algorithms of Section 3 and Section 4, are

(1) geometric properties of a surface to be designed are described in terms of
a combination of points, curves, and possibly associated normal vectors;
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(2) these properties are translated into a homogeneous linear system of
equations with extra surface constraints; and

(3) nontrivial solutions of the linear system are computed.

In this section we discuss some computational aspects of Hermite interpola-
tion and give several examples of algebraic surface design with Hermite
interpolation.

6.1 On Computing Nontrivial Solutions

As explained before, the Hermite interpolation algorithm converts geometric
properties of a surface into a homogeneous linear system:

M;x = 0(M; e R™*"™,x eR™),

where n; is the number of equations generated, n, is the number of unknown

coefficients of a surface of degree n (nv = (";3)), M; is a matrix for the

linear equations, and x is a vector whose elements are unknown coefficients
of a surface.

In order to solve the linear system in a computationally stable manner, we
compute the singular value decomposition (SVD) of M; [14]. Hence, My is
decomposed as M; = UV T where Ue R™*" and VeR™>™ are orthonor-
mal matrices, and T = diag(a,, 05," ", 0,) €R™*™ is a diagonal matrix with
diagonal elements ¢, = g, = - = g, = 0 (s = min{n;, n,}). It can be proved
that the rank r of M; is the number of the positive diagonal elements of Z,
and that the last n, — r columns of V span the nullspace of M;. Hence, the
nontrivial solutions of the homogeneous linear system are compactly ex-
=Y w; v,,;, where w,eR, and v; is the jth

column of V}, or x = V w where V., _,eR™*™"" jg made Jof the last

n,—r n, —7‘

n, — r columns of V, and'w is a (n, - r) vector for free parameters.

Example 6.1. Computation of Nontrivial Solutions. Let C:(2¢/1 + t2,1 —
t2/1 + t2,0), and n(¢) = (4¢/1 + ¢2,2 — 2t2/1 + t2,0), which is from the in-
tersection of a sphere x2 + y2 + 22 — 1 = 0 with the plane z = 0. To find a
surface of degree 2 that Hermite interpolates C, we let f(x, y, 2) = ¢;x% +
coy2 + c32? + c xy + cgyz + cgzx + cyx + cgy + gz + €. From the con-
tainment condition, we get 5 equations, ¢;g — ¢z + ¢ =0, 2¢; — 2¢, = 0,
2¢10— 2¢5 +4¢;, =0, 2¢;,+2¢,=0, ¢;o+ cg+ ¢, =0, and from the tan-
gency condition, we also get 5 equations, —2¢g + 2¢; = 0, —4¢cg = 0, —~4c¢5 =
0,4c5 =0, 209 + 2¢; = 0. In matrix form,
0

|
—

51
C2
Cs
Cy
Cs
Ce
Cr
Cs
Cy
€10

coococoococo0oO
oooooomo[go
dMooo ! ocoooo

=
W
1]
OOOOOOOH‘OD
ooooo»—aol'oo»—a
woLomooooo
cocoocOoOMONOD

o.ho“';ooooo
coocoorROoOOO

]
OO ONO -
It
(=]
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The T in the SVD of M, is diag(5.657, 4.899, 4.899, 2.828, 2.828, 2.828, 2.0,
1.414, 0.0, 0.0).*

Hence, we see that the rank of M; is 8, and the null space of M, is

0.0] 0.57735
0.0 0.57735
1.0 0.0
0.0 ‘ 0.0

X = wyVg + WaVyg = W, 83‘ P+ w gg
0.0 0.0
0.0 0.0
0.0 ‘ 0.0
0.0 ~0.57735

The nontrivial solutions are obtained by making sure that the free para-
meters w, and w, do not vanish simultaneously. Hence, the Hermite inter-
polating surface is f(x, y, 2) = 0.57735w,x* + 0.57785w,y% + w, 2% —
0.57735w, = 0, which has one degree of freedom in controlling its coeffi-
cients. The surface f(x, ¥, 2) = 0 can be made to contain a point, say, (1, 0,
1). That is, f(1, 0, 1) = 0.57735w, + w,; — 0.57735w, = w, = 0. So, the cir-
cular cylinder f(x, y, z) = 0.57735w,(x2% + y2 — 1) = 0 is an appropriate
Hermite interpolating surface. [

6.2 Bounding the Degree of Surfaces

The total number of linear equations generated for a possible algebraic
surface of degree n to Hermite interpolate %k points with fixed constant
normal directions and also to contain, with C! continuity, / space curves of
degree d with assigned normal directions, varying as a polynomial of degree
m, is 3k + (2n — 1 + m)dl + 21. This number becomes 3% + 2n — 1)dl +
ml + 21 when all the space curves and associated normal vectors are defined
parametrically.

For a given configuration of points, curves, and normal vectors, the above
interpolation scheme allows one to both upper- and lower-bound the degree of
Hermite interpolating surfaces.

(1) Lower bound. Let r(n) be the rank of a homogeneous system of linear
equations, obtained from the given geometric configuration and surface
degree n. The rank tells us the exact number of independent constraints
on the coefficients of the desired algebraic surface of degree n. Dependen-
cies arise from spatial interrelationships of the given points and curves.
From the rank, we can conclude that there exists no algebraic surface of
a degree less than or equal to n, where n, is the largest n such that
F(n) < r(n) with F(n) = (*$°) - 1.

3
(2) Upper bound. Alternatively, the smallest n can be chosen such that
F(n) = r(n). The nontrivial solutions of the linear system represents a

* The subroutine dsvdc of LINPACK was used to compute the SVD of M,.
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(F(n) — r(n) + 1)-parameter family (with F(n) — r(n) degrees of free-
dom) of algebraic surfaces of degree n that interpolate the given geomet-
ric data. We select suitable surfaces from this family, which additionally
satisfy our nonsingularity and irreducibility constraints.®

One way to apply the Hermite interpolation technique to computation of a
lowest degree algebraic surface, which has given geometric properties, is to
search through the degrees, i.e., from n =1,2,3,--- for an interpolating
surface. In Example 7.7 in Section 7, we give an example that shows how the
geometric dependency between given curves and normals affects the alge-
braic dependency between linear equations generated by the Hermite inter-
polation algorithm. However, since the dependencies between linear equa-
tions do depend on the specific spatial interrelationships of given geometric
objects, it is, in general, very difficult to bound the degree of interpolating
surfaces a priori. For example, it is possible to design input data, made of an
arbitrary number of degree four curves with normal directions, that can be
interpolated by a quadric surface. ,

We now enumerate some results in which we lower-bound the degrees of
some Hermite interpolating surfaces.

(1) Two skewed lines in space with constant direction normals cannot be
Hermite interpolated with nondegenerate quadric surfaces. The only
quadric that satisfies both containment and tangency conditions reduces
into two planes.

(2) Two lines in space with constant direction normals can be Hermite
interpolated with a quadric surface if and only if the lines are parallel or
intersect at a point, and the normals are not orthogonal to the plane
containing them. The quadric is a cylinder when the lines are parallel
and a cone when the lines intersect.

(3) The minimum degree of an algebraic surface, which Hermite interpolates
two lines in space, one with a constant direction normal, the other with a
linearly varying normal is three. ‘

(4) Two lines with linearly varying normals can be Hermite interpolated by
a quadric in only some special cases. In general, a surface of at least
degree three is needed. When quadric surface interpolation is possible,
the quadric is either a hyperboloid of one sheet (the two lines may be
parallel, intersecting, or skewed) or a hyperbolic paraboloid (the two lines
can only be intersecting or skewed).

7. EXAMPLES

In this section we exhibit the method of Hermite interpolation by construct-
ing lowest degree Hermite interpolating surfaces for joining and blending

5 However, some of these interpolating surfaces still might not be suitable for the design
application they were intended to benefit. These problems arise when the given points or curves
are smoothly interpolated, but, lie on separate real components of the same nonsingular,
irreducible algebraic surface.
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primary surfaces of solid models as well as for fleshing curved wire frame
models of physical objects.®

Example 7.1. (JOINING 1) A cubic surface for smoothly joining two
elliptic cylinders. Consider computing a lowest degree surface that can
smoothly join two truncated elliptic cylinders CY L,:(y + 1)% + (22/4) - 1
=0for x< —2and CY L,:252% + 36y% — 96xy + 64x% — 100 = 0 for 3x +
4y = 0. Here, we illustrate the Hermite interpolation technique, which not
only computes the unique cubic interpolating surface but also proves that
degree three is the lowest for an algebraic surface to satisfy the smooth-join
requirement for this configuration. We take an ellipse C;:(-2, — 2¢2/1 +
t2,4t/1 + t?) on CY L, with the associated rational normal n,(¢):(0,2 —
2t2/1 4 ¢2,2t/1 + t%) and another ellipse C,: (-4 + 4t2/5 + 5t%,3 — 3t2/5
+ 5t2,4¢t/1 + t2) on CY L, with the associated rational normal ny(¢):(—80
+ 80£2/1 + 2,120 — 120¢2/1 + t2,200¢/1 + ¢%). Both C,; and C,’s normals
are respectively chosen in the same directions as the gradients of their
corresponding surfaces CY L, and CY L,. This ensures that any Hermite
interpolating surface for C; and C, will also meet CY L, and CY L,
smoothly along these curves. A degree-two algebraic surface does not suffice
for Hermite interpolation, since the rank of the constructed linear system is
greater than 9, which is the degrees of freedom of a quadric surface. (Note
that a quadric surface has 10 coefficients.) Next, as a possible Hermite
interpolant, consider a degree-three algebraic surface with 20 coefficients.
Applying the Hermite interpolation algorithm of Subsection 4.2.2 to the
curves results in 26 linear equations (28 equations are supposed to be
generated, but 2 of the 28 are degenerate). The rank of this linear system is
19, and thus there is a unique cubic Hermite interpolating surface, which is
f(x, 5, 2) = rQyz? — x22 — 522 + 8y% — 4xy®> — 4y*> + 8x%y + 24xy — 8y
— 4x% — 11x? + 4x + 20). See Figure 2.

Example 7.2. (JOINING 2) A quartic surface for smoothly joining three
circular cylinders. Consider computing a lowest degree surface that smoothly
joins three truncated orthogonal circular cylinders CYL,: x? +
y2-1=0 for 222, CYL,:y*+22-1=0 for x=2, and CYL,: 2% +
22 -1=0for y=2.

Warren [25] found a degree-five surface for joining these cylinders. After
applying the Hermite interpolation algorithm, we find out that the minimum
degree for such joining surfaces is 4, and we get a 2-parameter (one degree of
freedom) family of algebraic surfaces.

As before, we take a circle C,:(2¢/1 + t2,1 — t2/1 + ¢2,2) on CYL, with
the associated rational normal n,(¢):(4¢/1 + 2,2 — 2¢2/1 + ¢2,0), the circle

8 The solutions of all the examples in this subsection were obtained using MACSYMA in which
the Gaussian elimination algorithm applied. The reason was to express solutions more clearly;
however, the singular value decomposition algorithm was used in our implementation. Of
course, the solution spaces are the same whichever method to be used in computing the
nullspace, although the bases that span the vector subspace are different.
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Fig. 2. Smooth joining of two cylinders with a cubic surface.

Cy:(2,2t/1 + t2,1 — ¢2/1 + t%) on CYL, with the associated rational normal
ny(#):(0,4t/1 + t3,2 — 2¢2/1 + t2), and the circle Cy:(2t/1 + t2,2,1 — ¢2/1
+ t2) on CYL, with the associated rational normal ny(¢):(4¢/1 + ¢2,0,2 —
2¢2/1 + t2). Again, all C,,C,, and Cy’s normals are respectively chosen in
the same direction as the gradients of their corresponding surfaces CY L,,
CY L,, and CY L,. This ensures that any Hermite interpolating surface for
C,, C,, and C; will also meet CY L, CY L,, and CY L; smoothly along these
curves. A degree-three algebraic surface does not suffice for Hermite interpo-
lation, since the rank of the resulting linear system is greater than 19. Next,
as a possible Hermite interpolant, consider a degree-four algebraic surface
with 35 coefficients, and 34 degrees of freedom. Applying the Hermite
interpolation algorithm to the curves results in 52 equations. The rank of
this linear system is 33, and thus there is a 2-parameter family of quartic
Hermlte interpolating surfaces, which is f(x, y, 2) = rlz + (ry + 107, /12)
y2® + (rg + 10r, /12) xz —(ro + 10r1/3) 23 + 2r,y222 + (ro + 10r1/12)
xyz® — (ry + 10r, /3) y22 + 2r,;x%2% — (ry + 107, /3) xz +re22 4+ (ry +
10r1 /12) 3z + (ry + 107, /12) xy%z — (ry + 101, /3) y2z + (1, + 10r, /12)
x2yz - (ry + 107, /3) xyz + (ry + 107, /4) yz + (ry + 10r1 /12) x%z — (ry +
107, /3) x%z+ (ro + 107, /4) xz + (ry + 107, /3)z + ryy* + (ry + 107, /12)
xy® — (rg + 107, /3) 3% + 2r x%y% — (ry + 107, /3) xy® + roy? + (ry +
107, /12) x3y — (ry + 107, /3) x%y + (ry + 107, /4) xy + (ry + 107, /3) y +
rixt — (ry + 107, /3) x3 + ryx® + (ry + 10, /3) x + (5ry — Try /3).
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Fig. 3. Smooth joining of three cylinders with a quartic surface.

An instance of this family (r, = 1, r, = 10) is shown in Figure 3. It should
be noted that every surface in the computed family is not always appropriate
for geometric modeling. The quartic surface in Figure 4 is one used in Figure
3. On the other hand, the surface in Figure 5, which is not useful for
geometric modeling, is also in the same family with r; = 1 and r, = - 1.

Example 7.3. (JOINING 3) A quartic surface for smoothly joining four
circular cylinders. In this example, we compute a lowest degree surface that
smoothly Joms four truncated parallel c1rcular cylinders defined by CY
L:y?4+22-1=0 for x=2, CY Ly:y*+2°-1=0 for x< -2, CY
Ly:(y—4)2+22-1=0for x=2, and CY L;:(y - 4?+22-1=0 for
x< —2

The Hermite interpolation technique indicates that the minimum degree
for such a joining surface is 4, and computes a 2-parameter (one deg‘ree of
freedom) famlly of algebralc surfaces which is f{( x, y,2) = (r1 /14)2* +

r /Ty*2% — (dr, /7)yz +r2% + (ry /14)y — @ry/Dy* + riy* + @/Tryy +
14r2 + 15r1 /224)x* — (14r, + 15r, /28)x® + r,. An instance of this family
(r, = 392, r, = —868) is shown in Figure 6.

Example 7.4. (BLENDING 1) Hyperbolozd patches for blending two per-
pendicular cylinders. The case of two circular cylinders is a common test case
for blending algorithms. Various different ways have been given, (for exam-
ple, see [15, 17, 25]) for computing a suitable surface that smooths or blends
the intersection of two equal radius cylinders, CY L,: x% + 22-1=0 and
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Fig. 4. A “good” quartic surface. Fig. 5. A “bad” quartic surface.

CY L,: y*+ 22 -1 =0. We consider an ellipse C, on CY L, (it is the
intersection with the plane 3x + y = 0), defined parametrically, C, : (2¢/1 +
t2, —6¢/1 + t2, 1 — t2/1 + ¢?) with the associated rational normal n,(¢) =
(4t/1 +¢2,0,2 — 2¢2/1 + t?), and the ellipse C, on CY L, defined implic-
itly, Cy:(y®> + 22 = 1 =0, x + 3y = 0) with the associated normal n,(x, y,
2) = (0, 2y, 22). As a possible Hermite interpolant, we consider a degree-two
algebraic surface. Applying the method of Subsection 4.2.2 to C, results in
eight equations, five from the containment condition and three from the
tangency condition. (Five equations are supposed to be generated, but two of
these turn out to be degenerate.) For C,, we use the method of Subsection
4.2.1 and first compute L, = {(0, 0, 1), (-3, 1, 0), (3, —1, 0), (-2.4, 0.8,
-0.6), (2.4, — 0.8, —0.6)} and L, = {[(0, 0, 1), (0, 0, 2)], [(-38, 1, 0), (0, 2, 0)],
(3, -1,0), (0, -2, 0),[(-2.4,0.8, —0.6), (0, 1.6, —1.2)}, [(2.4, —0.8, —0.6),
(0, —1.6, —1.2)]}. From these lists, we get ten equations, five from the
containment condition and another five from the tangency condition. Hence,
overall the linear system consists of 10 unknowns and 18 equations. The
rank of this system is 9, and hence we get the unique surface solution f,(x, v,
2) = ry(x% +y% — 822 + 6xy + 8 = 0). This quadric satisfies both the non-
singularity and irreducibility constraints. It is a hyperboloid of one sheet and
the lowest degree surface which blends, together with a symmetric hyper-
boloid fp(x, ¥, 2) = ri(x® + y? — 822 — 6xy + 8 = 0), the intersection of the
two cylinders. See Figure 7.
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Fig. 6. Smooth joining of four cylinders with a quartic surface.

Example 71.5. (BLENDING 2) A quartic surface for blending two elliptic
cylinders. In this example, we compute a lowest degree surface that blends
two perpendicular elliptic cylinders. We have seen a quadric blending of the
circular cylinders in Example 7.4. Here, we try a quartic blending surface by
taking different types of input curves.

Input to Hermite interpolation is defined by CY L,: y2 + 422 — 4 = 0 for
x21, CY Ly:y® +42° -4 =0 for x< —1, CY Ly:9x2 + y2 ~ 9 = 0 for
221,and CYL,:9x2 + y2 -~ 9 =0for z < —1.

The Hermite interpolation algorithm proves that 4 is the minimum degree
for such a blending surface and that it generates a linear system with
72 equations of rank 33. The 2-parameter (one degree of freedom) family
of algebraic surfaces is f(x, y, 2) = ryz* — (8ry, + 81r, /72)y222
—(8r; + 81r, /8)x%2” + (81, + 65r, /8)2% — (8r, + 99r, /288)y* — (8r, +
81r, /32)x%y® + (104r, + 1053r, /288)y% + (81r, /16)x* + ryx% — (167, +
65r, /16). An instance of this family (ry = 1,r, = 2) is shown in Figure 8.

Example 7.6. (FLESHING 1) A quartic surface for fleshing a circular
wire frame. Consider a wire frame a solid model consisting of two circles,
Cr:(x®+y2+22-25=0,x=0), and Co:(x®+y2+22-25=0,y = 0).
Each curve is associated with a “normal” direction, which is chosen in the
same direction as the gradients of the sphere. That is, nyx,y, 2)=(0,2y,22),
and ny(x, y, z2) = (2x,0,22). The wire frame has four faces to be fleshed,
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Fig. 7. Smooth blending of two cylinders with a quadric surface.

face;, =(x=0,y=0), face;=(x=0,y=<0), face3=(x=<0,y=<0), and
face, = (x <0,y = 0).

In Figure 9, face, and face, are filled with the patches taken from the
sphere x2 + y2 + 2% — 25 = 0 (green patches).

To smoothly flesh the remaining faces requires degree-four surface patches.
Applying the Hermite interpolation method in either Subsection 4.2.2 or
Subsection 4.2.1 to C, and C, results in 11-parameter 1o 1ndependent)
family of quartic interpolatmg surfaces, whlch is flx,y,2) =rz*+ (ry y +
rex + 5r)z% + (ryy? + (r7x + 5rg)y + ripx’ + 5rix — 25ry — 25r))2% +
(roy® + (r6x + 5r)y + (r2x - 25r2)y + rgx® + 5ryx% — 25rgx — 125r4)z
(rg — rl)y + (r7x + 5rg)y® + (r5x® + 5r;,x — 25rg — 25r; + 25r,)y2
+(r7x® +5rgx% — 25r, 0 — 125rg) y + ryg— ry) x4+ 5ry 2% + (—26rg — 25r10

+25r;)x% ~ 125r;,x + 625r An instance f(x,y, 2) = —1250 — x* — y*

-x222 — y222 + 5022 + 752 + 75x2 of this famlly is used to flesh face, and

face, in Figure 9 (red patches).

Example 7.7. (FLESHING 2) A quintic surface for fleshing a triangular
wire frame. Figure 10 shows an instance of a 5-parameter family of quintic
algebraic surfaces which fleshes the triangular wire frame, made of three
conic curves with quadratic normals (both curves and normals are in quadratic
rational parametric form) where the three curves meet pairwise, and the
normals coincide at the three intersection points. We are currently working
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Fig. 8. Smooth blending of two cylinders with a quartic surface.

on a polyhedron-smoothing scheme in which this kind of triples of quadratic
curve-normal pairs are automatically generated.

Consider the problem of smooth fleshing of the three curves with a degree
n algebraic surface f(x, y, z) = 0. In order for f to Hermite interpolate a
curve that is a quadratic rational parametric curve, a linear system of
2@n-1)+2+2=4n+ 2 is generated whose rank is uniformly observed
to be 4n. Since there are 3 such curves, 127 is the maximum rank of the
linear system.

On the other hand, we observe some geometric dependency between the
curves, which leads to algebraic dependency. First, since the curves intersect
pairwise, there must be three rank deficiencies between the equations from
containment conditions.” Secondly, at each intersection point, two incident
curves automatically determine the normal at the point. This means satisfy-
ing containment conditions for the three curves and guarantees that any
interpolating surface has normals at the three points as specified. This fact
implies that, for each curve, there are two rank deficiencies between the
linear equations for containment condition and the equations for its tangency

"If we always choose the intersection points for the list L, of each curve in the algorithm in
Section 4.2.1, three equations are generated twice.
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Fig. 9. Smooth fleshing of a wire frame with quadric and quartic surfaces.

Fig. 10. Smooth fleshing of a triangular wire frame with a quintic surface.
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condition.® Hence, six additional rank deficiencies with the previous three
indicate that 12n — 9 is the maximum possible rank of the linear system.

Since f(x, y, z) = 0 of degree n has (" Y 3) coefficients, and the rank of the
linear system should be less than the number of coefficients in order for a
nontrivial surface to exist, we see that 5 is the minimum degree. In the
quintic surface case, there are 56 coefficients, and the rank is 51, which
results in a family of interpolating surfaces with at least 4 degrees of
freedom.

In the next section, we present an interactive technique of controlling the

shape of a suitable surface instance selected from a large family of interpolat-
ing surfaces.

8. INTERACTIVE SHAPE CONTROL OF HERMITE INTERPOLATING SURFACES

As mentioned before, the result of Hermite interpolation is a g¢-parameter
family of algebraic surfaces f(x, y, z) = 0 of a given degree that satisfy given
geometric properties. The equation of the family has the generic form

5 Y5 2) > \ > Cijre x'ylz* = 0, (9)

where each c¢;; is a homogeneous linear combination of g parameters
FisTos "5 Ty

Bajaj et al. [4] proposed least squares approximation to select an initial
instance surface from the family obtained from Hermite interpolation. Even
though we can get some geometric intuition from least squares approxima-
tion, we may want to change the shape of the computed surface interactively
by modifying the values of the free parameters. However, since the computed
surface f(x, y, z) = 0 is a polynomial in the standard power basis, its coeffi-
cients are algebraic, not geometric. That is, they contain little intuitive
geometric information; hence they do not provide a convenient tool with
which the shape of an algebraic surface can be controlled intuitively.

Sederberg [19] presented an idea in which free-form piecewise algebraic
surface patches defined in trivariate barycentric coordinates using a refer-
ence tetrahedron and a regular lattice of control points imposed on the
tetrahedron. The coefficients of a surface defined in this way are assigned to
the control points, and there is a meaningful relationship between the
coefficients and the shape of the surface.

The essence of his idea is to consider an algebraic surface f(x, y, 2) = 0 as
the zero contour of the trivariate function w = f(x, y, z). Note that the
surface equation of the family of Hermite interpolating algebraic surfaces
contains q free variables r; in its coefficients. A specific portion of a surface
can be selected for shape control by defining a tetrahedron that encloses that

8 Again, for each curve, we can choose point-normal pairs at the two end points. The resulting
two linear equations should be linearly dependent on the equations for containment.
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portion. Given a tetrahedron, the polynomial f(x, y, z) in power basis can be
symbolically converted into a polynomial F(s,t, z) in barycentric coordi-
nates, defined with respect to the tetrahedron.

Let a tetrahedron be specified by the four noncoplanar vertices
P00, Poros Poon» and Pygo. Then, the coordinates P = (x,y,z) of a point
inside the tetrahedron are related to the barycentric coordinates (s, ¢, u) by
P =3P+ tPy,0 + uPyy, + (1 — s — t — u)Pygy, With s, &, t,(1 — s — t — u)
> 0. Control points on the tetrahedron are defined by P;;, = (i/n)P,q +
(J/n)Py,o + (B/n)Pyy, + (n — i —j — k/n)Py,, for nonnegative integers
i, j, k such that i + j + k < n. Each control point is associated with a weight
w;;, which is a linear combination of r;, i = 1,2,---, q. All these together
define the g-parameter algebraic surface family in barycentric coordinates,

n

l"( S.[.”) - l: > > | wijk (i,_],k) sitjuk(l -s—-t- u)n_i_j-k=0.

(20)

Example 8.1. Conversion from Power to Bernstein. Consider, as a simple
example, a quadric surface that Hermite interpolates a line LN: (1 — ¢, ¢,0)
with a normal (0,0,1). The Hermite interpolation algorithm returns a 5-
parameter family f(x, y, 2) = O of algebraic surfaces, as in (9), with n = 2,
where €509 = 7y, €130 = 271, €101 = T'4s C100 = — 271, Co0 = T'15 Co11 = 755 Cor0 =
—2ry, Coo2 = 'y Coor = T'g» @nd cggo = 1. For a given tetrahedron with ver-
tices P,y = (2,0,0), Py,o = (0,2,0), Py, = (0,0,2), and Pyy, = (0,0,0), the
surface f(x, y, z) = 0 is transformed to F(s, ¢, u) = 0, as in (10), with n = 2,
where wogg = 1y, Wooy = Iy + Ty, Woeg = Ty + 27y + 413, Woyo = —Ty, Woyy =
—ry Ty + 275, Woge =Ty, Wigo = Ty Wiy = —Tp+ Tyt 2ry, wyg =1y,
and wyyy = ry.

Since the weights w,;, of F(s,t,u) = 0 for a g-parameter family of alge-
braic surfaces have only ¢ degrees of freedom, they cannot be selected or
modified independently. For example, suppose w; = ry + ro + rg + 2r, — 1,
wy=ry+ro+r,+5, and wg=rz+r,. From these, we can derive the
linear relation w; — w, — wg — 6 = 0 between the weights, and then an
invariant Aw, — Aw, -~ Awg = 0, which must be satisfied each time some of
the weights are modified. (For notational simplicity, we assume the weights
are indexed by a single number instead of a triple.)

In general, using Gaussian elimination, we can derive a system of invari-
ant equations

Il(Awl,sz,"',ch) = O
Iz(Awl,sz,"',ch) = 0

I(Aw,, Awy, -, Aw,) = 0
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for the linear expressions of the weights

wl(r11r2!“"rp) =Wy
wz("v"z""”'p)=w2
wo(ry,ry, e, r,) = w,.

Changing the weights can now be considered as moving from a weight
vector W = (wy, wy,***,w,) to another W’ = (wi, wj, *+,w;), with the con-
straint that AW = W’ — W is a solution of the system of invariant equations.

Example 8.2. Shape control of a family of quadric surfaces. The invariant
system for the family of algebraic surfaces in Example 8.1 is Awyq + Awgygg
=0, Awggy = Awggy = 0, Awyg + Agg = 0, Awyyg — Awggg = 0, Awggg —
Awggy = 0. Figure 11 (upper left) shows an instance from the family where
Wogo = —4, Woo1 =4, Woz =8, Woyo =4, Woy = 14, Woge = —4, Wi = 4
Wigy = 12, wyg9 = —4, and wyge = —4.

Now, suppose we want to pull the surface patch toward the control points
Py, (the leftmost vertex in the figure). This can be achieved by decreasing
the value of wyy,, say, Awgy, = — 7.

Other Aw; ;, can be arbitrarily chosen as long as they satisfy the equations
in the invariant system. Let Awgyy = Awgyy = Awyy9 = Awgyy = — 1, Aw;g
= Awgo = 1, Awgg, = —4, Awyg = Awgy; = —2. The new instance surface
is shown in Figure 11 (upper right).

Example 8.3. Shape control of a family of quartic surfaces. Figure 11
(bottom left) illustrates three different instances of the family computed in
Example 7.2, corresponding to the three different values of wgoy for Pyy, =
(0,0,0). As a weight wgy,, increases from a negative value, the surface
approaches to P,,,. The surface passes through P, when wyy = 0, and gets
separated into three irreducible components as wg,, becomes positive. (See
also Figure 4 and 5.)

Sometimes, we may want to see how the shape of a surface changes as a
specific weight is modified. However, if a weight, say, w, is modified, then
this modification affects other weights as related in the invariant system.
Usually, the linear system of invariant equations is underdetermined, yield-
ing an infinite number of choices of Aw,; (i = 2,3,---, ¢). Then, how can we
select the other weights such that their effects to w, are minimized?

One possible heuristic is to minimize the 2-norm of (Aw,,- -, Aw,), and
hence the 2-norm [|AW ||, = (Aw? + Aw? + -+ +Aw?)/2 of AW. For Aw, =
d, we know that the linear system

I(d, Awy, -, Aw,) = 0
L(d,Awy, -, Aw,) =0

Il(d, sz,' . ,ch) = 0
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Fig. 11. Interactive shape control using barycentric coordinates.

has a solution AW® = (d, Aw3,- - -, Aw?) where Aw®’s are expressed linearly
through another set of free parameters p,, p,, -, p,. Hence, |AW?||2 is a
quadratic function @(p,, p,, -, p,) of the new parameters.

Since @ is quadratic, Q(p,, D3, **, p;) is minimized at the solution of the
linear system VQ(p,, p,,-**, p,) = 0. If the minimum of @ occurs at a point
(p?, p3,+++, p?), then AW® = (d, Aw,---, Aw?) corresponding to the point
defines the desired change of weights w,,- - -, w, having the minimum effect,
in the least squares sense, on the shape of the surface. The instance surface
corresponding to the new weights W = W + AW will then reflect predomi-
nantly the effect of the change of w, by Aw, = d.

Example 8.4. Heuristic approach to shape control using 2-norm. Consider
the surface in Example 8.2 again. This time we wish to pull the patch more

toward Py, and hence set Awyy, = —15. From the invariant system in
which Awgg, is replaced by -15, Awg,y, = Awggg = Aw,1y = Awggg = Py,
Awgyg = Awygo = — Py, AWgg; = Py, Awigy = pg, Awgy; = p,, and we obtain

the quadratic function Q(p;, p,, D3, Py) = 225 + 6p? + p:+ pZ+ p2. @ has
the global minimum at p, = p, = p; = p, = 0. Hence, the influence of the
change of all the weights other than wy, is minimized by setting to zero
their Aw, that is, not changing them at all.

This new instance is shown in Figure 11 (bottom right). Note that the
overall shape of the new surface patch, other than close to Pygq, has not
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changed as much as the surface patch in Figure 11 (upper right), even though
Wqge has decreased by a larger amount.

9. CONCLUDING REMARKS

In this paper we presented the Hermite interpolation algorithm for algebraic
surfaces. With the algorithm, it was possible to characterize the class of
algebraic surfaces of a fixed degree that have given positional and tangential
properties, in terms of the nullspace of a matrix. The rank of the matrix,
produced by the algorithm, was used in proving existence or nonexistence of
algebraic surfaces of a given degree. We considered computational aspects of
the algorithm and illustrated the usefulness of the algorithm from several
examples. We also proposed a surface control scheme in which the shape of a
specific portion of an algebraic surface is controlled with geometric intuition
in the barycentric coordinate system.

We have implemented the Hermite interpolation algorithm, as presented
in Sections 3 and 4. The program takes as input any collection of points and
curves, with /without associated normals. Both implicit and rational para-
metric representations of the space curves and normals are allowed. The
homogeneous linear system of equations generated by the algorithm is
decomposed using the singular value decomposition method. As a result, the
rank of the system and the null space (that is, the solution of the system) are
computed. The nontrivial solutions (and hence the coefficients of the corre-
sponding surfaces), if any, are expressed in terms of linear combinations of
free parameters and represent a family of interpolation surfaces.

Even though the change of polynomial representations from power to
Bernstein bases yields additional geometry to the coefficients of the polyno-
mial representation of the algebraic surface, for large-parameter (four and
greater) family of surfaces, much depends on the initial assignment of weight
values. One possibility that we are currently exploring for solution instantia-
tion from large-parameter families is the use of least squares approximation
for implicit algebraic surfaces to compute these initial vector of coefficients.
Additional data points, curves, and even simple surfaces are inserted by the
designer in near proximity to the desired surface, and the free parameters of
the interpolating solution family are chosen to minimize the square of the
distance error. This overall problem of Hermite interpolation and least
squares approximation amounts to solving an optimization problem of the
form:

minimize ~ xTM,"M,x
subject to Mx=0

xTx =1,

where M, and M; are, respectively, matrices for least squares approximation
and Hermite interpolation. The solution can be obtained by computing
eigenvectors of some educed matrix. Details are provided by Bajaj et al. [4].

The triangular quintic surface in Example 7.7 was produced by applying
least squares approximation to the resulting 5-parameter family of interpo-
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lating algebraic surfaces and some additional geometric data. We are cur-
rently using this method to instantiate 5-parameter triangular quintic sur-
face patches for construction of a compact implicit model of a human head,
reconstructed from NMR imaging data.

There still remain several open problems that need to be solved before the
entire class of algebraic surfaces can be effectively used for computer-aided
geometric design. First, as illustrated in Example 7.2, some of the irreducible
interpolating algebraic surfaces produced directly from Hermite interpolation
may not be suitable for the geometric design application they were initially
intended to benefit. More precisely, the input data when interpolated may lie
on several separate real components of the algebraic surface. One heuristic,
which we currently used is to interactively include additional points and
curves to effectively bridge the gap between separate real components.
However, the question remains open for a priori generating polynomial
constraints on the coefficients of the interpolating surfaces, which would
ensure that all given points and curves lie on the same continuous real-surface
component.

Secondly, polynomial constraints are again required to ensure that a
specific algebraic surface patch has no singularities or self intersections.
Having some singularities is not always an unfavorable feature in the design
of algebraic surfaces. For example, the blending surface in Example 7.5 is
singular at the four points where the four cylinders contact each other. (In
fact, the only solution for satisfying the normals along the four ellipses is to
have singular points.) While singularities along the boundary of a patch may
be allowable, no singularity or self intersection would seem tolerable in the
interior of the patch. Hence, deriving uniform polynomial constraints, im-
posed on a family of interpolating surfaces, which ensure nonsingularity of
the specific portion of algebraic surface, would be highly desirable.
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