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Various adaptive mesh refinement techniques are often 
employed in numerical simulations for increasing spatial 
and temporal resolution beyond the limits imposed by 
available CPU time and memory space. Recently, an 
octree-based adaptive mesh structure was successfully 
used in fluid animation to place more grid cells efficiently 
in visually interesting regions of fluids. In an attempt to 
optimize the use of computational resources further in 
fluid animation, this paper extends this adaptive technique 
by modifying the mesh refinement scheme so that the 
camera's viewing properties are dynamically exploited 
during the simulation. Based on a simple adaptive mesh 
structure, we show that the new meshing strategy can save 
a substantial amount of computation time and memory 
space by using a view-dependent adaptive approach. The 
experimental results reveal that the proposed technique 
provides a good compromise between the computational 
effort and the simulation's fidelity, and may be used quite 
effectively in 3D animation production. 
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I. Introduction 

Even with the recent advances made in the production of 
realistic fluid animations, physically based fluid simulation on 
large computational domains still remains a challenge in 
computer graphics. The demand for high-resolution grids has 
become ever greater because they are essential for simulating 
large-scale natural phenomena or producing fluid effects with 
rich visual detail. Unfortunately, the number of cells of a 3D 
rectilinear grid increases cubically with respect to the resolution, 
easily resulting in an impractical requirement of computation 
time and memory space. 

The use of adaptive simulation grids is a natural solution for 
alleviating this severe computational problem, and has 
frequently been dealt with in computational fluid dynamics. 
Recently, an adaptive or level-of-detail approach was applied 
successfully in the computer graphics community in an attempt 
to produce small-scale visual detail of fluids efficiently, such as 
rolling smoke and sheeting water [1]. In that work, an octree-
based mesh structure was employed to place relatively more 
grid cells in visually interesting regions under some mesh 
refinement criteria. By adapting the Navier-Stokes equations 
solver to the adaptively refined octree data structure, it was 
possible to simulate fluids on grids of high effective resolution 
at reasonable computational costs. 

The key idea of adaptive fluid simulation is to focus more 
heavily on the important regions of flows. The effectiveness of 
such an adaptive simulation process greatly relies on the proper 
selection of mesh refinement criteria that decide regions of 
interest. In contrast to smoke and gas simulation, tracking a 
liquid's interface accurately is an essential part of computations 
in liquid simulations. In particular, the tracking process is 
important for computer animation because the quality of the 
final rendered images is directly affected by the liquid's surface, 
taken implicitly through a level set computation or explicitly 
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through an iso-surface extraction. Therefore, distributing more 
mesh elements in the region of a liquid's interface is generally 
regarded as a refinement criterion of the highest priority. 

When fluids are simulated in the production of animations, 
the view dependency may be explored as another criterion in 
the hope of raising the computational efficiency further. 
Consider, for example, a scene where a camera keeps tracking 
a speedboat that moves around in a large physical area of the 
sea. For a computer animation intended to produce images 
seen from the camera, it might not be a clever strategy to 
allocate the equivalent amount of computational resources to 
the entire simulation domain regardless of the visibility. In such 
a situation, a more effective simulation could be achieved by 
placing more refined mesh elements inside the camera's 
viewing volume. 

This paper briefly discusses a view-dependent adaptive fluid 
simulation that is quite feasible for 3D animation production. In 
particular, we show that a remarkable amount of memory 
space and computation time can be saved during the fluid 
simulation by dynamically considering the camera's viewing 
parameters. For this, we extend the idea of the adaptive 
technique presented by Losasso and others [1], and 
demonstrate how a view-dependent simulation on a simple 
adaptive grid can effectively cull uninteresting grid cells from 
the fluid computation. Our technique might not be well suited 
to simulations where numerical preciseness has the highest 
priority, as is common in computational fluid dynamics, 
because exploring the view dependency in addition to the 
adaptive mesh refinement introduces additional numerical 
errors. However, we show that the proposed technique 
provides a good compromise between the computational effort 
and the fidelity of the fluid simulation, which is useful when 
some numerical precision may be traded off for computational 
efficiency, as is often the case in computer graphics. 

II. Related Work 

Although there is a rich body of literature regarding the 
numerical simulations of the Navier-Stokes equations in the 
computational fluid dynamics community, the work by Foster 
and Metaxas [2] is probably the first in the field of computer 
graphics that attempted to solve the full three-dimensional 
equations to generate complex water effects. Foster and 
Fedkiw [3] presented an improved liquid simulation method, 
where a semi-Lagrangian integration scheme, introduced to the 
graphics community by Stam [4], was adopted as a stable 
solution for liquid motion. Enright and others [5] applied the 
particle-level set method [6] to liquid simulation to improve the 
hybrid front tracking method, proposed by Foster and Fedkiw 
[3]. This simulation technique turned out to be successful at 

producing more realistic animation of complex water scenes. 
In parallel with these efforts, many simulation techniques also 
have been developed in computer graphics to realistically 
animate water [7]-[9] smoke and gas [4], [10]-[12], and fire, 
flames, and explosions [13]-[16].  

These simulation techniques lead to very impressive 
animations of a variety of fluid effects. However, they still suffer 
from the intensive, sometimes impractical, requirement of 
memory space and computation time when fluids are simulated 
on high-resolution grids. To optimize the computational 
resources, Rasmussen and others [17] simulated highly detailed 
large-scale smoke-like phenomena by combining a 2D high-
resolution flow field with a moderate-sized 3D Kolmogorov 
velocity field. As mentioned in the previous section, Losasso and 
others [1] employed a dynamic octree-based mesh structure to 
adaptively simulate water and smoke. A different adaptive 
approach for buoyancy-driven flows was proposed by Shah and 
others [18], where the simulation grid of fixed-resolution follows 
the motion of the flow by modifying its spatial location and 
shape. A moving grid windowing method was also proposed by 
Rasmussen and others [19] to track only the visually interesting 
portion of a liquid animation. Together with this method, a 
loosely coupled multiple grid sourcing technique was used to 
allow for the efficient calculation of large-scale gravity-driven 
liquid behavior. 

Although its usefulness was demonstrated only recently in 
the computer graphics community, the adaptive mesh 
refinement has been an important research topic in 
computational fluid dynamics, where the aim is to increase the 
effective spatial and temporal resolution of numerical 
simulations beyond the limits imposed by computational 
resources. Starting with the work by Berger and Oliger [20], 
various adaptive data structures and computational schemes 
have been proposed for the simulation of both steady and 
unsteady flows on structured and unstructured meshes (refer to, 
for example, [21]-[24] for extensive references). While the idea 
of view-dependent adaptive computing is widely applied in 
computer graphics, particularly in the view-dependent 
polygonal mesh simplification initiated independently in [25]-
[28], no attempt, to the best of our knowledge, to explore the 
advantage of the view-dependent method has been made for 
3D fluid simulations except in the work by Hinsinger and 
others [29], where ocean surface meshes are generated 
adaptively based on the camera projection. In fact, it may not 
be an appropriate research direction in computational fluid 
dynamics because the concept of view dependency is rather 
unclear and could only harm the numerical fidelity of 
physically based simulations. However, in computer animation 
where the camera-dependent computation is important and 
some sacrifice of numerical accuracy for computational 
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efficiency is often allowed, it is quite desirable to examine the 
possible advantage of view-dependent computation in fluid 
animation. 

III. Simple and Efficient Implementation of a 
Dynamically Varying Adaptive Grid 

Designing an adequate mesh refinement scheme is an 
essential part of adaptive simulations in which dynamically 
evolving flow interfaces must be tracked efficiently. Several 
variations of quadtree/octree data structures have been 
exploited to represent complex evolving interfacial flows [1], 
[21], [23], [24]. A great advantage of such hierarchical 
structures is that they are well suited to flexible local 
refinement of the computational domain. However, when 
implemented carelessly, this unrestricted but irregular meshing 
capability causes substantial overheads in maintaining and 
accessing the dynamic tree structures. The fluid simulation is 
often limited by the available memory space when the 
computation is performed on high-resolution grids. In this case, 
optimizing the memory cost for storing the adaptive grid 
becomes of great concern. 
 

 

Fig. 1. Adaptive mesh representation scheme. 

(a) Memory allocation for nodal quantities 

(b) Example of adaptive 
refinement 

(c) Level-two memory block for 
facial velocity 

 

In this work, we propose to use a simple data structure that 
offers an efficient implementation of view-dependent adaptive 
mesh refinement. Our approach is similar to those employed in 
the previous works, for instance, [20], [30], [31]. Figure 1 
illustrates the overall scheme of the proposed hierarchical grid 
structure. An entire computational domain in 3D space is 
subdivided with a coarse base grid, denoted as level 0. Finer 
grids are then laid over the base cells as required so that each 
base cell is uniformly refined using a properly determined level. 
For a gradual refinement, we demand that the levels of the six 
neighboring base cells may differ by one at most. (See Fig. 1(b) 
which illustrates an example of grid refinement in a region 
made up of 16 base cells). While not fundamentally necessary, 
this restriction simplifies the calculations required at the cell 
boundaries. It may be possible to save memory by allowing a 
bigger difference in levels, but only at the expense of increased 
discretization errors at the boundaries between different levels 
of refinement. 

Figure 1(a) depicts a realization of our adaptive grid scheme 
in which a pair (level indicator, pointer) is stored per base cell. 
The pointer identifies the memory block that actually holds the 
data defined in the corresponding cell region. In the current 
implementation, we maintain the fluid's properties, including 
velocity, at the nodes of the grid. To store the nodal values, 
memory blocks of size 2i×2i×2i are allocated to level-i cells. 
Note how the memory blocks are aligned toward the cell's 
anchor points to avoid data redundancy. 

When the Poisson equation in the projection stage is solved 
to enforce the divergence-free constraint, memory blocks are 
allocated for storing the pressure and facial velocity temporarily. 
The same-sized memory blocks can be allocated for the 
pressure values that are defined in the centers of grid elements. 
 

 

Fig. 2. View-dependent mesh refinement around the interface 
band.
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On the other hand, memory blocks of size 2i+1×2i+1×2i+1  
must be assigned to level-i cells to store the temporary 
velocities that are defined at the centers of faces (refer to Fig. 
1(c)). This allocation strategy may entail some inefficiency, 
because the facial velocities are duplicated between 
neighboring base cells with the same level. However, we find 
the overheads are not serious in view-dependent adaptive mesh 
refinement. 

In this representation, no recursive data structure is adopted 
to represent the adaptive mesh structure. Instead, each base cell 
is associated with a level indicator and a pointer to the array 
that holds the appropriate data values. Our scheme may have 
the disadvantage that the mesh refinement is somewhat 
restricted in that each base cell must be refined to the same 
level. However, this possible restriction leads to a very simple 
implementation of dynamic adaptive grids without having to 
handle the complex tree structure. The proposed data structure 
provides an efficient O(1) access to a data element on the grid, 
thus reducing computation overheads. More importantly, the 
dynamic modification of the mesh becomes very easy through 
a simple memory management scheme where a set of heaps of 
memory blocks is maintained level-by-level. When the 
refinement level of a base cell changes as the simulation 
proceeds, its memory block is simply replaced by one at the 
new level as coarsening or refinement is performed. 

Note that, for the computation of level set advection, we use 
a uniform grid of full level defined only within narrow bands as 
its implementation with adaptive grid becomes quite inefficient. 
Since the narrow band region is rather small, adopting the 
uniform grid does not deteriorate the performance. 

IV. View-Dependent Mesh Refinement 

The main goal of using an adaptive grid scheme is to 
concentrate computational resources in the region of interest, 
while still allowing an acceptable treatment of the remaining 
regions. When an evolving interface is tracked during the fluid 
simulation, its boundary is usually of the most concern. 
Therefore, it is natural to apply adaptive refinement to a band 
around the interface. It has been shown in previous work that 
this adaptive strategy can yield a remarkable reduction of 
computational effort, while still providing high numerical 
accuracy. 

If fluids are simulated for the purpose of computer animation, 
it is worth considering additional simulation parameters that 
may help improve the computational efficiency further. Above 
all, the camera, or its viewing volume, allows us to focus on a 
more specific region of the computational domain. Whereas 
the simulation is performed on the entire domain, the visually 
interesting regions may be actually restricted to the viewing 

volume. In an attempt to optimize the use of computational 
resources, we propose placing more grid cells in the region 
inside the viewing volume. This implies that we further focus 
on the physics taking place there. Note, however, that the 
evolving interface outside the viewing volume affects the entire 
behavior of the fluids, and thus must still be tracked with good 
accuracy, although at a relatively lower resolution. 

Now, we summarize a set of generic criteria that may be 
incorporated into our view-dependent adaptive base-cell 
refinement system: 

• Visible base cells have higher refinement levels than 
invisible base cells. 

• Base cells intersecting the band around moving interfaces 
are refined with higher precision. In particular, those inside 
the viewing volume are refined with the highest possible 
precision. 

• Base cells intersecting the moving interface band, even if 
they are out of view, are refined with some appropriate 
level, because pressure computation with an overly coarse 
refinement may cause the entire system to deteriorate. 

• The levels of adjacent base cells may differ by one at most. 
• When the camera's near and far clipping planes are far 

away, as is often the case when an open sea surface is 
simulated, the distance from the camera may be used to 
determine the visible base cell's level to give closer cells 
higher refinement levels. 

Notice that choosing a specific set of criteria is somewhat 
problem-dependent, so the refinement procedure must be 
adapted carefully to reflect the characteristics of a given 
simulation. 

V. Results 

To verify the effectiveness of view-dependent adaptive 
simulation, we have implemented a liquid simulator based on 
the particle-level set method [6]. For a performance 
comparison, the liquid simulation core was extended to support 
the adaptive grid structure explained in section III. In doing this, 
we used the approximate projection operator derived by 
Losasso and others [1], which leads to an easy-to-solve 
symmetric positive definite linear system in the projection 
stage. 

The particle-level set method basically consists of two major 
stages: an update of the velocity field using the Navier-Stokes 
equations and the evolution of the level set and particles for 
interface tracking. The most memory- and time-consuming 
part during the velocity update is the projection computation, in 
which the memory space for the pressure field must be 
allocated, and a large linear system must be built and solved for 
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the pressure to keep the velocity field divergence-free. Using 
the (view-dependent) adaptive grid offers two major 
advantages in this velocity update stage. First, the memory 
required to store the entire velocity and other related attribute 
fields is greatly reduced. Second, the order of the linear system 
to be inverted for the pressure computation is reduced when the 
adaptive mesh is used, which remarkably lowers the timing 
and spatial complexity of the velocity update computation. 

Notice that the efficiency of our implementation is affected 
by several other parameters inherent in the specific interface 
tracking method used. For instance, when the particle-level set 
method is used, the number of particles that are seeded to 
correct the level set interface also influences the timing and 
spatial performance. To understand more precisely the exact 
effect of the view-dependent adaptive computation in fluid 
simulation, we focus on the velocity update stage only. In 
particular, the resource requirements in the projection stage are 
closely analyzed. 

1. Test Scene I 

Figure 4 shows three pairs of liquid animations that were 
created from the same scene by applying three different 
simulation schemes: uniform, adaptive, and v-adaptive. 
Using the uniform method, the simulation was performed on a 
fixed, uniform grid of resolution 160×200×320. Adaptively 
refined grids of the same effective resolution were applied in 
the other two methods. In this experiment, we partitioned the 
computational domain into base cells (level 0) of size 8×8×8. 
This implies that four different levels of local refinement are 
possible in the simulation. 

In testing the adaptive scheme, the highest level (level 3) was 
assigned to the base cells intersecting with a band around the 
liquid's interface. Then the adaptive coarsening process was 
applied to the base cells so that their levels decreased gradually 
down to level 0 away from the interface. 

A more sophisticated refinement strategy, outlined in section 
IV, was employed in the v-adaptive method to exploit the 
view-dependency information. Figure 2 illustrates an example 
of mesh refinement along the liquid's interface. During the 
mesh refinement, the viewing volume is subdivided into two 
regions according to the distance from the camera. Unlike the 
adaptive method in which all the base cells that intersect with 
the interface band have the highest refinement level, only the 
cells that are contained, at least partially, in the front sub-region 
of the viewing volume are refined up to level 3. These base 
cells represent the most critical region, to which the 
computational resources are allocated most heavily. Then, the 
level of the base cells decreases gradually across the interface 
band. In this process, we guaranteed a minimum refinement 

level (1 in this experiment) to these cells to ensure there was 
minimum precision near the liquid's interface. Once the mesh 
is refined around the interface band, the remaining cells are 
marched away from the interface, coarsening the mesh down 
gradually to level zero. 

A. Performance Statistics 

To investigate how the respective meshing methods perform 
in the velocity update stage, we considered the following 
quantities: 

• The entire computation time taken to update the velocity 
field using the Navier-Stokes equations (time) 

• The order of the linear system solved in the projection step 
(order), where an order×order symmetric matrix is built 
from the Poisson equation 

• The number of nonzero elements in the above linear 
system (nonzero) 

• The amount of memory space required to assemble and 
solve the linear system (memory). This measure includes 
all the memory space required to store the nonzero 
elements, their indexes, and the temporary working space 
required by the linear system solver. The linear system was 
inverted in double precision. 

Table 1 summarizes the experimental results, measured on a 
PC equipped with a 2.8 GHz Intel Pentium 4 CPU and 2 GB 
RAM. The respective figures represent the performance, 
averaged over the entire 560 time steps of the simulations. 
Time indicates the entire computing time per time step, taken 
to update the velocity field by integrating the Navier-Stokes 
equations, while the remaining measures reveal details about 
the projection stage where the Poisson equation must be solved 
to make the velocity field divergence-free. The order and 
nonzero headings respectively denote the order and the number 
of nonzero elements of the generated linear system. On the 
other hand, memory includes all the memory space necessary 
for storing the nonzero elements, their indexes, and the 
temporary working space required by the linear system solver. 
The statistics in the table indicate a quite favorable result for 
both adaptive meshing strategies compared to the uniform grid 
computation. When the adaptive mesh structure is applied 
independently of the camera (adaptive scheme), we observe a 
factor of 10.5 saving in computation time compared to the 
uniform grid computation (uniform scheme). The factor 
increases up to 24.4 if the view dependency is additionally 
exploited (v-adaptive scheme). 

The savings result mainly from the most time-consuming 
projection stage, in which a large linear system for pressure 
must be built from the Poisson equation and solved iteratively. 
When the brute-force fixed grid is used, a linear system of 
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order 2,038,250×2,038,250 is generated on average for an 
inversion (order). On the other hand, its order reduces 
significantly when the liquid is simulated on the adaptive grid. 
In particular, we find that only a 126,069×126,069 system is 
built to solve for the pressure when the view-dependent 
adaptive scheme is employed. The figures in the nonzero and 
memory columns reveal similar performance enhancements. 

Figure 3 illustrates how the performance measures of time 
and order vary during the simulations. One remarkable thing in 
this particular example is that the measures for the uniform and 
adaptive methods are rather uniform, while those for the  
 

Table 1. Comparison of performance measures for the 160×200×320 
grid. The three mesh refinement strategies were tested on a
test scene, illustrated in Fig. 4. 

 Time (s) Order Nonzero Memory (MB)

Uniform 126.7 2,038,250 8,071,956 300.65 

Adaptive 12.1 297,849 1,181,681 43.98 

V-adaptive 5.2 126,069 498,212 18.57 

 

 

Fig. 3. Variations of two performance measures. 
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v-adaptive method decrease as the simulation proceeds. The 
reason for this phenomenon is evident. In the experiment, we 
used a camera with a field of view that is 80 degrees wide 
horizontally and 60 degrees wide vertically. When the 
simulation starts, the viewing volume covers almost the whole 
scene (see the third row of Fig. 4), in which case almost no 
performance gain is achieved by exploiting the view 
dependency. However, as the camera moves forwards, the 
region behind it grows, which allows a relatively more efficient 
computation for the v-adaptive method. 

B. Animation Qualities 

While the experimental results indicate a remarkable benefit 
of the adaptive simulation process, particularly combined with 
the principle of view-dependent computing, it definitely comes 
with numerical errors, accumulated while the simulation 
proceeds. However, as the generated animations demonstrate, 
we observe that the visual errors induced by the lost numerical 
precision are acceptable enough for the view-dependent 
adaptive simulation technique to be used effectively in 3D 
animation production. The animation sequences in the first 
three rows of Fig. 4 correspond to the three methods: uniform, 
adaptive, and v-adaptive, where the entire computational 
domain is depicted. It is evident that the numerical errors 
introduced during the simulation change the details of the 
liquid's interface (compare the corresponding frames in the 
fourth column closely). When simulated on the view-
dependent adaptive grid, this visual error is more prominent in 
the region outside the viewing volume. This phenomenon 
derives naturally from our strategy that tends to allocate less 
computational resources to the invisible region. 

Despite this problem, the view-dependent simulation turns 
out to be quite effective, as demonstrated in the actual views 
taken from the camera position (refer to the next three 
corresponding rows of Fig. 4). While the details of the surface, 
generated with the view-dependent adaptive grid, differ from 
those made by the other two methods, the general appearance 
of the liquid is well preserved in the simulation, which is often 
good enough for fluid animation. 

2. Test Scene II 

To further analyze the effect of the view-dependent 
simulation, we applied the two adaptive schemes to another 
test scene, discretized with a 440×280×440 grid (see Fig. 7). In 
this example, the uniform-grid simulation was excluded from 
consideration because it demands excessive computation time 
and memory space, and the linear systems it generates during 
the pressure computation are too large for our system. We used 
the same mesh refinement rule for this test scene as for the first 



ETRI Journal, Volume 28, Number 6, December 2006 Janghee Kim et al.   703 

 

Fig. 4. Animation sequences comparing the three simulation schemes (frame nos.: 40, 90, 160, 210, and 400). The first three 
rows show snapshots of the entire computational domain in the order of uniform, adaptive and v-adaptive, respectively,
while the remaining rows illustrate the corresponding views taken from the moving camera. The effective resolution 
achieved in this experiment is 160×200×320. 

 
test scene. Figure 5 illustrates two examples of the 
computational grid that are adaptively refined considering the 
view information. 

A. Performance Statistics 

The first two rows of Table 2 show the average performance 
compiled over the entire 1000 time steps of the v-adaptive and 
adaptive simulation techniques with and without the view 
consideration. In Table 2, “V-adaptive” indicates the test case 
when the applied field of view is 80 degrees wide horizontally 

and 60 degrees wide vertically. As indicated in the table, the 
view-dependent adaptive technique saved about 45% 
computing time compared to the adaptive-only technique. We 
can also observe a noticeable reduction in the memory 
requirement as the linear system becomes smaller in size. Refer 
also to Fig. 6 for the per-frame performance. 

The camera's field of view evidently influences the savings, 
as shown in the next two rows of Table 2. Here, “V-adaptive 
(4/5)” and “V-adaptive (2/3)” represent the simulations in 
which the field of view was narrowed down by factors of 4/5 
and 2/3, respectively. The results agree well with intuition as 
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Fig. 5. Two examples of the view-dependent mesh refinement.
These pictures show two snapshots of the view-dependent 
simulation where the orthogonal cutting planes reveal
how the computational resources are allocated
considering the view information.  

 

Table 2. Comparison of performance measures for the 440×280×
440 grid. 

 Time (s) Order Nonzero Memory (MB)
Adaptive 55.9 1,230,087 4,889,637 181.87 

V-adaptive 31.2 696,576 2,768,842 102.99 
V-adaptive (4/5) 27.1 612,350 2,438,379 90.64 

V-adaptive (2/3) 23.5 524,396 2,088,444 77.63 

 

the task of the velocity update becomes lighter with a narrower 
view angle. Note, however, that narrowing the field of view too 
much with respect to the entire computational domain may 
cause a severe deficiency in numerical precision because most 
of the computational resources are allocated to a very small 
part of the domain. 

Several variations of the refinement strategy could possibly 
overcome such a situation. One is to modify the coarsening 

 

Fig. 6. Variations of the two performance measures. After about 
200 time steps, the ratio of the viewing volume to the 
entire scene is almost the same, which results in a steady 
performance enhancement for the view-dependent 
adaptive simulation. 
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process so that each level forms a band of base cells with 
thickness greater than one, as in Fig. 2. Another strategy is to 
increase the minimum level assigned to the base cells. For 
instance, in the two test scenes, we guaranteed that the invisible 
base cells, intersecting with the band around the liquid's 
interface had at least level 1 in the hope of preserving the 
minimum numerical precision near the liquid's surface. By 
lifting this minimum level to 2, for instance, more resources 
can be allocated to the regions outside the viewing volume, 
securing a minimum accuracy in the entire domain. 

B. Animation Qualities 

As in the first test scene, the results are quite encouraging. 
Figure 7 compares the animation sequences created using the 
two simulation techniques, where the first half shows the entire 
scenes during the simulation, the adaptive scheme followed by 
the v-adaptive method. The second half demonstrates the 
actual result images, seen from the camera. While it is true that 
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Fig. 7. Animation sequences comparing the two adaptive simulation schemes (frame nos.: 100, 200, 300,…, 1000). Again, the
entire computational domain and the views taken from the actual camera are demonstrated for Adaptive and V-adaptive,
respectively. The effective resolution applied in this experiment is 440×280×440. Although the numerical errors
introduced by the view-dependent computing are accumulated additional to those caused by the adaptive mesh
refinement, this experiment shows that a clever allocation of CPU time and memory space may lead to an effective view-
dependent adaptive simulation technique quite suitable for 3D animation production. 



706   Janghee Kim et al. ETRI Journal, Volume 28, Number 6, December 2006 

 

Fig. 8. Two sample snapshots illustrating the effect of the view-
dependent refinement.  

 
some visual differences in the animations are observed 
between the two methods, we conclude that clever usage of the 
economized computational resources still produces a very 
faithful simulation result. We believe that the slight visual 
errors found would be quite acceptable in the 3D animation 
industry. 

Figure 8 demonstrates the effect of employing a higher 
simulation resolution in the fluid animation. The images were 
rendered by slightly shifting the viewing camera backwards to 
see how varying the level of refinement affects the details of 
the liquid animation. In this image, the area behind the camera 
was colored red to distinguish it from the region visible from 
the camera. We partitioned the viewing volume into two sub-
regions according to the distance from the camera, and 
assigned them different refinement levels. The uncolored area 
represents the region to which the highest level (3 in this test 
scene) is assigned, while the far area, colored green, was 
simulated with the refinement level 2 (the green region appears 
in the video). Furthermore, the levels decrease gradually down 
to level 1 along the surface in the red area. Clearly, we can see 

that the details on the surface are well depicted inside the 
viewing volume, especially in the front part, while the surface 
becomes smoother in the back region as a result of using lower 
resolutions. 

In conclusion, employing the adaptive mesh in fluid 
simulations causes some numerical inaccuracy. The situation 
becomes worse when accompanied by the view-dependent 
mesh refinement. However, the view-dependent adaptive 
simulation technique is quite feasible for 3D animation 
production, where some amount of numerical precision may be 
traded off for computational efficiency. This is evident 
considering the benefit achieved through the optimized CPU 
time and memory space. 

VI. Conclusions 

Physically based fluid animation is still a challenging 
problem when a high-resolution grid must be used. In this 
paper, we briefly discussed a view-dependent technique 
appropriate for adaptively simulating liquids. While the view-
dependent computation may appear strange from the viewpoint 
of computational fluid dynamics, it is found to be quite feasible 
for simulating fluids for 3D animation production. Several tests 
with different scenes indicate that the described technique 
provides a good compromise between the computational effort 
and the simulation's fidelity, as limited computational resources 
are concentrated where they are most necessary. 

While we proposed a simple and efficient data structure for 
representing dynamically varying adaptive meshes, the idea of 
view-dependent simulation presented here will be effective in 
any other adaptive mesh structure as long as it provides an 
efficient mechanism for handling the frequent dynamic 
refinement and coarsening processes. 

References 

[1] F. Losasso, F. Gibou, and R. Fedkiw, “Simulating Water and 
Smoke with an Octree Data Structure,” ACM Trans. Graphics 
(ACM SIGGRAPH 2004), vol. 23, no. 3, 2004, pp. 457-462. 

[2] N. Foster and D. Metaxas, “Realistic Animation of Liquids,” 
Graphical Models and Image Processing, vol. 58, no. 5, 1996, pp. 
471-483. 

[3] N. Foster and R. Fedkiw, “Practical Animation of Liquids,” Proc. 
ACM SIGGRAPH 2001, 2001, pp. 23-30. 

[4] J. Stam, “Stable Fluids,” Proc. ACM SIGGRAPH 1999, 1999, pp. 
121-128. 

[5] D. Enright, S. Marschner, and R. Fedkiw, “Animation and 
Rendering of Complex Water Surfaces,” ACM Trans. Graphics 
(ACM SIGGRAPH 2002), vol. 21, no. 3, 2002, pp. 736-744. 



ETRI Journal, Volume 28, Number 6, December 2006 Janghee Kim et al.   707 

[6] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, “A Hybrid 
Particle Level Set Method for Improved Interface Capturing,” J. 
Computational Physics, vol. 183, no. 1, 2002, pp. 83-116. 

[7] J. Hong and C. Kim, “Animation of Bubbles in Liquid,” 
Computer Graphics Forum (Eurographics 2003), vol. 22, no. 3, 
2003, pp. 253-262. 

[8] O. Song, H. Shin, and H. Ko, “Stable but Nondissipative Water,” 
ACM Tran. Graphics, vol. 24, no. 1, 2005, pp. 81-97. 

[9]  J. Kim, D. Cha, B. Chang, B. Koo, and I. Ihm, “Practical 
Animation of Turbulent Splashing Water,”  Proc. 
Eurographics/ACM SIGGRAPH Symp. Computer Animation 
2006, 2006, pp. 335-344. 

[10] N. Foster and D. Metaxas, “Modeling the Motion of a Hot, 
Turbulent Gas,” Proc. ACMSIGGRAPH 1997, 1997, pp. 181-
188. 

[11] R. Fedkiw, J. Stam, and H. Jensen, “Visual Simulation of 
Smoke,” Proc. ACM SIGGRAPH 2001, 2001, pp. 23-30. 

[12] I. Ihm, B. Kang, and D. Cha, “Animation of Reactive Gaseous 
Fluids Through Chemical Kinetics,” Proc. Eurographics/ACM 
SIGGRAPH Symp. Computer Animation 2004, 2004, pp. 203-
212. 

[13] G. Yngve, J. O’Brien, and J. Hodgins, “Animating Explosions,” 
Proc. ACM SIGGRAPH 2000, 2000, pp. 29-36. 

[14] A. Lamorlette and N. Foster, “Structural Modeling of Flames for a 
Production Environment,” ACM Trans. Graphics (ACM 
SIGGRAPH 2002), vol. 21, no. 3, 2002, pp. 729-0735. 

[15] D. Nguyen, R. Fedkiw, and H. Jensen, “Physically Based 
Modeling and Animation of Fire,” ACM Trans. Graphics (ACM 
SIGGRAPH 2002), vol. 21, no. 3, 2002, pp. 721-728. 

[16] B. Feldman, J. O’Brien, and O. Arikan, “Animating Suspended 
Particle Explosions,” ACM Trans. Graphics (ACM SIGGRAPH 
2003), vol. 22, no. 3, 2003, pp. 708-715. 

[17] N. Rasmussen, D. Nguyen, W. Geiger, and R. Fedkiw, “Smoke 
Simulation for Large Scale Phenomena,” ACM Trans. Graphics 
(ACM SIGGRAPH 2003), vol. 22, no. 3, 2003, pp. 703-707. 

[18] M. Shah, J. M. Cohen, S. Patel, P. Lee, and F. Pighin, “Extended 
Galilean Invariance for Adaptive Fluid Simulation,” Proc. 
Eurographics/ACM SIGGRAPH Symp. Computer Animation 
2004, 2004, pp. 213-221. 

[19] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Summer, W. 
Geiger, S. Hoon, and R. Fedkiw, “Directable Photorealistic 
Liquids,” Proc. Eurographics/ACM SIGGRAPH Symp. 
Computer Animation 2004, 2004, pp. 193-202. 

[20] M. Berger and J. Oliger, “Adaptive Mesh Refinement for 
Hyperbolic Partial Differential Equations,” J. Computational 
Physics, vol. 53, no. 3, 1984, pp. 484-512. 

[21] A.M. Khokhlov, “Fully Threaded Tree Algorithms for Adaptive 
Refinement Fluid Dynamics Simulations,” J. Computational 
Physics, vol. 143, no. 2, 1998, pp. 519-543. 

[22] B. Bennett and M. Smooke, “Local Rectangular Refinement with 

Application to Nonreacting and Reacting Fluid Flow Problems,” 
J. Computational Physics, vol. 151, no. 2, 1999, pp. 684-727. 

[23] S. Popinet, “Gerris: a Tree-Based Adaptive Solver for the 
Incompressible Euler Equations in Complex Geometries,” J. 
Computational Physics, vol. 190, no. 2, 2003, pp. 572-600. 

[24] V. Sochnikov and S. Efrima, “Level Set Calculations of the 
Evolution of Boundaries on a Dynamically Adaptive Grid,” Int’l 
Journal for Numerical Methods in Engineering, vol. 56, 2003, pp. 
1913-1929. 

[25] J. Xia and A. Varshney, “Dynamic View-Dependent 
Simplification for Polygonal Models,” Proc. IEEE Visualization 
1996, 1996, pp. 327-334. 

[26] H. Hoppe, “View-Dependent Refinement of Progressive 
Meshes,” Proc. ACM SIGGRAPH 1997, 1997, pp. 189-198. 

[27] B. Koo, Y. Choi, C. Chu, J. Kim, and B. Choi, “Shrink-Wrapped 
Boundary Face Algorithm for Mesh Reconstruction from 
Unorganized Points,” ETRI Journal, vol. 27, no. 2, 2005, pp. 235-
238. 

[28] D. Luebke and C. Erikson, “View-Dependent Simplification of 
Arbitrary Polygonal Environments,” Proc. ACM SIGGRAPH 
1997, 1997, pp. 199-208. 

[29] D. Hinsinger, F. Neyret, and M. Cani, “Interactive Animation of 
Ocean Waves,” Proc. Eurographics/ACM SIGGRAPH Symp. 
Computer Animation 2002, 2002, pp. 161-166. 

[30] M. Minion, “A Projection Method for Locally Refined Grids,” J. 
Computational Physics, vol. 127, no. 1, 1996, pp. 158-178. 

[31] L. Howell and J. Bell, “An Adaptive Mesh Projection Method for 
Viscous Incompressible Flow,” SIAM Journal in Scientific 
Computing, vol. 18, no. 4, 1997, pp. 996-1013. 

 
 

Janghee Kim received the BS and MS degrees 
in computer science from Sogang University, 
Seoul, Korea, in 2003 and 2005, respectively. 
Since then, he has been with the Digital Content 
Research Division (DCRD) of ETRI. His 
research interests are focused on all kind of 
dynamics, especially fluid dynamics, and 

rendering techniques including GPU-based real-time computing. 
 

Insung Ihm received the BS degree in 
computer science and statistics from Seoul 
National University, Seoul, Korea in 1985; the 
MS degree in computer science from Rutgers 
University, New Jersey, USA in 1987; and the 
PhD degree in computer science from Purdue 
University, Indiana, USA in 1991. He is 

currently a Professor in Computer Science at Sogang University, Seoul, 
Korea. His research interests include computer graphics, scientific 
visualization, and high-performance computing. 



708   Janghee Kim et al. ETRI Journal, Volume 28, Number 6, December 2006 

Deukhyun Cha received the BS and MS 
degrees in computer science from Sogang 
University, Seoul, Korea, in 2002 and 2004, 
respectively. Since then, he has been a PhD 
student in the Department of Computer Science 
at Sogang University. His research interests are 
focused on fluid dynamics, photo-realistic fluid 

rendering, and GPU-based real-time computing. 
 
 


	I. Introduction
	II. Related Work
	III. Simple and Efficient Implementation of aDynamically Varying Adaptive Grid
	IV. View-Dependent Mesh Refinement
	V. Results
	VI. Conclusions

