
Parallel Ray Casting of Visible Human
on Distributed Memory Architectures

Chandrajit Bajaj1, Insung Ihm2, Gee-Bum Koo2, and Sanghun Park2

1 Dept. of Computer Sci., Univ. of Texas at Austin, U.S.A.
2 Dept. of Computer Sci., Sogang Univ., Seoul, Korea

Abstract. This paper proposes a new parallel ray-casting scheme for
very large volume data on distributed-memory architectures. Our meth-
od, based on data compression, attempts to enhance the speedup of
parallel rendering by quickly reconstructing data from local memory
rather than expensively fetching them from remote memory spaces. Fur-
thermore, it takes the advantages of both object-order and image-order
traversal algorithms: It exploits object-space and image-space coherence,
respectively, by traversing a min-max octree block-wise and using a run-
time quadtree which is maintained dynamically against pixels’ opacity
values. Our compression-based parallel volume rendering scheme min-
imizes communications between processing elements during rendering,
hence is also very appropriate for more practical distributed systems,
such as clusters of PCs and/or workstations, in which data communica-
tions between processors are regarded as quite costly. We report experi-
mental results on a Cray T3E for the Visible Man dataset.

1 Introduction

A few years ago, the National Library of Medicine (NLM) of the U.S.A. created
huge volume datasets made of computer tomography (CT), magnetic resonance
imaging (MRI), and color cryosection images of male and female human cadavers
in an effort to offer a complete digital atlas of the human body [12]. The “Visible
Man” data consists of axial scans of the entire body taken 1 mm intervals at a
resolution of 512×512, in which the whole data set has over 1870 cross-sections.
The “Visible Woman” data is made of cross-sectional images taken at one-third
the interval of the male. The data sets amount to 15 Gbytes and 40 Gbytes,
respectively.

Visualizing such very large volume data requires a great deal of computing
time and memory space. In particular, ray-casting such volume data is one of
the most compute- and memory-intensive tasks for volume rendering, while the
ray-casting algorithm produces the highest quality of rendered images. The mo-
tivation for this work is to develop an effective parallel ray-casting scheme for
visualization of very large volume data on distributed systems. In this article,
we are particularly concerned with parallel ray-casting of the Visible Human
datasets, on a Cray T3E, a distributed-memory parallel computer (For the pre-
vious works on parallel rendering of the Visible Human, such as MPIRE, refer to



[12].). Our new method tries to achieve high performance by minimizing commu-
nications between processing elements during rendering through compression,
hence is also very appropriate for more practical distributed systems, such as
clusters of PCs and/or workstations, in which data communications between
processors are regarded as quite costly.

Our parallel ray-casting scheme is different from the previous approaches
in that it is based on a compression method that is well-suited for developing
interactive applications. In [3, 4, 13], Ihm et al. developed a new compression
method, based on 3D wavelets, that provides very fast random access ability
to compressed volume data. Most parallel rendering algorithms for very large
volumes partition the data into subblocks that can fit into local memory of
processing elements, and distribute them over the local memory spaces in the
system. During rendering, load balancing is usually done dynamically for effi-
ciency, and this often causes data redistribution between processing elements.
The data redistribution, or remote memory fetch, when implemented carelessly,
is one of the most serious factors that deteriorate the speedup of parallel volume
rendering, especially when the data is very large [11].

In our implementation, the whole CT dataset of the Visible Man is com-
pressed, and is replicated at each processing element. Since the entire dataset
that is necessary for generating image segments, is available at the local memory,
no data communication is needed between processors for data redistribution. As
briefly explained in Section 2, the compression method we use, guarantees very
quick random access which is faster than remote data fetch, hence produces a
better speedup than the previous methods based on data redistribution.

2 Wavelet-Based 3D Compression of Volume Data

Our parallel ray-casting algorithm requires a volume data compression scheme
which has the following properties: High compression ratio, minimal distortion
in the reconstructed images, and fast random access ability. First, very large
volume dataset (say, several hundred mega bytes to a few giga bytes) should be
compressed into smaller sizes (say, 64 to 128 mega bytes) that can fit into local
memory spaces. Second, the contents of the images should be retained as best as
possible after reconstruction. Lastly, when an individual voxel in the compressed
data is accessed in a random fashion, the data item should be reconstructed
quickly during run-time.

Ihm et al. [3, 4] have compromised between these factors, and developed a
wavelet-based 3D compression scheme for interactive visualization of very large
volume data, and the timing performance has been enhanced further in [13].
Table 1 and 2 brief the performances of the compression method described in [13].
The experiments are performed on an SGI machine with 195MHz R10000 CPU
using the fresh CT dataset of the Visible Man that amounts 720Mbytes (512×
512× 1440× 2bytes). We tested with the four ratios of wavelet coefficients that
are used after wavelet transforms. Table 1 shows the compression ratios and
quality of the reconstructed images. When more than 7% of wavelet coefficients



are used, the ray-cast images are virtually identical with those generated from
the uncompressed dataset.

Table 2 indicates how fast the compression scheme reconstructs an individual
voxel from compressed data. Two situations were considered to evaluate recon-
struction overheads: First, the timings (in seconds) for Pure Random access were
taken by repeatedly fetching voxel values one million times with randomly gener-
ated indices (i, j, k) from uncompressed and compressed data, respectively. The
test results indicate that fetching voxel values from compressed data is about 1.20
to 1.38 times slower. The timing differences can be ignored in many compute-
intensive applications such as volume rendering, which usually take more than
a hundred seconds. Secondly, the timings for Cell-Wise access were taken when
voxels are grouped into 4 × 4 × 4 subblocks, called cells, and are reconstructed
cell-by-cell. Cell-wise reconstruction is more efficient for the applications, such
as volume rendering, where data are accessed with some regular pattern. The re-
sults show the timings taken for accessing, cell-wise, all cells in the dataset (All),
and only cells classified as skin (Skin). Notice that the access speed is faster when
the voxels are accessed from compressed data. This is because most of the null
detail coefficients are not even traversed in reconstruction.

Table 1. Experimental Results on Compression Quality

Desired Ratio of the Wavelet Coef’s Used
3% 5% 7% 10%

Compressed 24.59 35.06 45.43 60.50
Compression Data Size (MB)
Performance Compression 29.27 20.54 15.58 11.90

Ratio
Errors in SNR (dB) 22.64 25.94 28.57 31.99
Voxel Values PSNR (dB) 44.49 47.79 50.41 53.84

Table 2. Experimental Results on Voxel Reconstruction Time

Uncompressed Desired Ratio of the Wavelet Coef’s Used

3% 5% 7% 10%

Pure Random 2.78 3.33 3.49 3.62 3.85

Cell-Wise
All 18.88 3.88 4.88 5.99 7.52

Skin 6.50 2.28 2.91 3.53 4.36

3 Compression-Based Parallel Ray-Casting

3.1 Image-Order and Object-Order Volume Rendering

Volume ray-casting is an image-order volume rendering algorithm that is most
popularly used since it produces the best rendering quality [8]. Various opti-



mization methods have been proposed for ray-casting. The early ray termination
technique allows to stop sampling along the rays as soon as accumulated opaci-
ties reach a pre-specified threshold value [9]. Hierarchical data structures such as
octrees and pyramids, and k-D trees, have been applied to exploit object-space
coherence inherent in volume data [9, 2, 15]. The data access pattern during
parallel ray-casting is very irregular, and that makes such data structures less
natural than the object-order algorithms.

In the object-order algorithms such as splatting, on the other hand, the data
are traversed in a regular manner, hence, the data coherence can be exploited
very easily [16]. While the object-order algorithm is more amenable to paral-
lelization, it has the disadvantage that it is difficult to apply the optimization
techniques for image-order algorithms, such as early ray termination. As de-
scribed below, our object-order ray-casting exploits the advantages from both
algorithms.

3.2 Our Parallel Ray-Casting Scheme

In our parallel rendering scheme, image screen is divided into regular spaced pixel
tiles of small sizes, and these form a pool of tasks. During run-time, processors
are assigned tiles from the pool of tasks waiting to be executed. The processors
perform ray-casting repeatedly on tiles until the task pool becomes empty. Load
balancing is carried out dynamically during rendering.

As mentioned previously, the entire CT data of the Visible Man are replicated
at each local memory space in a compressed form. For compression, the volume
data are partitioned into 16×16×16 subblocks, called unit block, and unit blocks
become the basic unit for encoding and decoding. Each compressed unit block
is associated with the min-max values of voxels within it, which prevents from
reconstructing voxels of no interest. The processor computes image segments
corresponding to tiles using ray-casting in the object-order fashion. When a tile
is assigned, its view volume is computed, and the unit blocks that intersect with
the view volume are listed, on demand, in the front-to-back order by traversing
an octree with a proper height, constructed from min-max unit blocks. Each
unit block is, then, projected into the tile on the image plane, and the rays for
the pixels within the projected area are advanced simultaneously through the
unit block by accumulating colors and opacities.

The block-by-block access to the volume during ray-casting is more amenable
to exploiting the data coherence in object space than the ray-by-ray access. In
most previous methods, non-local voxels are fetched from remote memory on
demand, and are usually cashed locally. When the cache is not large enough,
the system starts to thrash. Since it results in a poor speedup, it is important
to utilize voxels maximally once fetched. In [6], Law et al. also ray-cast volumes
block-wise, and showed the object-order traversal reduces the costs for data
redistribution. In our method, the entire volume data is available at local mem-
ory, but only at the cost of reconstruction. Although our compression method
reconstructs voxels very fast, it is also important to minimize the number of
reconstruction operations for the same voxels. Contrary to ray-by-ray traversal,



block-wise traversal guarantees each voxel in the view volume is reconstructed
at most once.

A problem with ray-casting based on the object-order traversal, is that it is
no longer natural to apply the early ray termination technique which allows sig-
nificant savings in computation. In our implementation, we solved this problem
by using an image-space quadtree that exploits the image-space coherence as
in [7]. To efficiently determine the visibility of regions in a tile, we construct a
quadtree in image space as follows. Each leaf node of the quadtree, correspond-
ing to each pixel in the tile, has value 1 when the pixel has been made opaque
enough, that is, the opacity has reached a threshold value, and 0 otherwise. The
four adjacent values at each level are then combined into one value at the next,
coarser level by adding them. When a non-terminal node in the tree has value
4, it indicates that the corresponding region in the image plane is opaque, and
one is recursively added to its parent node. Otherwise, its region is not opaque,
and more ray sampling operations are necessary.

When a unit block is projected into the tile, the opaque regions are quickly
rejected by recursively traversing the quadtree against the projected area, and
the resampling operations are performed only on the transparent rays. When
the entire tile gets opaque, that is the quadtree’s root have value 4, traversing
the list of unit blocks stops. In this way, we can simulate early ray termination
in the object-order traversal algorithm.

3.3 Experimental Results

We implemented our parallel scheme on a Cray T3E-900 with 136 processors.
The Cray T3E processing element (PE) includes a 450 MHz Alpha processor
and 128 Mbytes local memory, and is connected by a high-bandwidth, low-
latency bidirectional 3-D torus system interconnect network. In implementing
our method, we used the Cray Shared Memory Access Library (SHMEM) which
provides faster interprocessor communication than MPI and PVM do.

For a performance test, we have generated a 512 × 512 × 1440 volume data
set from the original fresh CT data of the Visible Man, which takes up 720
Mbytes (Note that some portion of slices in the Legs section of the fresh CT are
missing.). For rendering, it was compressed into a dataset of size 45.43 Mbytes,
using the 3D wavelet compression scheme. This example data uses 7% of wavelet
coefficients, and the rendered image quality is visually identical to that from the
uncompressed data.

Timings were taken in seconds for generating 512×1024 images (Skin) using
16×16 and 32×32 tiles (Figure 1). Figure 2 shows the performance results that
compare very favorably with existing results for direct volume rendering, say,
[1, 5, 6, 10]. These timings do not include data replication and image display.
When 32 × 32 tiles were used, it took 357 seconds per frame on one processor,
and 4.9 seconds on 96 processors. We observe that higher than 80% efficiency is
achieved for up to 80 processors, which surpasses most of the recently reported
parallel implementations for direct volume rendering.



(a) Skin (b) Bone (c) Trans. Skin

Fig. 1. Parallel Ray-Cast Visible Man

0

10

20

30

40

50

60

70

80

90

100

1 4 8 16 24 32 40 48 56 64 72 80 88 96

S
pe

ed
up

Number of PEs

’16x16’
’32x32’
’Ideal’

(a) Speedup

0

10

20

30

40

50

60

70

80

90

100

110

4 8 16 24 32 40 48 56 64 72 80 88 96

R
en

de
rin

g 
T

im
e 

in
 S

ec
on

ds

Number of PEs

’16x16’
’32x32’

(b) Rendering Time

Fig. 2. Speedup and Rendering Time



The primary reason for getting the good speedup is that our compression-
based parallel ray-casting scheme minimizes the data communication overheads
during rendering. Only communication for task assignment and image segment
collection is necessary, and breakdown of execution time for processors shows
that the time taken for communication is very small compared to the time taken
for rendering computation. For instance, when 64 processors are used, the aver-
age ratio of communication time to rendering time is less than 0.0001, which is
negligible. This property becomes crucial when our method is implemented on
such other platforms as PC/workstation clusters with slower Ethernet links, in
which data communication is usually very expensive.

Notice that the performance dep-

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lo
ad

PE ID

’16x16’
’32x32’
’64x64’

Fig. 3. Load Balancing

ends on the tile sizes: As more pro-
cessors join in computation, smaller
tiles achieve better dynamic load bal-
ancing. However, the larger number of
tasks increases overheads of managing
tasks. At some point, there is no net
gain from having the tiles smaller. The
extra overheads such as task assign-
ment and partial image collection, are
very small in our scheme, and we ob-
serve that smaller task sizes, such as,
16×16 or 32×32 tiles, produce a bet-
ter performance. Figure 3 shows how evenly the tasks are distributed among
processors when 16 processors are used. Currently, we are modifying the task
assignment strategy so that the task sizes vary dynamically according to various
computing parameters.

4 Conclusions and Future Work

In this paper, we proposed a new compression-based parallel ray-casting scheme
aimed at the distributed-memory architecture, and showed that it can be used
very effectively for very large volumes. Our current result may not be the fastest
in terms of frame rates. For example, interactive rendering of iso-surfaces of
Visible Woman was achieved on an SGI Reality Monster, which is a scalable
shared-memory multiprocessor [14]. Our parallel scheme targets visualization of
very large volume data on distributed systems, and tries to achieve high per-
formance by minimizing communications between processing elements during
rendering through compression. Our scheme is more practical than the previ-
ous works in that it is also very appropriate for distributed systems with low
bandwidth links, as well as distributed-memory multiprocessors, such as easily
available clusters of PCs and workstations, in which communications between
processors are regarded as quite costly.

We have been optimizing our parallel volume renderer to enhance its perfor-
mance. Currently, a 16 × 16 × 16 unit block is the basic unit for compression



and decompression. Sometimes, for example, when the normal and gradient at
a voxel is to be approximated using central differences, unnecessary voxels may
have to be decoded. We are testing with 4 × 4 × 4 cells as the basic unit, and
a preliminary experiment with the optimized renderer shows almost two times
faster rendering. There are very few works to compare with our results on par-
allel direct volume rendering of Visible Human. We are trying to achieve one
frame per second on 96 processors for the Skin classification (Figure 1 (a)). Con-
sidering that most portion of the 512×1024 image is opaque, and our ray-caster
is a true volume renderer, the goal appears to be high enough.

Our scheme also needs to be modified for huge data sets that do not fit into
local memory spaces even after compression. We believe that a rendering scheme
based on data partition and compression, will also perform very well, and make
it possible to handle huge volume data more effectively.

Acknowledgements We wish to thank the ETRI supercomputing center in
Korea for access to the CRAY T3E-900.

References

[1] M. Amin, A. Grama, and V. Singh. Fast volume rendering using an efficient,
scalable parallel formulation of the shear-warp algorithm. In Proceedings of the
1995 Parallel Rendering Symposium, pages 7–14, Atlanta, October 1995.

[2] D. Cohen and Z. Sheffer. Proximity clouds - an acceleration technique for 3D grid
traversal. The Visual Computer, 11:27–38, 1994.

[3] I. Ihm and S. Park. Wavelet-based 3D compression scheme for very large volume
data. In Proceedings of Graphics Interface ’98, pages 107–116, Vancouver, Canada,
June 1998.

[4] I. Ihm and S. Park. Wavelet-based 3D compression scheme for interactive visual-
ization of very large volume data. Computer Graphics Forum, 1999. To appear.

[5] P. Lacroute. Real-time volume rendering on shared memory multiprocessors us-
ing the shear warp factorization. In Proceedings of the 1995 Parallel Rendering
Symposium, pages 15–22, Atlanta, October 1995.

[6] A. Law and R. Yagel. Multi-frame thrashless ray casting with advancing ray-front.
In Proceedings of Graphics Interface ’96, pages 70–77, Tronto, Canada, May 1996.

[7] R. Lee and I. Ihm. On enhancing the speed of splatting using both object- and
image-space coherence. Submitted for publication, 1998.

[8] M. Levoy. Display of surface from volume data. IEEE Computer Graphics and
Applications, 8(3):29–37, 1988.

[9] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics,
9(3):245–261, July 1990.

[10] P. Li, S. Whitman, R. Mendoza, and J. Tsiao. ParVox – a parallel splatting
volume rendering system for distributed visualization. In Proceedings of the 1997
Symposium on Parallel Rendering, pages 7–14, Phoenix, U.S.A., October 1997.

[11] U. Neumann. Communication costs for parallel volume-rendering algorithms.
IEEE Computer Graphics and Applications, 14(4):49–58, July 1994.

[12] NLM. http : //www.nlm.nih.gov/research/visible/visible human.html, 1998.
[13] S. Park, G. Koo, and I. Ihm. Wavelet-based 3D compression schemes for the

Visible Human dataset and thier applications. In CD-ROM Proceedings of Visible
Human Project Conference ’98, Maryland, USA, October 1998.

[14] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. Interactive ray tracing
for isosurface rendering. In Proceedings of IEEE Visualization ’98. IEEE, 1998.

[15] K. Subramaanian and D. Fussell. Applying space subdivision techniques to volume
rendering. In Proceedings of Visualization ’90, pages 150–159, 1990.

[16] L. Westover. Footprint evaluation for volume rendering. Computer Graphics,
24(4):367–376, 1990.


