
On Enhancing the Speed of Splatting
with Indexing

Insung Ihm Rae Kyoung Lee

Department of Computer Science
Sogang University

Seoul, Korea

Abstract

Splatting is an object-space direct volume rendering
algorithm that produces images of high quality, but
is computationally expensive like many other volume
rendering algorithms. This paper presents a new tech-
nique that enhances the speed of splatting without trad-
ing off image quality. This new method reduces ren-
dering time by employing a simple indexing mecha-
nism which allows to visit and splat only the voxels
of interest. It is shown that this algorithm is suit-
able for the dynamic situation in which viewing pa-
rameters and opacity transfer functions change inter-
actively. We report experimental results on several test
data sets of useful size and complexity, and discuss the
cost/benefit trade-off of our method.

1 Introduction

Scientific visualization is a fast growing area which
is concerned with various techniques that help scien-
tists and engineers to extract meaningful and visual
information from the results of simulations and exper-
imentations [2]. One of the most actively researched
subfields of scientific visualization is volume render-
ing that deals with scalar and vector data defined on
three (or higher) dimensional grids. In this relatively
new field several rendering techniques have emerged
to analyze, understand, and render objects that are
contained in volume data.

Some of the most commonly used direct volume
rendering algorithms are ray casting [5, 8, 10], splat-
ting [11], and volume shearing [1, 3]. Splatting is
an object-order traversal algorithm where voxels are
properly splatted into an image plane. In this algo-
rithm, the voxels are sorted slice by slice in the front-
to-back or back-to-front order. Each voxel, traversed
in the order, is classified and shaded by given opac-

ity and color transfer functions. Then, the voxel is
projected into an image plane, and its contribution
is accumulated to an image buffer using a projected
reconstruction kernel called footprint. In this way, suc-
cessive slices are composited to produce the final im-
age. Splatting is, like many other direct volume ren-
dering algorithms, computationally expensive due to
the large size of volume data although it is known to
be more efficient than ray casting or volume shearing.

Since the original splatting algorithm traverses all
the voxels in some proper order, the computational
cost is linearly proportional to the size of the volu-
metric data set, regardless of its contents. Often, only
small portions of volumetric data sets contain objects
to be rendered. For example, a large portion of typical
CT or MRI data contains air which is seldom rendered.
Hence, it is quite likely that computing time can be
saved by splatting only those voxels that correspond
to objects which are being rendered. It has been re-
ported that volume data with 70-90% of uninteresting
voxel points are not uncommon [6, 13]. Spatial data
structures like octrees and pyramids were used in en-
coding volume data so that unnecessary computation
in transparent regions can be avoided [6, 9, 13, 1, 4, 7].

Unlike ray tracing or other rendering algorithms,
little has been done to reduce rendering time of the
splatting method on a uniprocessor while a few algo-
rithms are known for parallel processors [12]. In [4],
a pyramidal volume representation was used to im-
prove the speed of splatting. Given transfer functions
and view-independent shading functions, an octree is
constructed in which each node contains the average
RGBA value of all its children and a value indicating
the average error associated with the average. Then,
the octree is traversed in a viewing order to splat the
voxels, depending on the given allowable error that
determines the refinement of rendered images. This
algorithm reduces rendering costs, but trades off im-

age quality for speed.
This paper presents a new technique that enhances

the speed of splatting without sacrificing image qual-
ity. In this algorithm, a simple indexing mechanism
is employed so that only the voxels of interest are
examined and splatted. The data structure used in
our algorithm is simpler than octrees, and the traver-
sal order of voxels is basically the same as the tra-
ditional splatting algorithm, hence any improvement
techniques, such as early termination of composition
process, can be easily applied.

Observe that the order in which voxels are stored
in an array for raw volume data is determined by their
positions which, in general, have nothing to do with
their density values, that is, the materials which ex-
ist at the corresponding grid points. On the other
hand, most rendering algorithms use opacity transfer
functions for classification, which decide the range of
densities of interesting voxels. Hence, the volume data
must be stored or at least be accessible efficiently de-
pending on the density values rather than being stored
in terms of voxel’s positions. In our algorithm, we
preprocess the volume data to extract indexing infor-
mation which enables efficient access to voxels hav-
ing arbitrary density values. The extracted indexing
information is both view-independent and transfer-
function-independent. This means that it is built only
once in the preprocessing step, and splatting is done
efficiently with dynamically changing viewing param-
eters and transfer functions.

In Section 2, we propose a new way of splatting that
enhances the speed of rendering. In Section 3, we show
how viewing transformations are performed efficiently
in our algorithm. Experimental results are reported
in Section 4, and we discuss some of the implication
of our algorithm in Section 5.

2 The Indexed Splatting Algo-
rithm

2.1 Data Structure for Fast Voxel In-
dexing

Fundamental to our speed-enhancing algorithm is the
ability to access easily the voxels of interest with ar-
bitrary density values. In this section, we describe
the data structure employed for fast voxel indexing.
Consider a ni × nj × nk volume data set. First, we
construct, as many volume rendering algorithms do for
the purpose of enhancing the speed, an augmented vol-
ume from the raw volume data, where each augmented

254 255h

Slice k

.

(i0,j0), (i1,j1), (i2,j2), ...

0 1 d

Figure 1: Data Structure for Indexing

voxel is made of four bytes : one for density value, one
for gradient magnitude, and two for encoded normal.

Then, an additional data structure, that performs
the function of indexing, are precomputed as follows :
for each principal axis of the volume data (without loss
of generality, consider the k axis.), imagine the series
of slices, perpendicular to the axis. For each slice,
a sequence of pointers corresponding to the density
values dh that appear in the slice, is enumerated in
the increasing order of density values (See Figure 1.).
The pointer associated with density dh is to a data
block that keeps the list of the (i, j) indices to the
voxels in the slice which have the density value dh. (In
Section 2.3, we describe how these indices are encoded
in our implementation.)

Building this data structure for indexing can be
viewed as reorganizing the given volume data based
on the density values, not the positions of voxels. In
most volume rendering algorithms, objects of interest
to be rendered are classified in terms of opacity trans-
fer functions. Our new data structure enables us to
easily access only those voxels that fall in the ranges
of interest which are specified in terms of the opacity
transfer functions.

To make the splatting process view-independent,
three sets of such a data structure are built in the pre-
processing step, one for each principal axis. Given ar-
bitrary viewing parameters (that is, the view reference
point, the view-up vector, and the view plane normal),
the proper viewing direction is selected so voxels are
visited slice by slice in the proper front-to-back order.

2.2 Algorithm

Now, our new splatting algorithm works as follows :
assume that we want to render some objects whose
density values range from dlow to dup. First, the
principal axis for the viewing direction is determined
among the i, −i, j, −j, k, and −k axes. (Again, with-
out loss of generality, let’s assume the viewing direc-
tion is the k axis.) Once the viewing direction is de-
cided, each slice perpendicular to the viewing direction
is traversed in the front-to-back order as the original
splatting algorithm does. For each slice, we first find
the actual lower and the upper bounds quickly, using
the binary search, of density values that are between
the interval [dlow, dup], then, follow the pointers in be-
tween to visit only the voxels with values of interest.
The remaining steps such as shading, projection, and
color blending are the same as the traditional splatting
algorithm.

Note that the traversal order of voxels in splatting
is basically the same as the traditional splatting al-
gorithm, hence any enhancement techniques, such as
early termination of composition process, can be easily
applied. The resulting algorithm inherits the merits of
the original splatting algorithm as well as it has the
following additional characteristics :

• Splatting time is saved by accessing only the nec-
essary voxels.

• The opacity transfer functions can change inter-
actively without building the indexing data struc-
ture again.

• The viewing and shading parameters can be mod-
ified dynamically without building the indexing
data structure again.

2.3 Details on the Indexing Data
Structures

The indexed splatting algorithm saves the rendering
time by traversing only the voxel points of interest.
However, extra memory is necessary to store the in-
formation on indexing. It could lead to an enor-
mous memory requirement if inefficient data struc-
tures were used to store indexing information. On
the other hand, any space-saving encoding method to
store the information efficiently should not be com-
plicated enough to waste the time that is saved by
indexing. In our current implementation that permits
volume data of size up to 256× 256× 256, the follow-
ing simple encoding method for indexing is used. For
the k-th slice, and for the density value d, the memory

block, that contains the indices (i, j) of (i, j, k) whose
density is d, is organized as follows : first, each voxel
(i, j) is associated with an index value indij that is
defined as indij = i + j ∗ nx. Then consider the enu-
meration of voxel points in the scan-line order. Rather
than store the i and j pair for each voxel (i, j) consum-
ing two bytes, we store the offset value off that is the
displacement from the predecessor. One byte is used
for the offset, which means that distance at most 255
is possible. When the offset is greater than 255, one
byte containing zero (null value) is put, and followed
by two bytes for the i and j index of the next voxel.
Hence, one byte is necessary when the next voxel with
density d is within 255 voxel off, or three bytes are re-
quired. We observe that due to the property of spatial
coherence of volume data this encoding technique re-
sults in saving the total number of bytes for the index
information.

3 Efficient Viewing Transforma-
tions

Viewing transformation is the process in which a grid
point (x, y, z) in the voxel-space is mapped to a point
(u, v) in the image-space. Efficient computation of
the transformation is essential since a huge number of
voxels are usually projected into an image plane. To
probe objects in volume data interactively, we often
change viewing parameters dynamically. Hence, the
viewing transformation for arbitrary viewing parame-
ters must be calculated efficiently as well as each voxel
is projected quickly.

In our indexed splatting algorithm, the voxel points
are not visited in a regular manner as in the original
splatting method (for example, either i, j, or k direc-
tion fastest, one of the remaining two directions sec-
ond fastest, and the last remaining direction slowest.).
Note that we visit only the voxels with densities be-
tween ranges of interest. Since the traversing order is
rather arbitrary, the viewing transformation can not
be done incrementally as proposed in [12].

In this section, we are concerned with efficient com-
putations of two tasks : one is to compute the view-
ing transformation given arbitrary viewing parame-
ters, and the other is to actually project each voxel
into the image plane once the viewing transformation
is set. Remind that computing the transformation and
projecting a voxel correspond to building a 4×4 trans-
formation matrix, and multiplying it by a 4-vector,
respectively.

i

j

k

u

v

w

v

u

w

i

j

k

x

y

z

World Space

Volume Space

Image Space

(i,j,k) = (u,v,w)

p

q

Figure 2: Orthographic Transformations

3.1 Orthographic Projections

In Figure 2, it is illustrated how orthographic pro-
jections of an arbitrary voxel point (i, j, k) into the
image plane are carried out. In our viewing trans-
formation scheme, we assume that the volume data
can exist anywhere with arbitrary orientations, and
the image plane can be defined by arbitrary view-
ing parameters. This assumption is well-suited to the
dynamical situation in which both camera and ob-
jects move freely in the world coordinates (x, y, z).
First, the image-space (u, v, w) is specified by a point
p = (px, py, pz)t, and three orthonormal vectors u =
(ux, uy, uz)t, v = (vx, vy, vz)t, and w = (wx, wy, wz)t.
Notice that p is the view reference point, and v and
w are the view-up vector and view plane normal, re-
spectively. Secondly, the voxel points are expressed
with respect to the volume space (i, j, k) defined by a
point q = (qx, qy, qz)t and three orthonormal vectors
i = (ix, iy, iz)t, j = (jx, jy, jz)t, and k = (kx, ky, kz)t.

Now what we would like to do is to orthographically
map a voxel point (i, j, k) into the corresponding point
(u, v) on the image plane. The voxel point is, in fact,
q + i · i + j · j + k · k in the world space, which is also
expressed as p+ u ·u+ v ·v + w ·w for the unknowns
u, v and w. Equating these two expressions, we are
led to

(
u v w

)

u
v
w

 = (q− p) +

(
i j k

)

i
j
k

Since u, v, and w are orthonormal, (u, v, w) is ex-
pressed as

u
v
w

 =

ut

vt

wt

 (q− p)

+

ut

vt

wt

(

i j k
)

i
j
k

From this, we can get the (u, v) point on the image
plane after the orthographic projection as follows :

u = u ◦ (q− p) + i · (u ◦ i) + j · (u ◦ j) + k · (u ◦ k)
v = v ◦ (q− p) + i · (v ◦ i) + j · (v ◦ j) + k · (v ◦ k)

where ◦ is the inner product of two vectors.
Now imagine the rendering process : when a user

set the viewing parameters before starting splatting,
(q−p)◦u, (q−p)◦v, u◦i, u◦j, u◦k, v◦i, v◦j, and v◦k
are computed only once, and k · (u ◦ k) and k · (v ◦ k)
are added to u and v for the initial k (k could be zero
or nk − 1.). Under the assumption that the viewing
direction is the k axis, the slices perpendicular to this
axis is examined one by one in the front-to-back order.
For each slice ks, k is fixed, so ks ·(u◦k) and ks ·(v◦k)
are calculated once per slice. Note that since k is
uniformly increased or decreased, these values can be
computed incrementally in two additions. Then, for
each varying (i, j) of (i, j, ks), (u, v) is computed using
4 additions and 4 multiplications. Thus we see that
the total cost of the viewing transformation for each
rendering is 6+2nk+4nvoxel additions and 24+4nvoxel

multiplications, where nvoxel is the number of voxels
that are actually projected.

3.2 Perspective Projections

While most volume rendering techniques assume or-
thographic projections due to their simplicity, per-
spective projections are also useful particularly be-
cause they provide depth-cue information. In this
subsection, we show that computations for perspec-
tive transformations are slightly more expensive than
orthographic transformations, but can be done in a
similar way.

For perspective projections, another viewing pa-
rameter e = (ex, ey, ez)t is specified corresponding to
the projection reference point (See Figure 3.). The

i

j

k

u

v

w

v

u

w

i

j

k

x

y

z

World Space

Volume Space

Image Space

(i,j,k) = (u,v,w)

p

q

e

Figure 3: Perspective Transformations

projector connecting e and a voxel (i, j, k) can be ex-
pressed parametrically as L(t) = e·(1−t)+(q+i·i+j ·
j+k ·k)·t = (q−e+i·i+j ·j+k ·k)·t+e. Then, for the
parameter value t0 corresponding to the intersection of
the projector with the image plane, (L(t0)−p)◦w = 0,
and solving it for t0 results in

t0 =
w ◦ (p− e)

w ◦ (q− e) + i · (w ◦ i) + j · (w ◦ j) + k · (w ◦ k)

As in orthographic projections, the intersection point
can be expressed for the unknowns u, v, and w as

p + u · u + v · v + w ·w = {(q− e) + i · i + j · j
+ k · k} · t0 + e

From this, we can show that the mapped point (u, v)
(w must be zero.) is computed as follows :

u = {u ◦ (q− e) + i · (u ◦ i) + j · (u ◦ j)
+ k · (u ◦ k)} · t0 − u ◦ (p− e)

v = {v ◦ (q− e) + i · (v ◦ i) + j · (v ◦ j)
+ k · (v ◦ k)} · t0 − v ◦ (p− e)

Again, when a user set the viewing parameters be-
fore starting rendering, u ◦ (q− e), u ◦ i, u ◦ j, u ◦ k,
u ◦ (p− e), v ◦ (q− e), v ◦ i, v ◦ j, v ◦ k, v ◦ (p− e),
w ◦ (q − e), w ◦ i, w ◦ j, w ◦ k, and w ◦ (p − e) are
computed once. For each slice ks, three incremental
additions are necessary for the denominator of t0, u,
and v. For each varying (i, j) of (i, j, ks), t0 is com-
puted using two additions, two multiplications, and

Figure 4: An Example SGVR Session

one division, and then u and v are computed in two
additions, one subtraction, and three multiplications,
respectively.

In case of perspective projections, the depth in-
formation of the voxel point being projected is of-
ten important. In the splatting algorithm, this in-
formation could be used to select the proper size
of footprint tables adaptively. When the projection
reference point e is on the w axis, the value w =
w ◦ (q − p) + i · (w ◦ i) + j · (w ◦ j) + k · (w ◦ k)
from orthographic projections will be a good choice.

4 Experimental Results

Both original and indexed splatting algorithms have
been implemented, and added to our SGVR (SoGang
Volume Rendering) scientific visualization system (Fig-
ure 4). The performance results for the two algo-
rithms are summarized in Figure 5. We have ex-
perimented with five data sets to generate RGB im-
ages of size 256× 256 using orthographic projections.
The test cases H1 (head) and H2 (head with a cut-
ting plane) are from the “UNC head” data set that
is 256 × 256 × 225 CT scan of a human head (Fig-
ure 6 (a) and (b)), and the case B1 (brain) is from the
“UNC brain” data set which is 256 × 256 × 167 MRI
scan of a human head (Figure 7(b)). HD (decimated
head) and BD (decimated brain) are tested using the
decimated versions of the head and the brain data sets
with the resolutions 128×128×113 and 128×128×84,
respectively. Two more cases E1 (engine block) and
E2 (engine part) were tested with the 256× 256× 110
“engine block” data set (Figure 8 (a) and (b)).

The timings were measured on an SGI Workstation

(Ave. : Sec., Mem. : Mbyte)

Data Resolution Ratio No Indexing Indexing Speedup
Ave. Mem. Ave. Mem.

H1 256× 256× 225 0.072 28.31 56.3 5.01 62.7 82.3%
H2 256× 256× 225 0.072 25.88 56.3 4.55 62.7 82.4%
HD 128× 128× 113 0.067 4.39 7.1 1.43 8.0 67.4%
B1 256× 256× 167 0.17 24.27 41.7 6.24 50.6 74.3%
BD 128× 128× 84 0.17 3.49 5.25 1.37 6.45 60.7%
E1 256× 256× 110 0.16 20.28 27.5 8.55 33.0 57.8%
E2 256× 256× 110 0.012 13.16 27.5 0.57 33.0 95.7%

Figure 5: Comparisons of Two Algorithms

with a 150MHz R4400 CPU and 96 Mbytes of memory,
and the timing results are given for both algorithms
along with the memory requirements. Also given are
the spatial ratios of the number of voxels that were ac-
tually visited to the whole number of voxels in the data
sets. These ratios indicate how much space objects of
interest, that is, objects we want to render, take with
respect to the whole volume space, and is the major
factor in the performance of the indexed splatting al-
gorithm. In our implementation, four bytes are used
to store one voxel : one for density, two for encoded
normal, and one for gradient size. Precomputation of
the encoded normal vectors and gradient sizes allows
us to perform fast classification and shading. For the
256× 256× 225 head data (H1), the number of voxels
is about 14.1 millions, and hence about 56.3 Mbytes of
memory are necessary for splatting without indexing.

On the other hand, about 62.7 Mbytes of memory
is needed, so we see that roughly 6.4 Mbytes of ad-
ditional memory are consumed for the indexing data
structure. We have to mention that the amount of re-
quired memory for indexing depends on the materials
residing in data sets. In the test with H1, only the
bones and muscles were loaded for indexing. When
skins were loaded, about 20 Mbytes of memory were
used. In the simpler data set E1, only 5.5 Mbytes of
memory were required in loading the whole indices.
We are now focusing on the development of a better
scheme that encodes data blocks for (i, j) indices ef-
ficiently without harming the timing performance of
indexing too much.

The indexing algorithm produces 57.8 − 95.7% of
time reduction, which obviously depends on the test
data. In the best (E2) and worst (E1) cases, the in-
dexing method improved rendering speed by factors
of about 23.1 and 2.4, respectively. In case of per-
spective projection, it took roughly 1.2 times longer
than orthographic projection, although it also relies
on the data sets. Notice the somewhat exaggerated

effect of perspective projection for the head data in
Figure 7 (a).

The timing results reveal several interesting facts
about our enhanced algorithm. First, we see that the
spatial ratio, that actually decides how many voxels
are visited, is somewhat small, and that the speedup
tends to be better as the ratio gets smaller (Compare
E1 and E2 to see this.). This observation is clearly
understood since the new splatting algorithm was de-
signed to visit the rendered objects only.

Secondly, the spatial ratio is not the only factor
that affects the performance. That is, the reduction
in rendering time obtained by indexing is highly de-
pendent on the scenes. Consider B1 and E1 that
demonstrate the effect of semitransparent objects on
the performance of our algorithm. Although they have
almost the same spatial ratios, the timings for the two
data sets are somewhat different. The main factor
that made differences is the opacity transfer functions.
Since a large portion of engine block (E1) is semitrans-
parent, almost all voxels are processed. In case of B1,
lots of the voxels in the behind are blocked by ones
in the front without being splatted, resulting in fast
rendering.

Consider how the original splatting algorithm
spends rendering time. It first visits all the voxels in
a volume data set one by one, doing classification of
each voxel. It is shaded, and projected if it turns out
to be one of the voxels of interest. Then, resampling
is performed using a footprint table. The reduction in
splatting time of our algorithm is made possible by not
visiting unnecessary voxels using the indexing mecha-
nism. Although just visiting and classifying each voxel
takes very little time compared to the shading and re-
sampling precesses, it is found out that accumulation
of such a small effect for the whole volume data makes
a prominent difference.

5 Closing Remarks

We have proposed a new technique that enhances the
speed of splatting without trading off image quality.
This new method saves rendering time by employing
a simple indexing mechanism so that only voxels of in-
terest are processed in splatting. We observe that the
proposed data structure for indexing is suitable for the
dynamic situation in which viewing parameters and
opacity transfer functions change interactively. Tests
with several data sets of useful sizes and complexities
showed 57.8− 95.7% of time reduction at the reason-
able cost of additional memory for indexing.

Currently, we are applying the data structure for
indexing to volume ray tracing, and the preliminary
results indicate a significant rendering time reduction.

Acknowledgments

We are grateful to Mr. Philippe Lacroute who helped
get the test data sets.

References

[1] J. Danskin and P. Hanrahan. Fast algorithms
for volume ray tracing. In Proceedings of the
1992 Workshop on Volume Visualization, pages
91–106, Boston, 1992.

[2] A. Kaufman, editor. Introduction to Volume Vi-
sualization. IEEE Computer Society Press, 1991.

[3] P. Lacroute and M. Levoy. Fast volume rendering
using a shear-warp factorization of the viewing
transformation. Computer Graphics, 28(4):451–
458, 1994.

[4] D. Laur and P. Hanrahan. Hierarchical splattings
: A progressive refinement algorithm for volume
rendering. Computer Graphics, 25(4):285–288,
1991.

[5] M. Levoy. Display of suirface from volume
data. IEEE Computer Graphics and Applica-
tions, 8(3):29–37, 1988.

[6] M. Levoy. Efficient ray tracing of volume data.
ACM Transactions on Graphics, 9(3):245–261,
July 1990.

[7] D. Meagher. Efficient synthetic image generation
of arbitrary 3-d objects. In Proceedings of the
IEEE Conference on Pattern Recognition and Im-
age Processing, pages 473–478, 1982.

[8] P. Sabella. A rendering algorithm for 3d scalar
fields. Computer Graphics, 22(4):51–58, 1988.

[9] K. Subramaanian and D. Fussell. Applying space
subdivision techniques to volume rendering. In
Proceedings of Visualization ’90, pages 150–159,
San Francisco, 1990.

[10] C. Upson and M. Keeler. V-buffer: Visible vol-
ume rendering. Computer Graphics, 22(4):59–64,
1988.

[11] L. Westover. Footprint evaluation for volume ren-
dering. Computer Graphics, 24(4):367–376, 1990.

[12] L. Westover. Splatting - A parallel, feed-forward
volume rendering algorithm. PhD thesis, Dept.
of Computer Science, Univ. of North Carolina at
Chapel Hill, July 1991.

[13] J. Wilhelms and A. Van Gelder. Octrees for
faster isosurface generation. ACM Transactions
on Graphics, 11(3):201–227, July 1992.

(a) human head (b) human head cut by a plane

Figure 6: CT Human Head

(a) perspective human
head

(b) human brain

Figure 7: Perspective CT Head and MRI Human Brain

(a) engine block (b) part of engine

Figure 8: Engine Block

