

Animation of Reactive Gaseous Fluids through Chemical Kinetics

2004.8.28

Insung Ihm, Byungkwon Kang, Deukhyun Cha Dept. of Computer Science, Sogang University Seoul, Korea

Contents

- Motivation & contribution
- Related works
- Introduction of chemical kinetics
- The Navier-Stokes equations
- Propose new simulation method
- Animation results
- Conclusion and future work

Motivation

- There are a variety of natural phenomena related to chemical reaction.
 - Combustion, explosion, erosion, catalytic effect, etc.
- These are very useful for producing interesting fluid effects in computer animation.

A gas-phase explosion

 However, little work has been done in the general modeling of chemical reactions in the fluid animation field.

(Side View)

Contribution of this paper

- We extend the well-accepted fluid animation technique by [Sta99] and [FSJ01] to effectively handle reactive gaseous fluids.
- We present a set of physically motivated control parameters to control the behavior of reactive fluids.
- The proposed technique generates several interesting fluid effects related to chemical reaction with user control.

Related works

• Gas and smoke

[FM97b] Foster, N., and Metaxas, D., "Modeling the motion of a hot, turbulent gas," ACM SIGGRAPH '97, pp. 181-188, 1997.

[Sta99] Stam, J., "Stable fluids," ACM SIGGRAPH '99, pp. 121-128, 1999.

[FSJ01] Fedkiw, R., Stam, J., and Jensen, H., "Visual simulation of smoke," ACM SIGGRAPH '01, pp. 23-30, 2001.

[TMPS03] Treuille, A., Mcnamara, A., Popović, Z., and Stam, J., "Keyframe control of smoke simulation," ACM Transactions on Graphics (ACM SIGGRAPH '03), Vol. 22, No. 3, pp. 716-723, 2003.

Courtesy of [FOA03]

• Fire, flame, and explosion

[YOH00] Yngve, G., O'Brien, J., and Hodgins, J., "Animating explosions," ACM SIGGRAPH '00, pp. 29-36, 2000.

[NFJ02] Nguyen, D., Fedkiw, R., and Jensen, H., "Physically based modeling and animation of fire", *ACM Transactions on Graphics (ACM SIGGRAPH '02)*, Vol. 21, No. 3, pp. 721-728, 2002.

[FSJ03] Feldman, R., Stam, J., and Jensen, H. "Animating suspended particle explosions," ACM Transactions on Graphics (ACM SIGGRAPH '03), pp.708-715, 2003.

• Reactive fluids

[Fed97] R. Fedkiw, "A survey of chemically reacting, compressible flows," PhD thesis, Dept. of Mathematics, Univ. of California, Los Angeles, 1997.

[Gat02] W. Gates, "Animation of Reactive fluids," PhD thesis, Dept. of Computer Science, Univ. of British Columbia, 2002.

Introduction to chemical kineties

- What is chemical kinetics?
 - ✓ A branch of kinetics that studies the rates and mechanisms of chemical reactions.
- Stoichiometric equation

$$aA + bB \rightarrow eE + fF$$

A, B, E, F : chemical species (reactants & products)
a, b, e, f : stoichiometric coefficients

• Reaction rate (a.k.a. rate law)

$$r = -\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{e}\frac{d[E]}{dt} = \frac{1}{f}\frac{d[F]}{dt}$$

 Describes the rate r of change of the concentrations, denoted by [*], of reactants and products.

- How to decide the reaction rate r :
 - -r: a function of the concentrations of species present at time *t*, which is usually measured experimentally.
 - For a large class of chemical reactions, it is proportional to the concentration of each reactant/product raised to some power.
 - When, for example, only a forward reaction occurs,

$$r = f_r([A], [B], [E], [F]) = k[A]^{\alpha}[B]^{\beta}$$

 Once the rate is determined, [A], [B], [C] and [D] are updated by integrating the rate law over time interval.

- Rate constant k
 - Is a function of both temperature and pressure.
 - Usually, the pressure dependence is ignored.
 - For many homogeneous reactions,

$$k = Ae^{\frac{Ea}{RT}}$$

Arrhenius equation

The Navier-Stokes equations for gaseous fluids

- The simulation technique by [Sta99] and [FSJ01] are well-accepted in computer animation.
- The incompressible Navier-Stokes equations for inviscid fluids
 - Conservation of mass

$$\nabla \cdot u = 0$$

Conservation of momentum

$$\frac{\partial u}{\partial t} = -(u \cdot \nabla)u + v\nabla \cdot (\nabla u) - \frac{1}{\rho}\nabla p + f$$

The proposed simulation mether [Step1] [Step4] [Step2] [Step3] Evolution of Computation Update of Application of the density & of the fluid's the external the chemical temperature velocity field. force and kinetics through the ϕ value velocity The simulation technique by [Sta99] and [FSJ01], as slightly modified, comprises [Step1] and [Step2].

[Step1] Computation of the fluid's velocity field

- Uses a modified mass conservation equation, as in [FOA03], to control the expansion/contraction of reactive gases: $\nabla \cdot u = \phi$
- The divergence constraint \u03c6 is determined for each cell according to the reaction process that occurs in the region.
 - Determined in [Step4] after the application of chemical kinetics.
- The pressure is computed through the modified Poisson equation: $\rho_{12} = \rho_{12}$

$$\nabla^2 p = \frac{\rho}{\Delta t} (\nabla \cdot u - \phi)$$

[Step2] Evolution of the density and temperature through the velocity

• Density field

 Similarly as in [Sta99] and [FSJ01] except that multiple substances in the gas mixture are handled:

$$\frac{\partial d}{\partial t} = -(u \cdot \nabla)d + \kappa_d \nabla^2 d$$

- Each substance is evolved separately.
 - Molar concentrations and densities are related by molar masses M_A, M_B, M_E, M_F .

- Temperature field
 - Similarly as in [Sta99] and [FSJ01] except that a heat source term $\sigma_{\rm T}$ is added.

$$\frac{\partial T}{\partial t} = -(u \cdot \nabla)T + \kappa_T \nabla^2 T + \sigma_T$$

 The heat source term is updated for each cell in [Step4] to reflect the occurring chemical reaction in the region.

[Step3] Application of the chemical kinetics

- The reaction process $aA+bB \rightarrow eE+fF$ is applied for each cell in the reaction system.
 - ① Determine the reaction rate $r = f_r([A], [B], [E], [F])$ as designed by an animator.
 - ② Then, the new concentration vector c is updated by integrating the differential equations over Δt :

$$\frac{d[A]}{dt} = -a \cdot r, \frac{d[B]}{dt} = -b \cdot r, \frac{d[E]}{dt} = e \cdot r, \frac{d[F]}{dt} = f \cdot r$$

[Step4] Update of the external force and ϕ value

- The updated density d, temperature T, and reaction rate r influence the velocity through the external force f and the φ value..
 - 1) The temperature update is completed by taking care of the heat source term σ_T , defined by $\sigma_T = f_T(r, \cdots)$.
 - ② The buoyancy force, as proposed in [FSJ01], is updated: $\mathbf{f}_{buov} = -\alpha d\mathbf{z} + \beta (T - T_{amb})\mathbf{z}$

- ③ The vorticity confinement force, as proposed in [FSJ01], is updated according to $\varepsilon = f_{\varepsilon}(r, \cdots)$ or $\frac{d\varepsilon}{dt} = f_{\varepsilon}(r, \cdots)$: $\mathbf{f}_{conf} = \varepsilon h(N \times \omega)$
- ④ The resulting external force $\mathbf{f} = \mathbf{f}_{user} + \mathbf{f}_{buoy} + \mathbf{f}_{conf}$ is applied to the momentum conservation equation in the next time frame.
- 5 The ϕ value, determined by $\phi = f_{\phi}(r, \cdots)$ or $\frac{d\phi}{dt} = f_{\phi}(r, \cdots)$, is applied to the modified mass conservation equation in the next time frame.

Added control factors

Control parameter	Description
$aA + bB \rightarrow eE + fF$	the chemical reaction type
A, B, E, F	the stoichiometric coefficients
M_A, M_B, M_E, M_F	the molar masses
$r = f_r([A], [B], [E], [F])$	the reaction rate law
$k = f_k(T, \cdots)$	the reaction rate constant
$\sigma_T = f_T(r, \cdots)$	the heat source term
$\varepsilon(or\frac{d\varepsilon}{dt}) = f_{\varepsilon}(r,\cdots)$	the vorticity coefficient
$\phi = f_{\phi}(r, \cdots)$	the divergence control factor

[Animation ex. 1] A simple reaction $A+B \rightarrow 2E$ of two gases

Control factor: Molar mass M_E to generate a heavier smoke

An example

With an increased M_E

Note that the density *d* affecting the buoyancy force \mathbf{f}_{buoy} is defined as $d = M_A \cdot [A] + M_B \cdot [B] + M_E \cdot [E]$.

[Animation ex. 2] A catalytic reaction $A + B \rightarrow B + 5C$

• Control factor: the heat source term σ_T

No heat source

 $\sigma_T = f_T(r, \cdots) = 30r$

 $\sigma_T = f_T(r, \cdots) = -30r$

B denotes a catalyst that is the floating ball in this example.

[Animation ex. 3] Gas-phase explosion-like effects using a simple reaction $aA + bB \rightarrow eE$

• Control factor: stoichiometric coefficients *a*, *b*, and *e*

a = 1, b = 1, e = 2 a = 1, b = 1, e = 5 a = 1, b = 1, e = 7

The same control parameters except the stoichiometric coefficients were applied to these animations: $-\frac{24}{r} = k[A][B], \ \sigma_T = 30r, \ \phi = \gamma_0([A] + [B] + [C])(T - T_{amb}), \ k = 30e^{-T}$

ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2004

 γ_2 Control factor: rate constant $k = \gamma_1 e$ (30, 24)(30, 90)With $\gamma_1 = 30, \ \gamma_2 = 90$ With $\gamma_1 = 30, \ \gamma_2 = 24$ For the larger γ_2 , the rate constant k increases less steeply w.r.t. temperature, resulting that the temperature, hence the gases, are restrained from rising too fast.

• Control factor : heat source term σ_T

With $\sigma_T = 30r$

With
$$\sigma_T = e^r$$

The exponential heat source function heats up the gases rapidly, which makes the reaction go faster. As a result, the gases rise very quickly. [Animation ex. 4] Gas-phase explosion-like effects using a chain reaction ~

- Control factor: the chemical reaction type
 - Most combustion reactions and explosions are known to proceed by a chain mechanism.
 - Ex.: the gas-phase hydrogen and oxygen explosion
 - Highly reactive radicals are formed as intermediary species.
 - They build up to produce very fast reaction rates as they are recycled.

 $2H_2 + O_2 \rightarrow 2H_2O$ $\mathrm{H}_2 \to \mathrm{H} \bullet + \mathrm{H} \bullet$ Initiation $H \bullet + O_2 \rightarrow \bullet OH + O \bullet$ **Branch** $O \bullet + H_2 \rightarrow \bullet OH + H \bullet$ $\bullet \operatorname{OH} + \operatorname{H}_2 \to \operatorname{H}_2 \operatorname{O} + \operatorname{H} \bullet$ Propagation $H \bullet + O_2 \to HO_2 \bullet$ $HO_2 \bullet + H_2 \rightarrow H_2O + \bullet OH$ **Termination** $H \bullet + H \bullet \to H_2$

– A hypothetical chain reaction

$$A \rightarrow 2I$$

$$B \rightarrow 2J$$

$$A + B \rightarrow 5E \longrightarrow I + B \rightarrow K + J$$

$$J + A \rightarrow K + I$$

$$A + B + K \rightarrow K + 5E$$

✓ Note that *I*, *J*, and *K* are radicals.

Uniform initial distribution of *A* and *B*

Random initial distribution of *A* and *B*

Conclusions & Future works

- We proposed a new simulation method handling chemical reaction.
- We proposed several new control factors and demonstrated how they can be used to generate realistic visual effects.
- More chemical reactions may be utilized to create a wider range of special effects.
- More realistic rendering scheme for explosion, flame, and other natural phenomena can be further researched and developed.

Thank you!

An Example of Gas-Phase Explosion

(Side view)

ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2004