
GPU-Assisted High Quality Particle Rendering

Deukhyun Cha†, Sungjin Son‡, and Insung Ihm†

†Department of Computer Science and Engineering, Sogang University, Korea

‡System Architecture Lab., Samsung Electronics, Korea

Contents

 Backgrounds

 Our contributions

 Previous work

 GPU-assisted rendering pipeline

 Adaptive density volume generation

 Accurate volume photon tracing

 Efficient Radiance Estimation with Illumination Cache

 Ray marching with Perlin noise

 Experimental results

 Conclusion and future work

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 2

Backgrounds

 Numerical simulation of complicated light transport phenomena

For high quality volume rendering,
the volume rendering equation must be solved as accurately as possible.

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 3

 Visualization of dynamic participating media in particle form

The generation of physically accurate rendering images
from large particle datasets by solving the volume rendering equation
often leads to a substantial expense in computation.

Modeled by animators Physically simulated

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 4

Our Contributions

 Present GPU-assisted computation techniques

designed for high quality particle volume rendering.

1. Present a three-pass, adaptive density estimation method for
particle datasets.

2. Propose to use the mathematically correct distance generation
method for volume photon tracing in nonhomogeneous
participating media.

3. Exploit an illumination cache scheme for efficient estimation of
in-scattered radiance.

4. Apply Perlin noise in the ray marching stage for modeling fuzzy
appearance of participating media.

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 5

Previous Work

 Particle based representation of participating media

 Realistic rendering of participating media

W. REEVES,1983 A. KAPLER, 2003 J. MONAGHAN, 1988

J. BLINN,1982 J. KAJIYA and B. V. HERZEN,1984

H. W. JENSEN,1998 W. JAROZ, et al., 2008 F. QIU, et al., 2007

“A survey on participating

media rendering techniques”

E. CEREZO, et al., 2005

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 6

 Real-time rendering of participating media

 Pre-computation of light transport information

Y. DOBASHI, et al., 2002 J. KNISS, et al., 2003 K. RILEY, et al., 2004 B. SUN, et al., 2005

S. PREMOŽE, et al., 2002M. HERRIS, and A. LASTRA, 2001 K. HEZEMAN, et al., 2004

L. SZIRMAY-KALOS, et al., 2005 K. ZHO, et al., 2008 A. BOUTHORS, et al., 2008 C. CRASSIN, et al., 2009

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 7

Our GPU-Assisted Rendering Pipeline

PARTICLE DATA

DENSITY

VOLUME

GENERATION

VOLUME

PHOTON

TRACING

…

ILLUMINATION

CACHE

CONSTRUCTION

OUT IN OUT

ININ

OUT

RAY

MARCHING

IN
IN

RENDERING IMAGE

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 8

Adaptive Density Volume Generation

 Problem: Build volumetric density field from input particles.

 Reconstruction of density at grid point pijk from particle

distribution using kernel function (SPH)

 GPU-assisted density estimation

 Estimation with uniform smoothing length

 Estimation with adaptive smoothing length

 Local accuracy depends on the number of neighboring particles

involved.

),()(ijkq qijkqijk hppWmp  

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 9

W(x, h): a smoothing kernel with smoothing length h

Density Estimation: Non-adaptive

 Use uniform smoothing length.

INPUT PARTICLES

 DENSITY VOLUME GRID

(NX, NY, NZ)

KERNEL DIAMETER
 PARTICLE BIN

(PARTICLE INDEX LIST)

KERNEL DIAMETER

 QUAD FOR PARTICLE KERNEL

X

Y
Z

V[i] {Px – r, Py – r, Pz };
T[i] {Px , Py }

V[i+4] {Px – r, Py + r, Pz };
T[i+2] {Px , Py }

V[i+8] {Px + r, Py + r, Pz };
T[i+4] {Px , Py }

V[i+12] {Px + r, Py - r, Pz };
T[i+6] {Px , Py }

glEnableClientState (GL_VERTEX_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, V);

glEnableClientState (GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer(2, GL_FLOAT, 0, T);

r : KERNEL RADIUS

 PROJECTED KERNEL

for(z=0; z< NZ; z++) {

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, frameID);

glFramebufferTexture3DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_3D, densityTex, 0, z);

glDrawElements(GL_QUADS, nQuad, GL_UNSIGNED_INT, PAR_BIN_INDEX[z]);

}  DRAW QUADS IN CURRENT BIN

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 10

Density Estimation: Adaptive

 Use a three-step predictor-corrector scheme for automatically

choosing adaptive smoothing length.

 Pass 1: prediction stage

 Pass 2: correction stage

 Pass 3: density computation stage

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 11

 Given a number N*, predict a smoothing length h(1)
ijk that,

hopefully, contains N* particles in the supporting domain.

1. Quad drawing
with

Pass 1: Prediction Stage

},)(min{)0(3

1

)0(

*
)0()1(h

N

N
hh

ijk

ijk 

Prediction

)0(

ijkN

3)1(

*

3)0(

)0(

)(
3

4
)(

3

4
ijk

ijk

ijk

h

mN

h

mN



 

)0(h

x

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 12

 Count the number of particles N(1)
ijk found with h(1)

ijk, and

compute a new length h*
ijk corrected according to the particle

distribution.

 Case 1: underestimation (N(1)
ijk < N*)

2. Quad drawing
with

Pass 2: Correction Stage

x

},)(min{)0(3

1

)0(

*
)0()1(h

N

N
hh

ijk

ijk 

Prediction

)0(

ijkN
)1(

ijkN

3

1

3)1(

)1()0(

3)1(3)0()1(*

*))(
))())(((

(ijk

ijkijk

ijkijk

ijk h
NN

hhNN
h 






Correction

3)1(3*

)1(*

3)1(3)0(

)1()0(

'

)(
3

4
)(

3

4

)(

)(
3

4
)(

3

4

)(

ijkijk

ijk

ijk

ijkijk

ijk

hh

NNm

hh

NNm















)0(h

1. Quad drawing
with)1(

ijkh

Underestimation

)1(*

ijkNN 

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 13

2. Quad drawing
with

},)(min{)0(3

1

)0(

*
)0()1(h

N

N
hh

ijk

ijk 

Prediction

)0(

ijkN
)1(

ijkN

Correction

)0(h

1. Quad drawing
with)1(

ijkh

Overestimation

)1(*

ijkNN 

3

1

)1(

*
)1(*)(

ijk

ijk
N

N
hh 

3*

*

3)1(

)1(

)(
3

4
)(

3

4
ijk

ijk

ijk

h

mN

h

mN



 )1(
)0(

)1(

ijk

ijk

N

N
s

s : user defined scale factor

x

 Case 2: overestimation (N(1)
ijk > N*)

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 14

Pass 3: Density Computation Stage

 Estimate volume density using adaptively chosen smoothing

distance h*
ijk.

x

Underestimated case

x

Overestimated case

2. Quad drawing
with

)0(

ijkN
)1(

ijkN
)0(h

1. Quad drawing
with)1(

ijkh

3. Quad drawing
with *

ijkh Density
estimation

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 15

Results: Uniform vs. Adaptive Smoothing Lengths

 Rendering images

Uniform smoothing length Uniform smoothing length

Adaptive smoothing length

 Bumpy and noisy  Excessive blurring

006.0,96.0)0( mh

008.0,004.0,48.0)0( mh 004.0,001.0,96.0)0( mh

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 16

 Smooth out noise in low density region.
 Preserve details in high density region.

 Rendering animations

 Bumpy and noisy  Smooth out noise in low density region.
 Preserve details in high density region.

 Excessive blurring

Uniform smoothing length Adaptive smoothing length Uniform smoothing length

32.0)0(h 44.1)0(h 44.1)0(h

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 17

 Run times

 GPU: NVIDIA GeForce GTX 280

 Particles: 326,752

 Include the CPU time for building the uniform grid and slice bins

UG : uniform grid, similar to [T. PURCELL et al., 2003]

USL : uniform smoothing length

ASL2 : two-step adaptive smoothing length without correction step

ASL3 : three-step adaptive smoothing length with correction step

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 18

 Accuracy of smoothing length prediction

: average number of particles used for density estimation

: standard deviation of particles used for density estimation

used

avgN

used

stdevN

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 19

USL : uniform smoothing length

ASL2 : adaptive smoothing length

without correction step (2 steps)

ASL3 : adaptive smoothing length

with correction step (3 steps)

 More correction passes needed?

of PASSES

TIME(sec.)

of PASSES

used

avgN

of PASSES

used

avg

used

stdev

N

N

N*=32, 3pass

N*=64, 3pass

N*=32, 8pass

N*=64, 8pass Timing statistics

Standard deviation ratio# of average particles

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 20

Accurate Volume Photon Tracing

 Problem: Stochastically generate distance dnext to the next

interaction point for effective volume photon tracing.

 Still often used method 1

 Does not reflect varying extinction coefficients in nonhomogeneous

media, leading to erroneous simulation of light transport phenomena.

t

nextd


log


Emitted photons: 4,403,200

Stored photons: 117,757

GPU tracing time: 3.934 sec.

Photons traced Rendering result

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 21

)1,0(variablerandom uniform 

 Still often used method 2

 May avoid an excessive overestimation, but still does not reflect the

distribution of extinction coefficients in nonhomogeneous media.

},
log

min{ maxdd
t

next





t

nextd


log


Bound dnext by a maximum distance dmax.

Emitted photons: 409,600

Stored photons: 416,219

GPU tracing time: 1.359 sec.

50

Photons traced Rendering result

Scale up the extinction coefficient.

Scale factor

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 22

 Mathematically correct method

 Find dnext that satisfies the following integral equation:

 Can be solved numerically by incrementally evaluating the integral until

the sum exceeds the right term value.

 The current GPU allows to solve the equation in practical time!

)1ln()(
0

 
nextd

t dss

Emitted photons: 614,400

Stored photons: 191,636

GPU tracing time: 1.038 sec.

Photons traced Rendering result

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 23

Results: Incorrect vs. Correct Distance Generation

Still often used method 1 Still often used method 2(scale factor 50) Mathematically correct method

Emitted photons: 4,403,200

Stored photons: 117,757

Tracing time on GPU: 3.934 sec.

Emitted photons: 409,600

Stored photons: 416,219

Tracing time on GPU: 1.359 sec.

Emitted photons: 614,400

Stored photons: 191,636

Tracing time on GPU: 1.038 sec.

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 24

Efficient Radiance Estimation with Illumination Cache

 Problem: Estimate in-scattered radiance at each ray sample

point during the ray marching stage.

 Most of the rendering time is spent in computing incoming radiance due

to single and multiple scattering on the fly during ray marching.

 A radiance caching scheme was presented for volume rendering by

Jarosz et al. (2008), but is not well-suited for GPU implementation.

 Brute force ray marching without caching

 Density volume generation

 Volume photon map generation
 Ray marching

 Single scattering
 Multiple scattering (volume photon gathering)

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 25

 Efficient ray marching with illumination cache

+ +
++

 Illumination cache grid

 Single-scattered radiance at grid points

 Multiple-scattered radiance at grid points
(use quad-drawing based volume photon gathering)

① Illumination cache generation ② Ray marching using illumination cache

+ +
+++ +
++

Interpolation for single-
& multiple-scattered radiance

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 26

 Run times: generation of illumination cache

 CPU: 3.16GHz Intel Core 2 Duo, GPU: NVIDIA GeForce GTX 280

 Particles: 500,000(Cloud1), 50,000(Cloud2), 326,752(Smoke)

 The tested CPU version also implements our illumination cache technique.

Results: With vs. Without Illumination Cache

Accumulation of single-scattered radiance Accumulation of multiple-scattered radiance

Cloud 1 Cloud 2 Smoke

375x

512x

324x

329x

406x

408x

19x

33x

42x

40x

42x

56x

18x

26x

60x

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 27

 Run times: ray marching with illumination cache



 Note: The rendering times by a CPU version without an illumination cache were
prohibitive!

Cloud 1 Cloud 2 Smoke

2115x

600x

721x

1698x

1036x

1701x

1526x

631x

1463x

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 28

Ray Marching with Perlin Noise

 Problem: Exploit procedural noise for producing natural fuzzy

effects during ray marching.

 Particle data that animators routinely generate often do not

contain much details.

 Slightly dispersing ray sample points with Perlin noise is a good

way of producing fuzzy effects.

 Our strategy

 Density noise: apply scalar noise to disperse estimated densities after

density estimation.

 Position noise: apply vector noise to disperse ray sample points during ray

marching.

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 29

Results: Before and After Adding Noises

 The extra cost is very cheap as pre-computed noises are stored in four-
component 3D texture for a fast noise application.

Cloud model in particles Rendering without noise

Density noise added Position noise added

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 30

Experimental Results

 Experiment environment

 CPU: 3.16GHz Intel Core 2 Duo, GPU: NVIDIA GeForce GTX 280

 APIs: OpenGL and Cg

 Image and grid resolutions

Cloud 1 Cloud 2 Smoke

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 31

 Rendering results

Average rendering time: 5.04(s)
Image resolution: 1024x576

Used rendering features:
 Adaptive density estimation, accurate photon tracing, Illumination cache,

position noise in ray marching

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 32

 Rendering results

Average rendering time: 10.27(s)
Image resolution: 1024x576

Used rendering features:
 Accurate photon tracing, Illumination cache, position noise in ray marching

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 33

 Rendering results

PARTICLE DATA GPU RENDERING CPU RENDERING

Average rendering time: 15.50(s)
Image resolution: 1024x768

Used rendering features:
 Adaptive density estimation
 Accurate photon tracing
 Illumination cache

Average rendering time: 507.17(s)
Image resolution: 1024x768

Used rendering features:
 Adaptive density estimation(kd-tree)
 Accurate photon tracing
 Illumination cache

Physically simulated particle data

Maximum # of particles: 326,752

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 34

 Overall timing performance

DVG : density volume generation
VPT : volume photon tracing
ICC : illumination cache construction
RM : ray marching [1K | 2K]

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 35

Cloud 1 Cloud 2 Smoke

 Timing performance at multiple volume resolutions

DVG : density volume generation
VPT : volume photon tracing
ICC : illumination cache construction
RM : ray marching

(a) (b) (c)

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 36

Conclusion and Future Work

 Presented a GPU-assisted particle rendering schemes.

1. Presented a three-pass, adaptive density estimation method for particle

datasets.

2. Proposed to use the mathematically correct distance generation method

for volume photon tracing in nonhomogeneous participating media.

3. Exploited an illumination cache scheme for efficient estimation of in-

scattered radiance.

4. Applied Perlin noise in ray marching stage for modeling fuzzy

appearance of participating media.

 Currently, we are extending our renderer to include light

emission phenomena of hot gaseous fluids like fire, flame, and

explosion.

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 37

Thank you!

 http://grmanet.sogang.ac.kr

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 38

Results: Before and After Adding Noises

 Additional results

Ray marching without noise

Image resolution: 2048x1152
Density grid: 128x68x129
Ray marching time: 2.0639(s)

Ray marching with noise

Image resolution: 2048x1152
Density grid: 128x68x129
Ray marching time: 2.0675(s)

Entire image

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 39

