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Backgrounds

 Numerical simulation of complicated light transport phenomena

For high quality volume rendering, 
the volume rendering equation must be solved as accurately as possible.

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 3



 Visualization of dynamic participating media in particle form

The generation of physically accurate rendering images 
from large particle datasets by solving the volume rendering equation 
often leads to a substantial expense in computation.

Modeled by animators Physically simulated
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Our Contributions

 Present GPU-assisted computation techniques 

designed for high quality particle volume rendering.

1. Present a three-pass, adaptive density estimation method for 
particle datasets.

2. Propose to use the mathematically correct distance generation 
method for volume photon tracing in nonhomogeneous
participating media.

3. Exploit an illumination cache scheme for efficient estimation of  
in-scattered radiance.

4. Apply Perlin noise in the ray marching stage for modeling fuzzy 
appearance of participating media.
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Previous Work

 Particle based representation of participating media

 Realistic rendering of participating media

W. REEVES,1983 A. KAPLER, 2003 J. MONAGHAN, 1988

J. BLINN,1982 J. KAJIYA and B. V. HERZEN,1984

H. W. JENSEN,1998 W. JAROZ, et al., 2008 F. QIU, et al., 2007

“A survey on participating 

media rendering techniques”

E. CEREZO, et al., 2005
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 Real-time rendering of participating media

 Pre-computation of light transport information

Y. DOBASHI, et al., 2002 J. KNISS, et al., 2003 K. RILEY, et al., 2004 B. SUN, et al., 2005

S. PREMOŽE, et al., 2002M. HERRIS, and A. LASTRA, 2001 K. HEZEMAN, et al., 2004

L. SZIRMAY-KALOS, et al., 2005 K. ZHO, et al., 2008 A. BOUTHORS, et al., 2008 C. CRASSIN, et al., 2009
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Our GPU-Assisted Rendering Pipeline
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Adaptive Density Volume Generation 

 Problem: Build volumetric density field from input particles.

 Reconstruction of density at grid point pijk from particle 

distribution using kernel function (SPH)

 GPU-assisted density estimation

 Estimation with uniform smoothing length

 Estimation with adaptive smoothing length

 Local accuracy depends on the number of neighboring particles 

involved.

),()( ijkq qijkqijk hppWmp  
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W(x, h): a smoothing kernel with smoothing length h



Density Estimation: Non-adaptive

 Use uniform smoothing length.

INPUT PARTICLES

 DENSITY VOLUME GRID

(NX, NY, NZ)

KERNEL DIAMETER
 PARTICLE BIN

(PARTICLE INDEX LIST)

KERNEL DIAMETER

 QUAD FOR PARTICLE KERNEL

X

Y
Z

V[i]        {Px – r, Py – r, Pz };
T[i]        {Px , Py }

V[i+4]        {Px – r, Py + r, Pz };
T[i+2]        {Px , Py }

V[i+8]        {Px + r, Py + r, Pz };
T[i+4]        {Px , Py }

V[i+12]         {Px + r, Py - r, Pz };
T[i+6]           {Px , Py }

glEnableClientState (GL_VERTEX_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, V);

glEnableClientState (GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer(2, GL_FLOAT, 0, T);

r : KERNEL RADIUS

 PROJECTED KERNEL

for( z=0; z< NZ; z++) { 

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, frameID);

glFramebufferTexture3DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_3D, densityTex, 0, z);

glDrawElements(GL_QUADS, nQuad, GL_UNSIGNED_INT, PAR_BIN_INDEX[z]);

}  DRAW QUADS IN CURRENT BIN
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Density Estimation: Adaptive

 Use a three-step predictor-corrector scheme for automatically 

choosing adaptive smoothing length.

 Pass 1: prediction stage

 Pass 2: correction stage

 Pass 3: density computation stage
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 Given a number N*, predict a smoothing length h(1)
ijk that, 

hopefully, contains N* particles in the supporting domain. 

1. Quad drawing 
with 

Pass 1: Prediction Stage
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 Count the number of particles N(1)
ijk found with h(1)

ijk, and 

compute a new length h*
ijk corrected according to the particle 

distribution.

 Case 1: underestimation (N(1)
ijk < N*)

2. Quad drawing 
with 

Pass 2: Correction Stage
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2. Quad drawing 
with 
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s : user defined scale factor

x

 Case 2: overestimation (N(1)
ijk > N*)
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Pass 3: Density Computation Stage

 Estimate volume density using adaptively chosen smoothing 

distance h*
ijk.

x

Underestimated case

x

Overestimated case

2. Quad drawing 
with 
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Results: Uniform vs. Adaptive Smoothing Lengths

 Rendering images

Uniform smoothing length Uniform smoothing length

Adaptive smoothing length

 Bumpy and noisy  Excessive blurring

006.0,96.0)0(  mh

008.0,004.0,48.0)0(  mh 004.0,001.0,96.0)0(  mh
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 Smooth out noise in low density region.
 Preserve details in high density region.



 Rendering animations

 Bumpy and noisy  Smooth out noise in low density region.
 Preserve details in high density region.

 Excessive blurring

Uniform smoothing length Adaptive smoothing length Uniform smoothing length

32.0)0( h 44.1)0( h 44.1)0( h
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 Run times 

 GPU: NVIDIA GeForce GTX 280

 Particles: 326,752  

 Include the CPU time for building the uniform grid and slice bins

UG : uniform grid, similar to [T. PURCELL et al., 2003]

USL : uniform smoothing length

ASL2 : two-step adaptive smoothing length without correction step

ASL3 : three-step adaptive smoothing length with correction step
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 Accuracy of smoothing length prediction 

: average number of particles used for density estimation

: standard deviation of particles used for density estimation

used

avgN

used

stdevN
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USL : uniform smoothing length

ASL2 : adaptive smoothing length 

without correction step (2 steps)

ASL3 : adaptive smoothing length

with correction step (3 steps)



 More correction passes needed?

#  of PASSES

TIME(sec.)

# of PASSES

used

avgN

# of PASSES

used

avg

used

stdev

N

N

N*=32, 3pass

N*=64, 3pass

N*=32, 8pass

N*=64, 8pass Timing statistics

Standard deviation ratio# of average particles

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 20



Accurate Volume Photon Tracing

 Problem: Stochastically generate distance dnext to the next 

interaction point for effective volume photon tracing. 

 Still often used method 1

 Does not reflect varying extinction coefficients in nonhomogeneous

media, leading to erroneous simulation of light transport phenomena.

t

nextd


log


Emitted photons: 4,403,200

Stored photons: 117,757

GPU tracing time: 3.934 sec.

Photons traced Rendering result
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 Still often used method 2

 May avoid an excessive overestimation, but still does not reflect the 

distribution of extinction coefficients in nonhomogeneous media.

},
log

min{ maxdd
t

next





t

nextd


log


Bound dnext by a maximum distance dmax.

Emitted photons: 409,600

Stored photons: 416,219

GPU tracing time: 1.359 sec.

50

Photons traced Rendering result

Scale up the extinction coefficient.

Scale factor
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 Mathematically correct method

 Find dnext that satisfies the following integral equation:

 Can be solved numerically by incrementally evaluating the integral until 

the sum exceeds the right term value.

 The current GPU allows to solve the equation in practical time!

)1ln()(
0

 
nextd

t dss

Emitted photons: 614,400

Stored photons: 191,636

GPU tracing time: 1.038 sec.

Photons traced Rendering result
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Results: Incorrect vs. Correct Distance Generation

Still often used method 1 Still often used method 2(scale factor 50) Mathematically correct method

Emitted photons: 4,403,200

Stored photons: 117,757

Tracing time on GPU: 3.934 sec.

Emitted photons: 409,600

Stored photons: 416,219

Tracing time on GPU: 1.359 sec.

Emitted photons: 614,400

Stored photons: 191,636

Tracing time on GPU: 1.038 sec.
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Efficient Radiance Estimation with Illumination Cache

 Problem: Estimate in-scattered radiance at each ray sample 

point during the ray marching stage. 

 Most of the rendering time is spent in computing incoming radiance due 

to single and multiple scattering on the fly during ray marching.

 A  radiance caching scheme was presented for volume rendering by 

Jarosz et al. (2008), but is not well-suited for GPU implementation.

 Brute force ray marching without caching

 Density volume generation

 Volume photon map generation
 Ray marching

 Single scattering
 Multiple scattering (volume photon gathering)
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 Efficient ray marching with illumination cache

+ +
++

 Illumination cache grid

 Single-scattered radiance at grid points

 Multiple-scattered radiance at grid points
(use quad-drawing based volume photon gathering)

① Illumination cache generation ② Ray marching using illumination cache

+ +
+++ +
++

Interpolation for single-
& multiple-scattered radiance
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 Run times: generation of illumination cache

 CPU: 3.16GHz Intel Core 2 Duo, GPU: NVIDIA GeForce GTX 280

 Particles: 500,000(Cloud1), 50,000(Cloud2), 326,752(Smoke)

 The tested CPU version also implements our illumination cache technique.

Results: With vs. Without Illumination Cache

Accumulation of single-scattered radiance Accumulation of multiple-scattered radiance

Cloud 1 Cloud 2 Smoke

375x

512x

324x

329x

406x

408x

19x

33x

42x

40x

42x

56x

18x

26x

60x
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 Run times: ray marching with illumination cache



 Note: The rendering times by  a CPU version without an illumination cache were  
prohibitive!

Cloud 1 Cloud 2 Smoke

2115x

600x

721x

1698x

1036x

1701x

1526x

631x

1463x
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Ray Marching with Perlin Noise

 Problem: Exploit procedural noise for producing natural fuzzy 

effects during ray marching. 

 Particle data that animators routinely generate often do not 

contain much details.

 Slightly dispersing ray sample points with Perlin noise is a good 

way of producing fuzzy effects.

 Our strategy

 Density noise: apply scalar noise to disperse estimated densities after 

density estimation.

 Position noise: apply vector noise to disperse ray sample points during ray 

marching.
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Results: Before and After Adding Noises

 The extra cost is very cheap as pre-computed noises are stored in four-
component 3D texture for a fast noise application.

Cloud model in particles Rendering without noise

Density noise added Position noise added

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 30



Experimental Results

 Experiment environment

 CPU: 3.16GHz Intel Core 2 Duo, GPU: NVIDIA GeForce GTX 280

 APIs: OpenGL and Cg

 Image and grid resolutions

Cloud 1 Cloud 2 Smoke
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 Rendering results

Average rendering time: 5.04(s)
Image resolution: 1024x576

Used rendering features:
 Adaptive density estimation, accurate photon tracing, Illumination cache, 

position noise in ray marching

GPU-Assisted High Quality Particle Rendering by D. Cha, S. Son, and I. Ihm2009-07-01 32



 Rendering results

Average rendering time: 10.27(s)
Image resolution: 1024x576

Used rendering features:
 Accurate photon tracing, Illumination cache, position noise in ray marching 
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 Rendering results

PARTICLE DATA GPU RENDERING CPU RENDERING

Average rendering time: 15.50(s)
Image resolution: 1024x768

Used rendering features:
 Adaptive density estimation
 Accurate photon tracing
 Illumination cache

Average rendering time: 507.17(s)
Image resolution: 1024x768

Used rendering features:
 Adaptive density estimation(kd-tree)
 Accurate photon tracing
 Illumination cache

Physically simulated particle data

Maximum # of particles: 326,752
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 Overall timing performance

DVG : density volume generation
VPT : volume photon tracing
ICC : illumination cache construction
RM : ray marching [1K | 2K]
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 Timing performance at multiple volume resolutions

DVG : density volume generation
VPT : volume photon tracing
ICC : illumination cache construction
RM : ray marching

(a) (b) (c)
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Conclusion and Future Work

 Presented a GPU-assisted particle rendering schemes.

1. Presented a three-pass, adaptive density estimation method for particle 

datasets.

2. Proposed to use the mathematically correct distance generation method 

for volume photon tracing in nonhomogeneous participating media.

3. Exploited an illumination cache scheme for efficient estimation of  in-

scattered radiance.

4. Applied Perlin noise in ray marching stage for modeling fuzzy 

appearance of participating media.

 Currently, we are extending our renderer to include light 

emission phenomena of hot gaseous fluids like fire, flame, and 

explosion.
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Thank you!

 http://grmanet.sogang.ac.kr
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Results: Before and After Adding Noises

 Additional results

Ray marching without noise

Image resolution: 2048x1152
Density grid: 128x68x129
Ray marching time: 2.0639(s)

Ray marching with noise

Image resolution: 2048x1152
Density grid: 128x68x129
Ray marching time: 2.0675(s)

Entire image
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