
1

Parallel Ray Casting of Visible Human
on Distributed Memory Architectures

1999. 5. 27
Chandrajit Bajaj

Univ. of Texas at Austin, U.S.A.
Insung Ihm* and Sanghun Park

Sogang Univ., Seoul, Korea

2

Visualization of the Visible Man

3

Visible Human Dataset from NLM

w CT, MRI and RGB cryosection images
w Visible Man
� Axial scans : 1mm interval, over 1870 cross-sections
� Cross-sectional images : 512 x 512
� Ex) Frozen CT 512 x 512 x 1871 x 2 bytes = 935.5MB

w Visible Woman
� Axial scans : 1/3mm interval

F The whole data sets amount to 15 GB to 40 GB.

4

Parallel Ray Casting of Visible Human

w Volume data are often very large.
� Several hundred MB ~ a few GB

w Huge volume data place considerable demands on
computing time and memory space.
w Volume ray-casting provides the highest rendering quality,

but is one of the most compute- and memory-intensive
algorithms.
F We would like to ray-cast Visible Human on a Cray T3E

multiprocessor. So, how do we do that?

5

Interactive Visualization of Visible Human

LHuge volume data place considerable demands on
run-time memory space.
☺Develop an effective compression technique.

LHuge volume data need a great deal of computing
time for visualization.
☺Develop an optimization technique for volume

rendering.
☺Develop an effective distributed volume rendering

method.
☺Develop an effective parallel volume rendering method.

6

Our Approach

w In most previous rendering algorithm on distributed-
memory architectures, volume data is
� distributed over the local memory spaces in the system, and
� redistributed between processors through remote memory fetch.

w The cost of communication for 3D volume redistribution is
high. → Often a serious factor that degrades performance.
w When the entire volume data is replicated on every

processor’s local memory, there is no need for
redistribution. But …

7

w Use a proper compression method to
� replicate the entire volume data at each PE in

compressed form, and
� ray-cast it without 3D volume redistribution.

8

Zerobit Encoding: Wavelet-based 3D compression
scheme for very large volume data

w Volume data are often very large.
� Several hundred MB ~ several dozen GB

LHuge volume data place considerable demands on run-time
memory space.

LHuge volume data need a great deal of computing time for
visualization.

F Can we interactively visualize a 1~2GB volume dataset
on my computer with 128MB of main memory?

9

w Design goals
� High compression ratio

– Achieve the best compression rate with minimal distortion in the
reconstructed images?

– Often impose some constraints on random access ability

� Fast run-time random access ability
– The access patterns in interactive applications change in somewhat

complicated ways.

w “Wavelet-Based 3D Compression Scheme for Very Large
Volume Data” by I. Ihm and S. Park[3,4] → “Zerobit
Encoding” by I. Ihm and S. Park

10

w With this scheme, we would like to
� Load the whole very large volume data, say 2GB, into a main

memory of moderate size, say 128MB.
� Allow users feel as if they have a main memory of larger size.
� Help develop interactive applications for very large volume data

on PCs, workstations, and multi-processors with limited memory.

11

Applications of Zerobit Encoding

Light Field Compression Solid Texture Compression

12

Sample Statistics for Zerobit Encoding

w Visible Man Fresh CT
� 512 x 512 x 1440 x 2 bytes = 720 MBytes

� 32 x 32 x 90 = 92,160 unit blocks

w SGI Octane Workstation
� MIPS 195 MHz R10000 CPU

� 256 MBytes Main Memory

13

Compression Rate and Fidelity

•Compression Rate

3% 5% 7% 10% 15%

Compressed Data Size (MB) 24.6 35.1 45.4 60.5 83.5

Compression Ratio 29.3 20.5 15.6 11.9 8.6

3% 5% 7% 10% 15%

Compressed Data Size (MB) 24.6 35.1 45.4 60.5 83.5

Compression Ratio 29.3 20.5 15.6 11.9 8.6

•Error in Voxel Values
3% 5% 7% 10% 15%

SNR (dB) 22.6 25.9 28.6 32.0 36.4

PSNR (dB) 44.5 47.8 50.4 53.8 58.2

3% 5% 7% 10% 15%

SNR (dB) 22.6 25.9 28.6 32.0 36.4

PSNR (dB) 44.5 47.8 50.4 53.8 58.2

14

3% 5% 7% 10% 15%

Skin (deg) 15.4 11.4 8.6 6.0 3.9

Bone (deg) 24.7 19.0 15.0 10.8 6.7

3% 5% 7% 10% 15%

Skin (deg) 15.4 11.4 8.6 6.0 3.9

Bone (deg) 24.7 19.0 15.0 10.8 6.7

•Error in Normals

15

Sample Slices

27.4 : 1
26.31MB

18.8 : 1
38.27MB

14.7 : 1
48.98MB

Uncompressed
720MB

16

Ray-Cast Images

Original Data
720 MB

Compressed Data
45.4 MB

7%

15.6 : 1

17

Original Data
720 MB

Compressed Data
35.1 MB

5%

20.5 : 1

18

Original Data
720 MB

Compressed Data
24.6 MB

3%

29.3 : 1

19

Random Access Time (512 Slices)

•Zerobit Encoding

•Previous [3,4]

Uncompressed

Uncompressed

2.78

18.88

6.50

2.78

18.88

6.50

3% 5% 7% 10% 15%

Pure Random (1M times) 3.33 3.49 3.67 3.85 4.16

Cell-Wise All 3.88 4.88 5.99 7.52 9.54

Skin 2.28 2.91 3.53 4.36 5.55

3% 5% 7% 10% 15%

Pure Random (1M times) 3.33 3.49 3.67 3.85 4.16

Cell-Wise All 3.88 4.88 5.99 7.52 9.54

Skin 2.28 2.91 3.53 4.36 5.55

3% 5% 7% 10% 15%

Pure Random (1M times) 6.68 7.06 7.46 7.94 8.69

Cell-Wise All 26.55 27.62 28.47 29.63 30.97

Skin 9.66 10.19 10.69 11.24 11.94

3% 5% 7% 10% 15%

Pure Random (1M times) 6.68 7.06 7.46 7.94 8.69

Cell-Wise All 26.55 27.62 28.47 29.63 30.97

Skin 9.66 10.19 10.69 11.24 11.94

20

Compression-Based Parallel Ray-Casting

w Image partition for tasks
� Image screen is partitioned into tiles of small sizes, forming a task

queue.
� Each processor repeatedly gets a task from the queue, and render

the corresponding tile.
� Load balancing is performed dynamically.

21

w Object partition for data
� Volumes are partitioned into 16x16x16 sub-blocks, called unit

blocks, that are subdivided into 4x4x4 sub-blocks, called cells.
� The cell is a basic decoding unit for zerobit encoding.
� Rays are traversed unit block by block for efficiency,

decompressing cell by cell.
� Use a min-max octree for effective front-to-back traversal.

22

Object-Order Aspect of Our Ray-Casting

w For an assigned tile,
� Use an octree to enumerate, in front-to-back

order, the unit blocks that intersect with the
view volume, and contains voxels of interest.
� For each cell in the enumeration,

– For each ray segment inside the cell,
– Render the segment, and accumulate

its color and opacity.

tile
volume

data

view
volume

23

w Why object-order traversal?
� Block-wise traversal is more appropriate for minimizing the

reconstruction costs than ray-by-ray traversal is.
– In our compression-based scheme, voxels must be

decompressed as necessary when they are not in cache.
– Decompression v.s. remote fetch.
– It is important to

– minimize the number of decompression operations, and
– utilize voxels maximally once decompressed.

� By block-wise traversal, data coherence in object space is easily
exploited.

24

Image-Order Aspect of Our Ray-Casting

w The early ray termination technique is not
natural to object-order ray-casting.
w Apply a quadtree-based early ray

termination technique:
� For a tile to be rendered, maintain a quadtree on

tile’s pixels, dynamically.
� A node have a value that indicates if its

corresponding sub-region is opaque or not.
� For each interesting unit block, project it onto

the tile, and traverse the quadtree to quickly
remove opaque regions from consideration.
� If the root is opaque, stop rendering for the tile.

tile

projected
unit block

25

Experimental Results

w Test volume data
� Fresh CT of Visible Man

– Resolution: 512 x 512 x 1440
– Size: 720 MBytes

� Compressed data
– Approximate ratio of wavelet coefficients to be used: 7%
– Size: 45.43 MBytes

w Classification: skin
w Test tile sizes: 16x16, 32x32, 64x64
w Image resolution: 512 x 1024

26

Cray T3E-900 at ETRI: Distributed-
Memory Parallel Computer
w 136 Processing Elements (PEs): 112 for Applications, 21

for Command, and 3 for OS only
w Each Processing Element (PE) includes
� a 450 MHz Alpha processor, and
� 128 Mbytes local memory.

w PEs are connected by a high-bandwidth, low latency bi-
directional 3D torus system interconnect network.
w Programming tools
� PVM
� MPI
üSHMEM Library (Cray Shared Memory Library)

27

Parallel Ray-Casting Snapshots

28

Rendering Time

Tile size: 32x32
209.4

52
26.2

13.4 9.1 7 5.7 4.9 4.3 3.8 3.5 3.3 3.1 2.9
0

50

100

150

200

250

1 4 8 16 24 32 40 48 56 64 72 80 88 96

of PEs

Se
c.

29

Speedup

Tile size: 32x32

4
8

16
24

32
40

48
56

64
72

80
88

96

4
7.9

15.5
22.8

29.8
36.4

42.7
48.7

54.4
59

63.2
67.8

73

0

10

20

30

40

50

60

70

80

90

100

4 8 16 24 32 40 48 56 64 72 80 88 96
of PEs

Sp
ee

du
p

(0.79)
(0.76)

(0.85)

(0.89)

30

Communication Time

Comm. Time/Total Rend. Time

0.026
0.027 0.027 0.027

0.026 0.026 0.026
0.025 0.025

0.015

0.025

0.035

4 8 16 24 32 40 48 56 64

of PEs

R
at

io

31

Load Balancing

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PE's ID

Se
c.

16 x 16
32 x 32
64 x 64

32

Conclusion

w An effective compression-based parallel ray-casting
scheme for very large volume data on distributed memory
architectures.
� Simple and easy to implement.
� Attempt to achieve high performance by minimizing costly

communication between PEs through data compression.
� Exploit both object- and image-space coherence.
� Also very appropriate for PC/Workstation clusters, connected via

low bandwidth links.

33

Compression-Based Distributed Rendering on
PC/WS Clusters

34

Future Works

w Further optimization of our codes.
w Development of applications on distributed systems.
w What if the data is so large that its compressed version can

not be loaded into a local memory?

35

