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Motivations

vObservations
§ Volume data are often very large.
§ Lossy compression is often inevitable.
§ Sometimes, we wish to visualize some fixed set of 

coherent features that are concentrated in a few regions.
§ For most lossy compression schemes, information on 

those features is uniformly lost regardless of the 
visualization task to be performed.
§ Can we interactively visualize a 2GB volume data set on my 

computer with 128MB of main memory?
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vQuestion
§ Is it possible to design a compression scheme that 

enables to focus more on important voxel, used more 
frequently during visualization?
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Research Goals

v Develop a technique
① that classifies voxels according to their importance in 

the visualization task,  
② that assigns appropriate weights to voxels, and
③ that uses those weights during lossy compression so 

that important features remain as correct as possible 
after reconstruction.

v Propose a new framework for lossy compression!
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Related Work

vThere are a lot of results on volume compression.
§ Compression is dependent on the spatial properties of 

images.
§ We want to compress volume data in accordance with  

the purpose of a visualization task.

v It was difficult to find a feature-based compression 
method in volume visualization.
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Visualization Model

vTwo popular visualization techniques
§ Isosurface extraction: marching cube
§ Direct volume rendering: ray casting

vFeatures to be visualized are known beforehand.
vA 3D volume data is viewed as a 3D graph (V, E)
§ V: a set of all voxels v
§ E: a set of all unordered pairs (u, v), where two  voxels u

and v are 6-neighbors to each other 
§ d(v): a density function from V to R
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Marching Cube [9]

vThe edge intersection and 
normal vectors are linearly 
interpolated along the edge.

vThe correctness of isosurfaces
with normals are dependent on 
the densities of  incident voxels
of all intersecting edges, and
their 6-neighbors.

Isosurface
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Edge e
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Ray Casting [7]

vWhen a point inside a cell is 
resampled, the shaded colors and 
normal vectors at the eight voxels
are tri-linearly interpolated.

vThe correctness of the computed     
are dependent on the 

densities of  the eight voxels of all 
resampled cells, and their 6-
neighbors. Material

Cell cCore voxel
Gradient voxel

( )iiC α ,
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Voxel Classification: Core Voxels

vDensity values and density interval of interest

vCore voxels
§ Voxels that directly affect isosurface extraction and/or 

ray-casting.
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Voxel Classification: Gradient Voxels

vGradient voxels
§ Voxels that affect the gradient computations in 

isosurface extraction and/or ray-casting.
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Voxel Classification: Unimportant Voxels

vUnimportant voxels
§ Voxels that are neither core nor gradient
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Definition of weight function 

vGoal
§ Weight voxels according to their possible usage, or 

importance in the visualization task.

vFor v in 
§ Give larger weights to voxels whose incident edges are 

cut through by more isosurfaces.
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vFor v in
§ Preserve well the voxels’densities that actually contribute 

to color-opacity accumulation during rendering. 
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vFor v in
§ V’s density becomes more important as more isosurfaces

pass through the edges incident to the neighbors. 
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vFor v in
§ Count the number of incident cells that have at least one 

voxel with nontrivial compute opacity. 
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vFinally, the weight function is

§ The function values in the argument list are defined in 
the different domains.
§ They must be normalized according to volume data.
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Example: CT Data

vThe UNC Bighead data  (256 X 256 X 225)
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Distribution of Weights
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Combining the Weight Functions

vUse a heuristic method.
�Rescale the four weights.
�Control the relative strength 

of two visualization 
methods.
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Summed weightMaximum weight

Examples: Combined Weights
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Application to Compression Scheme

vSo far, we’ve proposed how to weigh voxels with 
respect to a visualization task.

vHow do we use those weights in compressing 
volume data?

vConsider lossy compression schemes such as 
§ Zerobit encoding 
§ Vector quantization
§ Etc.
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Zerobit encoding [Bajaj, Ihm, Park ‘01]

v A new compression scheme that supports the fast random 
decoding and multi-resolution representation.

v Appropriate for developing real-time/interactive 
applications that must handle 3D images.

v Based on the simple 3D Haar filter.

solid textureLight fieldRGB scan
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2D Haar Wavelet Transforms
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Wavelet-Based Compression

v Idea
§ Decompose an input data set through wavelet 

transforms.
§ Sort the wavelet coefficients in order of decreasing 

magnitude.
§ Given an error measure, delete as many coefficients 

with smaller magnitude as possible.

F This is the best choice for orthonormal bases under the L2 norm.
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2D Image Compression Using Haar Wavelets
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Decomposition Reconstruction
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Zerobit Encoding (3D RGB)
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Weights in the Wavelet Space
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Computation of Weight

v Idea
§ The wavelet coefficients are important if the 

corresponding voxels are important.
§ All the 4 wavelet coefficients are used simultaneously  

when any voxel in a 2x2 area.
ð Assign the largest of the 4 weights to the 4 wavelets.
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v Traverse the decomposition 
tree in bottom-up fashion.
§ Level 1 detail node

§ Level 0 detail node

§ Level 0 average node
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Truncation of Wavelet Coefficients

v In truncating wavelets, 
§ use the measure                                  instead of     .

vNeed to rescale the wavelets’weights properly.
§ for instance, )())(( 10 ww ww φγγφν ⋅+=
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Experimental Results - Bighead

vThe UNC Bighead data 
vResolution: 256X256X225
vSpecification
§

§ Important voxels: 19.89%
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Quantitative Analysis of Reconstruction Errors

 

Ratio of the used wavelet coefficients 
  

2% 3% 5% 7% 

RMSE* 10.78 8.76 6.38 4.91 Unweighed 

Haar PSNR 27.48 29.28 32.04 34.31 

RMSE* 6.78 4.86 2.82 1.79 Weighted 

Haar PSNR 31.50 34.40 39.12 43.06 

 (*: density range 0 ~ 255) 
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Reconstructed Images (114th slice)

weighted: 3% weighted: 5%

unweighed: 3% unweighed: 5%

original
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Isosurface Rendering (d = 66)

unweighed: 2% unweighed: 3% unweighed: 5% unweighed: 7%

weighted: 2% weighted: 3% weighted: 5% weighted: 7%
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Ray Casting ([40,45,88,90], [95,135,253,255])

unweighed: 2% unweighed: 3% unweighed: 5% unweighed: 7%

weighted: 2% weighted: 3% weighted: 5% weighted: 7%
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Experimental Results – Visible Man (NLM)

vA preprocessed FRESH CT data 
vResolution: 512X512X512 (512MB)
vSpecification
§

§ Important voxels: 23%
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Quantitative Analysis of Reconstruction Errors

 

Ratio of the used wavelet coefficients 
  

2% 3% 5% 7% 

RMSE* 66.61 51.55 36.02 27.10 Unweighed 

Haar PSNR 35.77 38.00 41.11 43.58 

RMSE* 46.92 34.21 20.88 13.92 Weighted 

Haar PSNR 38.82 41.56 45.85 49.37 

 (*: density range 0 ~ 4095) 
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Ray Casting 

weighted: 3% 
(8256KB)

weighted: 4%
(9486KB)

unweighed: 7%
(16340KB)

Visual quality: 
Unweighed 7% ~ weighted 3-4%
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Isosurface Rendering (d = 600)

weighted: 2%
(5,552KB)

weighted: 3%
(5,948KB)
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Discussion

vPresented a new volume compression method.
§ Proposed a method for classifying  voxels according to 

their importance in visualization, not their spatial 
properties.
§ Applied the weight information to a compression 

scheme, called Zerobit encoding.

ðWhen the possible visualization features can be 
pre-determined, our new scheme will be used 
effectively.
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Future Work

vNeed a more scientific method to determine the 
coefficients in the various function definitions.
§ Currently, they are determined experimentally.

vApply our scheme to other compression schemes.
§ For instance, an enhanced codebook could be built.
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Related Work

v Ning et al. [Vis. 93]
§ Vector quantization

v Muraki [Vis. 92, CG&A 93]
§ 3D Wavelet compression

v Ghavamnia et al. [Vis. 95]
§ Laplacian pyramid

v Yeo et al. [IEEE TVCG 95]
§ DCT-based 3D compression

v Thoma et al. [IEEE Mult. 97]
§ Experimental results on 2D compression of VH


