SaarCOR-A Hardware
Architecture for Ray Tracing

SaarCOR Chip

 Components
— RGS

» Ray generation and shading unit

— RTC
» Ray tracing unit
— RTC-MI

e Memory access manage unit

Component : RGS

e Sub units

— master . determining which eye ray will be
rendered next

— slave : receiving the coordinates of a pixel
from the master and managing this ray until
it is fully rendered

— Memlint : the unified memory interface,
handling all memory accesses

Component : RTC

 Trace rays through the BSP acceleration
structure and intersects rays with
triangles found in the leaf nodes

Component : RTC

e Sub units

— traversal unit : receives rays from the
RGS ,traces them until it locates a BSP node
containing a list of triangles and forwards
the list addresses to /list unit

— list unit : fetching the addresses of the
triangles and sending their addresses to the
Intersection unit

— Intersection unit : fetches the triangle data
and performs the intersection computation

Component : RTC-MI

« Handles memory requests for all RTC
cores

« Simple routing units implementing a
simple but efficient routing scheme

SaarCOR hardware model

PCI-bridge- — — — —— = 7= — = — — = = =~
|

host upload: shading data, camera

=SD—RAM, j‘i‘ame—bnﬁfer

|
I I
I Y y i
|
I Master) MemlInt
SaarCOR Mo RGS Meml
S A i i
~
S r ' J
2 (Stave-1 Stave-2)
S
g I 112 301
S - s
2 : RTC-1 1 RTC-2
=, -~ D) 64.29.16 ; e
1 64,29,18 Traversal |=— Traversal ==
| RTCMI Trav—Cache T-SR Ny J N =
: 117
64.29.18
' v 16.27.6 1299 16 Y J
SD-RAMO— 64,29.21 32,29,18 =z List List
‘S,D_R‘LMI - MemCirl a——» M List—Cache =——» L-SR J
SD—RAM2—= ok A
SD—-RAM3 = 138
64,29,21]
288.29.18 338.29.16 Intersection |==
Int—Cache I-SR T 204
o) \ J

RGS implementation issues

* Phong-like shading with bilinear texture
filtering

« Cost per ray is 50FP adds and 70FP muls
including address calculation for texture
reads

« Shading is decoupled from visibility

computations and allows the architecture
to be tuned for specific target markets

RTC implementation issues

« Packet of rays

— If packet of rays are coherent and visit roughly
the same items. Then traversed BSP nodes need
to be fetched only once to be used for every
ray in a packet.

— Large packets also increase the overhead as
they cause more rays to traverse they would
not traverse.

— Groups of 64 rays are a good compromise
between bandwidth requirements, additional
overhead.

RTC implementation issues

 Bit vector with each packet

— Whether the ray is active in the current
branch of the BSP tree.

— Efficiently operate on only a subset of rays
In a packet and dramatically reduces the
overhead.

— Updating and evaluating the bit vector is
almost negligible.

RTC implementation issues

e Estimation of the cost

— Traversal operations(trav-op)
» 64bits of data, 3FP adds, 1FP mul

— Intersection operations(/nt-op)
« 288bits of data, 12FP adds, 13FP muls

— Assume ladd equal 1lsub, 1div equal 3muls

RTC implementation issues

e Load balance between the traversal and
Intersection

— Varying the depth of the BSP tree

* A ratio of 4 trav-op to 1 int-op is well suited for
most scenes

e Asynchronously traversal

— Reducing the overhead introduced by a
group of idle rays to a single cycle

« Multi-threading

RTC-MI implementation issues

e Round-robin multiplexer for submitting
memory requests and a labeled
broadcast to return data.

« Each unit allows for several outstanding
memory requests

	SaarCOR-A Hardware Architecture for Ray Tracing
	SaarCOR Chip
	Component : RGS
	Component : RTC
	Component : RTC
	Component : RTC-MI
	SaarCOR hardware model
	RGS implementation issues
	RTC implementation issues
	RTC implementation issues
	RTC implementation issues
	RTC implementation issues
	RTC-MI implementation issues

