
SaarCOR-A Hardware 
Architecture for Ray Tracing

2008. 7. 22. 장병준



SaarCOR Chip

• Components
– RGS

• Ray generation and shading unit

– RTC
• Ray tracing unit

– RTC-MI
• Memory access manage unit



Component : RGS

• Sub units
– master : determining which eye ray will be 

rendered next
– slave : receiving the coordinates of a pixel 

from the master and managing this ray until 
it is fully rendered

– MemInt : the unified memory interface, 
handling all memory accesses



Component : RTC

• Trace rays through the BSP acceleration 
structure and intersects rays with 
triangles found in the leaf nodes



Component : RTC

• Sub units
– traversal unit : receives rays from the 

RGS ,traces them until it locates a BSP node 
containing a list of triangles and forwards 
the list addresses to list unit

– list unit : fetching the addresses of the 
triangles and sending their addresses to the 
intersection unit

– Intersection unit : fetches the triangle data 
and performs the intersection computation



Component : RTC-MI

• Handles memory requests for all RTC 
cores

• Simple routing units implementing a 
simple but efficient routing scheme



SaarCOR hardware model



RGS implementation issues

• Phong-like shading with bilinear texture 
filtering

• Cost per ray is 50FP adds and 70FP muls
including address calculation for texture 
reads

• Shading is decoupled from visibility 
computations and allows the architecture 
to be tuned for specific target markets



RTC implementation issues

• Packet of rays
– If packet of rays are coherent and visit roughly 

the same items. Then traversed BSP nodes need 
to be fetched only once to be used for every 
ray in a packet.

– Large packets also increase the overhead as 
they cause more rays to traverse they would 
not traverse.

– Groups of 64 rays are a good compromise 
between bandwidth requirements, additional 
overhead.



RTC implementation issues

• Bit vector with each packet
– Whether the ray is active in the current 

branch of the BSP tree.
– Efficiently operate on only a subset of rays 

in a packet and dramatically reduces the 
overhead.

– Updating and evaluating the bit vector is 
almost negligible.



RTC implementation issues

• Estimation of the cost
– Traversal operations(trav-op)

• 64bits of data, 3FP adds, 1FP mul

– Intersection operations(int-op)
• 288bits of data, 12FP adds, 13FP muls

– Assume 1add equal 1sub, 1div equal 3muls



RTC implementation issues

• Load balance between the traversal and 
intersection
– Varying the depth of the BSP tree

• A ratio of 4 trav-op to 1 int-op is well suited for 
most scenes

• Asynchronously traversal
– Reducing the overhead introduced by a 

group of idle rays to a single cycle

• Multi-threading



RTC-MI implementation issues

• Round-robin multiplexer for submitting 
memory requests and a labeled 
broadcast to return data. 

• Each unit allows for several outstanding 
memory requests


	SaarCOR-A Hardware Architecture for Ray Tracing
	SaarCOR Chip
	Component : RGS
	Component : RTC
	Component : RTC
	Component : RTC-MI
	SaarCOR hardware model
	RGS implementation issues
	RTC implementation issues
	RTC implementation issues
	RTC implementation issues
	RTC implementation issues
	RTC-MI implementation issues

